
FPDeep: Acceleration and Load Balancing of
CNN Training on FPGA Clusters

Tong Geng∗, Tianqi Wang∗†, Ahmed Sanaullah∗, Chen Yang∗, Rui Xu†, Rushi Patel∗, Martin Herbordt∗
∗Department of Electrical and Computer Engineering; Boston University, Boston, MA
†Department of Physics; University of Science and Technology of China, Hefei, Anhui

Abstract—FPGA-based CNN accelerators have advantages in
flexibility and power efficiency and so are being deployed by a
number of cloud computing service providers, including Microsoft,
Amazon, Tencent, and Alibaba. Given the increasing complexity of
neural networks, however, it is becoming challenging to efficiently
map CNNs to multi-FPGA platforms. In this work, we present
a scalable framework, FPDeep, which helps engineers map a
specific CNN’s training logic to a multi-FPGA cluster or cloud
and to build RTL implementations for the target network. With
FPDeep, multi-FPGA accelerators work in a deeply-pipelined
manner using a simple 1-D topology; this enables the accelerators
to map directly onto many existing platforms, including Catapult,
Catapult2, and almost any tightly-coupled FPGA cluster. FPDeep
uses two mechanisms to facilitate high-performance and energy-
efficiency. First, FPDeep provides a strategy to balance workload
among FPGAs, leading to improved utilization. Second, training of
CNNs is executed in a fine-grained inter- and intra-layer pipelined
manner, minimizing the time that features need to remain available
while waiting for back-propagation. This reduces the storage
demand to where only on-chip memory is required for convolution
layers. Experiments show that FPDeep has good scalability to a
large number of FPGAs, with the limiting factor being the FPGA-
to-FPGA bandwidth. Using six transceivers per FPGA, FPDeep
shows linearity up to 60 FPGAs. We evaluate energy efficiency
in GOPs/J and find that FPDeep provides up to 3.4 times higher
energy efficiency than the Tesla K80 GPU.

Keywords-component—CNN Training; FPGA Cluster; High Per-
formance Computing

I. INTRODUCTION

Convolutional neural networks (CNNs) have become the
dominant approach in applications such as image classification
and object detection. Many FPGA cluster-based accelerators
have been proposed to improve CNN efficiency. These FPGA
clusters have generally been used in what could be called batch-
data-parallel [1]–[5]. Each FPGA executes all layers of CNN,
and each layer starts only after the previous layer has completed.
However, since configurations applied in different CNN layers
vary, FPGAs need to be reconfigured between layers to achieve
an optimal design for each layer; this can lead to substantial
overhead. Also, as the large number of weights and intermediate
features often do not all fit in on-chip memory, off-chip memory
must be used, which further reduces efficiency.

Another method, which we call Model Parallelism, is to
use multiple FPGAs in a deep pipeline [6], [7]. Each FPGA
accelerates only certain layers. It can therefore deploy optimal
hardware for those layers without reconfiguration. Two prob-
lems still remain. First, the pipeline is not seamless; a certain
layer might not be able to start until the previous layer is
finished. All features must therefore be cached until the last
feature of a layer is obtained. This creates a large storage
requirement that requires off-chip memory. Second, the com-
putational intensity varies greatly and this unbalanced workload

diminishes the overall performance. These two problems exist in
both inference and training, but they are magnified in training.
First, in training, all features of the hidden layers must be cached
until their corresponding errors arrive through Back Propagation
(BP); training thus requires much larger memory than inference.
Second, the number of operations per layer triples (due to BP).

We propose a novel FPGA-cluster-based training framework
for CNNs, FPDeep, that addresses both problems: efficient
pipelining and load balancing. Our overall method is to extend
Model Parallelism. The main contributions are as follows.
1. Balanced Workload: FPDeep provides intra- and inter-layer
partitioning and mapping.
2. Only on-chip memory is needed for the convolution (CONV)
layer. FPDeep uses a fine-grained inter- and intra-layer pipeline.
This minimizes the time that features need to remain available
while waiting for back-propagation.
3. Simple topology. FPDeep uses a 1-D topology. This enables
simple mapping onto any platform with that or a more gen-
eral interconnect, including Catapult, Catapult2, and almost all
tightly-coupled FPGA clusters [8].
4. Good Scalability. The limiting factor is FPGA-to-FPGA
bandwidth. With N transceivers per FPGA, FPDeep shows
linear scaling up to 10 ∗N FPGAs.

The rest of the sections of this paper cover, respectively,
CNN training, FPDeep architecture, FPDeep design details,
experimental results, and conclusion.

II. PRELIMINARIES

In this section, we review the key steps of CNN training:
Forward (FP) and Back Propagation (BP).

Fig. 1. Illustration of computations involved in DNN training.

FP is shown in red in Figure 1. FP calculates the errors E[n]
of output features at the final layer F [n]. Starting with an input
F [0], neurons in each layer are evaluated with weights w and
bias b. When neurons in the last layer n are evaluated, we get
the final output features F [n] of the network. E[n] is calculated
by comparing F [n] with the golden result (Golden), as labeled
in the training dataset.

BP includes two sub-steps: Error Back-propagation (EB) and
Weight Gradient calculation (WG). EB is shown in green in
Figure 1. As E[n] is back-propagated through the network, the



errors of the output feature maps at each layer are calculated. As
shown in Figure 1, to compute the errors of the output features
of layer l, the errors, weights, and bias of layer l+1 are needed.
WG is shown in orange. Using the error of a certain layer,
gradients of the weights dw and bias db (used in this layer)
are calculated. To calculate gradients of the weights and bias
of layer l, feature maps of layer l − 1 are used. Thus, feature
maps need to remain available while waiting for BP.

III. FRAMEWORK DESIGN

A. Overview of the FPDeep Framework

FPDeep is a framework that helps engineers map training
of a CNN onto FPGA clusters and build RTL implementations
according to a parameterized mapping scheme. As shown in
Figure 2, there are two key components in FPDeep: Mapping
and Implementation.

Fig. 2. Overview of FPDeep framework

The Mapping Framework partitions a CNN into a number
of segments and maps each segment onto an FPGA. There
are two sets of input parameters in the Mapping Framework:
network configurations and hardware constraints. Network con-
figurations include numbers (Fi,Fo) and sizes (Ci∗Ri, Co∗Ro)
of input and output feature maps, filter size K, stride size S,
padding size PS , activation function of each layer and also the
layer number, layer type, pooling function, and pooling size P .
Hardware constraints include number of available FPGAs in the
target cluster TFP , on-chip memory resources per FPGA chip
B p FP , DSP resources per FPGA chip DSP p FP , and
available transceiver channels per FPGA board Trans p FP .
These parameters are fed into the mapping framework. Through
inter- and intra-layer partitioning and mapping, a parameterized
mapping scheme is created.

In the Implementation Framework, the RTL generator gen-
erates RTL implementations for each FPGA based on the
parameterized mapping result.

B. Partitioning and Mapping Strategy

1) Inter-layer mapping: The computation resources of TFP
FPGAs are allocated to different layers in proportional to their
computational requirements, i.e., numbers of operations for FP
and BP. In Figure 3, two CONV layers are given as an example
to show the inter-layer mapping strategy.

The computational requirement of layer 1 is 2.2 times that
of layer 2. Thus, 68%∗TFP ∗DSP p FP DSPs are allocated
to layer 1. Assuming there are 7 FPGAs in the target cluster
(Figure 3), 4 out of 7 FPGAs are allocated fully to the 1st layer,
while the balance are allocated to the 2nd. The leftover FPGA
works for both layers with 80% of DSP resources working for

Fig. 3. A 2-layer CNN illustrating iner-layer mapping. The 4th FPGA works
for both layers.

layer 1 and 20% DSP resources working for layer 2. In this
method, this FPGA has replaced 2 separate FPGAs. The number
of FPGAs working for layer l is defined as N [l].

As mentioned in Section II, FP and BP at the same layer
share weights and input features. To reduce inter-board data
exchange, FP and BP operations using the same data are
mapped to the same FPGA. To balance the workload of FP, EB,
and WG, computation resources in each FPGA are reallocated
proportionally to their operation count. For the 1st layer in
Figure 3, in each FPGA, 29%, 42% and 29% DSP resources
are allocated to FP, EB and WG, respectively.

2) Intra-layer Partitioning and Mapping: This step partitions
the workload of each layer into N segments and maps them
onto N FPGAs. For illustration, FP of the 1st CONV layer
in Figure 3 is used as an example to show the intra-layer
partitioning and mapping strategy. As there are 4.8 FPGAs
allocated to FP, the FP workload in this layer is partitioned
into 4.8 segments with Input Feature Partitioning (IFP).

In Figure 4, 192 input features and corresponding weights
are partitioned into 5 segments including four big segments,
each containing 41 features (SS), and one smaller segment
containing 28 features. Each FPGA receives one of the five
segments and performs partial evaluations. Each output feature
is calculated by summing up the related partial results from the
5 FPGAs. To calculate each partial output feature on a single
FPGA, a total of SS ×K ×K (369) DSPs are needed. While
each FPGA provides 795 DSPs for FP, we have multiple output
features (B) being evaluated in parallel.

Fig. 4. Illustration of IFP

C. Fine-grained pipeline

Fine-grained inter- and intra-layer pipelining is used, mini-
mizing the time that features need to remain available.

1) Intra-layer pipeline: The pseudo code of the CONV layer
is shown in Figure 5. Each layer is partitioned and mapped to N
FPGAs with the IFP strategy. Loop 5 is unrolled. Each FPGA
computes B output features in parallel. Hence, Loop 3 is tiled
with a tile size of B. Loops 4 through 8 are executed in parallel.

2) Inter-layer pipeline: Figure 6 compares FPDeep with the
traditional inter-layer pipeline where each layer starts only after



Fig. 5. Pseudo code of a CONV layer in FPDeep

the previous layer has finished. After B features are computed,
they are propagated to the next layer and evaluated immediately.
Since the workload is balanced, the production rate of output
features of each layer is similar to the consumption rate of input
features of the next layer. Thus, in the steady state, there are
always enough input features ready to be consumed by every
layer. As a result, the only on-chip memory used is for training
the CONV layers.

Fig. 6. Pipeline of traditional accelerator and FPDeep

D. 1-D Topology

The overall architecture of the FPDeep accelerator is shown
in Figure 7. For an n-layer CNN, FPGAs are divided into n
sets. Set i, which works for layer i, consists of N [i] FPGAs
connected in a 1-D topology. Adjacent sets are also connected
in a 1D topology. Any type of physical link can be used. There
are 4 key datapaths.
1. Output features from layer (l−1) are allocated to FPGAs of
layer l according to IFP results. Each FPGA caches SS features
allocated to it and propagates the rest to the next node.
2. Using the SS features cached from Datapath 1, each FPGA
calculates Fo partial results from output features at layer l.
The partial features produced from node j are propagated to
node j+1 through Datapath 2. After adding up partial features
produced by nodes j and j+1, the updated partial features are
continuously propagated to the next node.
3. In each cycle, errors from layer (l+ 1) are back-propagated
to FPGAs of layer l through Datapath 3. Each FPGA caches all
errors and propagates them backwards to its preceding node.
4. Using errors from step 3, each FPGA calculates SS out of
Fi errors and propagates them to the preceding node. Node j
propagates the errors calculated by itself first and then the errors
transferred from node j + 1.

IV. IMPLEMENTATION

As shown in Figure 7, each FPGA instance includes FP, WG,
and EB modules and a memory subsystem to cache weights and

features. Each accelerator has two interconnection modules to
communicate with its neighbors.

1) Memory Subsystem: The memory subsystem contains
RAM for feature maps (FRAM) weights (WRAM). FRAM
caches input features which are mapped to the target FPGA
until they are consumed in back-propagation. WRAM caches
weights mapped to the target FPGA and provides weights to
FP and EB as operators for convolutions.

Fig. 7. Overall architecture of FPDeep

2) FP: The Line Buffer (LB) reads input features from the
FRAM and feeds them to the Convolution Engines (CE) which
are implemented as 2D systolic arrays. The CEs perform convo-
lutions with weights from the WRAM and input features from
LB. In the SFU, the output features are activated, normalized,
and sampled.

3) EB: The EB module consumes errors of the next layer
propagated by succeeding nodes and produces errors of the
target layer. To calculate an error of a certain input feature
map, errors of all output feature maps need to be convolved
with respect to all weight filters. Errors of these input features
are cached in the LB and propagated to the preceding node.

4) WG: WG consumes errors of the next layer propa-
gated from the succeeding neighbor and calculates gradients
of weights and biases. To obtain gradients of weights, errors
of output feature maps are used as a filter and convolved with
input feature maps cached in the FRAM. Gradients are cached
in the Gradient Buffer and used to update weights in WRAM.

V. RESULTS

A. Single FPGA Implementation and Experiments

Results in this initial report are generated with a single FPGA
board. We use FPDeep to map Alexnet onto a 10-FPGA cluster;
the RTL generator creates 10 bitfiles, each for one FPGA. The
experimental setup is shown in Figure 8(A). We evaluate the
design of each FPGA separately with a Xilinx VC709 board
(Virtex7 XC7VX690T) and gather resource utilizations and
throughput and bandwidth requirements. In FPDeep, stochastic
rounding is used during low-precision fixed-point training. In
[9], it is proven that CNNs can be trained using only 16-bit
fixed-point numbers when using stochastic rounding and incur
no degradation in classification accuracy.

Figure 8(B-E) shows resource utilizations of each FPGA and
resource allocations among AlexNet layers. As Figure 8(B)
shows, the mapping is well-balanced. The usage of DSP slices
is roughly 80% and the throughput of each FPGA matches,
around 1 TOPS. Only on-chip BRAM is used in the FPGAs that
work only on the CONV layers (FPGAs 1-9) and utilizations
of BRAMs are under 80%. The highest bandwidth requirement
among these 10 FPGAs is 24.9 Gb/s.



Table I shows the performance and power efficiency compar-
ison among Titan X GPU [6], Tesla K80 GPU [10], a previous
FPGA [6] implementation, and our work. FPDeep provides
performance which is 5× higher than previous FPGA work and
comparable to Titan X GPU. We evaluate energy efficiency with
respect to GOPs/J. FPDeep provides up to 7.6× better energy
efficiency than Titan X and 4× better than the previous FPGA
work. Compared with the K80, FPDeep provides 3.4× better
energy efficiency.

Transiver

Transiver

Config FPGA

(A)Experiment 
Setup

Previous 
FPGA Model

Next FPGA 
Model

CPU

Accelerator 
Logic

Monitor

Monitor

VC709 Board

Bit 1
Bit 2

Bit 10
Bit 9

Fig. 8. Experiment results and utilization report

TABLE I
ALEXNET CLUSTER-LEVEL EXPERIMENTAL RESULT

CPU
[6]

GPU
[6]

GPU
[10]

FPGA
[6]

Our
Work

Device AMD
A10

Titan
X

Tesla
K80 XC7VX690T

Config 1 CPU 1 GPU 1 GPU 4 FPGA 10 FPGA
Precision float float float fix16 fix16

Performance
(GOPS) 34.23 1385 2822 207 (Per

FPGA)

1022
(Per

FPGA)
Power

efficiency
(GOPS/J)

0.39 4.22 9.41 6.55 31.97

B. Cluster-Level Evaluation

We use a cycle-accurate simulator to evaluate cluster-level
performance. Alexnet is mapped onto clusters of sizes 5 to
60. To demonstrate that the workload among FPGAs remains
balanced in different sized clusters, we present the proportion
of idle stages. Figure 9(A) shows the proportion of idle stages is
stable with fluctuation of only 5%. This leads to good scalability.
A roofline model is shown in Figure 9(B). The interconnection
bandwidth is the bottleneck of the overall system. That is,
the system throughput presents excellent linear scalability, until
reaching that constraint. For example, with 150 Gb/s as the
inter-board communication constraint, FPDeep shows linearity
up to 60 FPGAs. As each transceiver can reach maximum rate
up to 28 Gb/s, using 6 transceivers per FPGA achieves this
number. Since high-end FPGAs frequently have more than 50
transceivers, scaling to much larger clusters is possible.

Fig. 9. Scalability of FPDeep.(A) shows the proportion of idle stages in pipeline
when cluster scaling up. (B) shows the roofline model of FPDeep.

VI. CONCLUSION

We propose a scalable framework that helps engineers map
training logic of CNNs to a multi-FPGA cluster or cloud and
automatically build RTL implementations for the target network.
Multi-FPGA accelerators work in a deeply-pipelined manner
using a simple 1-D topology, which enables the accelerators
to map directly onto most existing parallel platforms. FPDeep
provides a strategy to balance workload among FPGAs, leading
to high utilization and performance. Training of CNNs is
executed in a fine-grained pipelined manner, which reduces the
time that features need to be cached when waiting for back-
propagation, thereby reducing the storage demand to the point
where only on-chip memory is required for the convolution
layers. Experiments show that FPDeep has good scalability
to a large number FPGAs. The bottleneck is the inter-FPGA
communication bandwidth. But using only 6 transceivers per
FPGA, FPDeep still shows linearity up to 60 FPGAs. We
evaluate energy efficiency with respect to GOPs/J and find that
FPDeep provides up to 3.4 times higher energy efficiency than
Tesla K80 GPU.

At this time, our FPGA cluster-level experimental results are
gathered based on single FPGA board and a cycle-accurate
simulator. In our current work, we are implementing the whole
system on AWS and an FPGA cluster with direct interconnects.

REFERENCES

[1] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An Automated Framework for Mapping Deep
Neural Networks onto FPGAs with RTL-HLS Hybrid Templates,” in
FCCM, 2017, pp. 152–159.

[2] J. Cong, V. Sarkar, G. Reinman, and A. Bui, “Customizable domain-
specific computing,” IEEE Design & Test of Computers, vol. 28, no. 2,
pp. 6–15, 2011.

[3] G. Hegde, N. Kapre et al., “CaffePresso: Accelerating Convolutional
Networks on Embedded SoCs,” TECS, vol. 17, no. 1, p. 15, 2018.

[4] D. J. Moss, E. Nurvitadhi, J. Sim, A. Mishra, D. Marr, S. Subhaschandra,
and P. H. Leong, “High performance binary neural networks on the Xeon+
FPGA platform,” in FPL, 2017, pp. 1–4.

[5] R. L. Lian, “A framework for fpga-based acceleration of neural network
inference with limited numerical precision via high-level synthesis with
streaming functionality,” Ph.D. dissertation, University of Toronto, 2016.

[6] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-Efficient
CNN Implementation on a Deeply Pipelined FPGA Cluster,” in Proc Int.
Symposium on Low Power Electronics and Design, 2016, pp. 326–331.

[7] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang,
“F-CNN: An FPGA-based framework for training Convolutional Neural
Networks,” in ASAP, 2016. IEEE, 2016, pp. 107–114.

[8] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang,
“Novo-G#: A Community Resource for Exploring Large-Scale Reconfig-
urable Computing Through Direct and Programmable Interconnects,” in
IEEE High Perf. Extreme Computing Conf., 2016.

[9] A. A. K. G. Gupta, Suyog and P. Narayanan, “Deep learning with limited
numerical precision,” in ICML, 2015, 2016, pp. 1737–1746.

[10] “Tensorflow Alexnet benchmark,” https://www.leadergpu.com/articles/428-
tensorflow-alexnet-benchmark.


