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Chapter 7 
Quantum Behavior of Atoms 

 
Emission spectra and photons  
 
In Chapter 4, we discussed how light (specifically infrared light) can be absorbed by molecules such as 
greenhouse gases. Compared to absorption, emission is the opposite process wherein energy is 
released from matter in the form of light.  This occurs when matter that is oscillating (has energy) at a 
given frequency releases that energy (it changes oscillation frequency or stops moving). In molecules, 
this is seen through the change in oscillation in the bond as discussed in Chapter 4. For individual 
atoms, however, there are no bonds around which to oscillate. Despite this difference, when atoms 
release energy, they do so in the form of light at very specific frequencies (and therefore specific 
wavelengths). This was discovered by energizing low-density elemental gases (gases that contain 
single elements) to the point of glowing. When the light is observed, it was seen that different elements 
emitted different frequencies of light in a spectrum of bright lines. Only specific frequencies were 
observed instead of a continuous spectrum (as you would see with white light, rainbows, and the 
blackbody emission of Earth).  
 
In the 1880’s, Johann Balmer recognized that the visible light emission spectrum of hydrogen (see 
Figure 7.0), known by then to be the lightest and probably simplest element, follows a pattern in which 
the lines are more closely spaced at shorter wavelengths (i.e., from red to violet). Moreover, each 
chemical element has a distinctive pattern of colored emission lines (Figure 7.0), a sort of “fingerprint” 
of the element. For early spectroscopists this proved to be a difficult phenomenon to explain – why 
would an atom only emit a few, very distinct wavelengths of light? While it may have made sense that 
each element would have a unique emission spectrum, for a long time the exact frequencies of emitted 
light from each element proved impossible to predict or explain. These observations would be the basis 
on which physicists in the coming years (late 19th century into the early 20th century) would propose 
their atomic theories. They realized that any successful model of the atom must explain the patterns of 
wavelengths emitted by different elements.  

 

From Nothing to Everything 
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that, rather than the completely continuous spectrum the eye perceives in a rainbow, the sun’s spectrum 
(Fig. 6-2) actually contains many very thin, dark lines superimposed on the continuous spectrum. Ten 
years later, the wavelengths of more than 600 of these lines were measured by Joseph Fraunhofer. 
 

 
                                       Wavelength λ (nm) → 
 
Later in that century, physicists found that a low-density, hot gas (in a glass tube) emits light with a 
spectrum of bright lines, with no continuous spectrum at all. They were able to study single isolated 
elements in this way, determining their emission-line spectra. Each chemical element has a distinctive 
pattern of colored emission lines (see Fig. 6-3), a sort of “fingerprint” of the element. In the 1880’s, 
Johann Balmer found that the spectrum of hydrogen, known by then to be the lightest and probably 
simplest element, follows a pattern in which the lines are more closely spaced at shorter wavelengths (i.e., 
from red to violet; see Fig. 6-3). The atomic physicists of the early 20th century realized that any 
successful model of the atom must explain this pattern of wavelengths. 
 

 
    |               |                |               |               |                |               | 
 650          600           550          500          450           400           350 
 
                                   ← Wavelength λ (nm) 

The Bohr Model of the Hydrogen Atom 
 
In 1912, Niels Bohr, a young Danish theorist, endeavored to figure out how atoms generate emission 
lines. The best guess at the time was that negatively charged electrons orbit the positively charged 
nucleus. The energies involved in the orbits would naturally depend on the strength of the attractive 
electric force between each electron and the nucleus, which in turn would depend on the number of 
protons and hence the atomic number of the element. There were two other major clues: 
 
1. Electrons orbiting the nucleus should lose energy by making light. This would cause them to spiral into 
the nucleus in only a millionth of a second. Something must prevent them from doing so. 
 
2. The pattern of wavelengths of emission lines is always the same for each element. The visible-light 
spectrum of the hydrogen atom (see Fig. 6-3) is particularly simple, with 3 (or 4 for people whose eyes 
are sensitive to deep-violet light)  lines that are closer together at shorter wavelengths. 

Mercury (Hg) 

Neon (Ne) 

Helium (He) 

Sodium (Na) 

Hydrogen (H) 

Figure 6-3. Emission-
line spectra of five 
elements. [Note: the 
eye sees wavelengths 
between 380 and 430 
nm to be violet, not 
the dark blue of this 
reproduction.] Note 
that wavelength 
decreases to the 
right, opposite to Fig. 
6-2; there is no 
standard convention. 

Figure 6-2. The visible spectrum 
of the sun. It is filled with dark 
(“Fraunhofer”) lines superposed 
on the continuous blackbody 
spectrum.  
[Source: hesperia.gsfc.nasa.gov] 

Figure 7.0: Emission spectra for various elements 
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It is important to note that when light is absorbed, the wavelength, frequency, and energy of that light 
are not changed. In actuality, it is the intensity of the light that is decreases during absorption, which 
makes it dimmer. Lowering the intensity of a light wave results in a lower amplitude, but the frequency 
and wavelength of that wave remains the same. Every time light transfers energy to matter (read: is 
absorbed), it is transferring exactly hνlight. Similarly, every time light is released from matter (read: is 
emitted), it is released in multiples of hνlight. This is one of ways in which we ascribe “particle-like” 
nature to light – despite the fact that light is an electromagnetic wave (definitely not a particle), it does 
have the particle-like property of transferring fixed, discrete quantities of energy known as photons. 
The energy of a photon of light with given frequency ν is Ephoton = hνphoton.  
 
A photon is a quantum of light, meaning that it represents the smallest possible discrete “unit” of light. 
As a result, photons cannot be subdivided into smaller units and have discrete energies (Ephoton = 
hνphoton).  To be clear, a photon is not an object; rather, it is the total amount of energy (a quantum of 
energy) that is transferred between light and matter when light is absorbed by the matter or emitted 
from matter.  This quantity is always the same (quantized) for light of a given frequency, 𝜈"#$%$& .  As 
we saw in Chapter 4, it is the resonance between the oscillating frequency of the light and the matter 
(resonance) that leads to energy being transferred, and it takes many oscillations of the electric field for 
this energy to be transferred. 
 
Quantum mechanics is the branch of physics that describes the nature and behavior of objects that, 
like photons, have quantized energy values. This is distinct from macroscopic objects and the world of 
classical physics, which have no limitations on the possible amount of energy they can carry. As we 
will see, the behavior of photons and subatomic particles (like electrons) differs in many fundamental 
ways from the behavior of the objects we interact with on a daily basis. For example, the interactions 
of light and matter may strike you as somewhat odd. Why would light only be absorbed by matter at 
certain resonant frequencies? Why do atoms only emit specific energies (and wavelengths) of light? 
Why is there such a big difference between the classical and quantized worlds? The first glimpse at 
answering these questions came from a set of experiments conducted between 1801 and 1927, and a 
phenomenon known as interference.  
 
 
Wave interference 
 
When rigid objects collide, energy is 
transferred between them, and often they 
bounce back after the collision. Waves, on the 
other hand, do not collide with other waves 
they way rigid objects do. Instead, waves 
interact through a phenomenon called 
interference.  When two waves pass through 
each other, they interact through constructive 
and destructive interference. Constructive 
interference occurs when two waves are in 
phase (both have either positive or negative 
amplitudes).  In such an occasion, the 
amplitudes of the two waves combine to create a wave with greater amplitude – either more positive or 
more negative (Figure 7.1 top). Destructive interference occurs when waves are in opposite phases and 
the amplitudes are subtracted from each other, resulting in a lesser amplitude wave (Figure 7.1 bottom).  

Figure 7.1: Waves that are in phase constructively interfering 
(top) and out of phase destructively interfering (bottom) 



 CC212: Reality and the Modern World 

©2019, Binyomin Abrams, Emily Allen, Robin Stevens 3 

The waves in both cases then pass through each other and continue to propagate as they were before 
the interaction.  The CDF player demonstrating constructive and destructive interference can be found 
here: http://quantum.bu.edu/CDF/101/23-ElectronWaveInterference-1.cdf 
 
(Note: If you have not done so already, you will first need to download Wolfram CDF Player on your 
computer; select the “Student” option in the roll down menu on the website: 
 http://www.wolfram.com/cdf-player/) 
 
 
Double slit experiment for light 
 
The question of the exact nature of light – whether it behaved as a particle or a wave – dates back at 
least 2000 years to the atomist Democritus. A few decades before Maxwell provided strong evidence 
in support the wave-like nature of light with his famous equations for electromagnetism, a scientist 
named Thomas Young conducted an experiment designed to test this question. In 1801, well before the 
conversation of quantum mechanics started in the scientific world, Young directed a light source at a 
screen that had two small slits cut into it (Figure 7.2).  A screen then detected the pattern of the light 
after it passed through the slits. If light behaved like a particle, then the expected results would be two 
bright bands on the screen: one bright band for each of the slits.  Instead, the results showed a 
diffraction pattern – a phenomenon that occurs when waves interact.  Each bright spot on the screen 
(far right side of the figure) showed a peak in the amplitude due to constructive interference between 
the two radiating waves. Each dark spot represented destructive interference, where the amplitudes of 
the interfering waves cancelled (zero amplitude = zero intensity = dark). As such, Young concluded 
that the light acted as would be expected from a wave, not as particles.  

 

Double slit experiment for electrons 

In 1961, 160 years after Young’s initial experiment, the double slit experiment was repeated using a 
beam of electrons instead of light. The expectation was that if electrons acted like particles, then the 
resulting screen would show two groups of electrons – those that passed through one slit or the other. 
Consider what would happen if you threw Ping-Pong balls at a screen with an opening just wide 
enough for a ball to pass through – the few that made it through would fly through and hit 
approximately the same location (Figure 7.3) The results of the experiment using electrons, however, 
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 Figure 7.2: Young’s Double-Slit Experiment schematic with resulting diffraction pattern of red laser 
light.  (http://cronodon.com/Atomic/Photon.html; hyperphysics.phy-astr.gsu.edu) 
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were the same as what was seen with the diffraction of light: wave-like diffraction patterns emerged, 
with multiple “bright” and “dark” bands (Figure 7.4). Initially, it was thought that the results were 
inaccurate, and that electrons might have been “hitting” or scattering each other as they passed through 
the slits, causing them to spread out.  To test this concern, the experiment was repeated in 1974 with 
individual electrons being emitted one at a time to prevent any possible scattering. What they saw, 
however, was another diffraction pattern.  The only way this pattern could be created was if individual 
electrons had wave-like properties similar those of light. A time-lapse video of these results can be 
found at https://www.youtube.com/watch?v=ZqS8Jjkk1HI  

Note that each dot captured on the screen represents a single electron signal after having passed 
through the slits.  As time continues, these dots collect into groups, resulting in a diffraction pattern 
similar to that of light. One of the greatest implications of these findings was that the mass of an 
electron is spread out energetically in a wave, not localized in one point like a classical object.  This is 
why we say that atoms have “electron waves”.  

Observing the wave-like properties of electrons is the key to the quantized nature of light and light-
matter interactions.  Let’s take a look at how a classical example of waves gives us information about 
the quantized nature of matter.  The images in Figure 7.5 show an example of a classic particle (a 
baseball) that is localized, and a classic wave (sound) that is delocalized.  

 

  
  

 

 

In the localized example it is possible to circle the exact location of the baseball.  That is because a 
classical object, or “particle”, is localized in space. With the sound example, however, it is not possible 
point to the exact location of the sound.  This is because waves are delocalized, and are spread out in 
space.  Based on the results of the double slit experiments, we can relate both light and electrons to the 
delocalized example because of their wave-like properties.  

Figure 7. 5: Localized versus delocalized behavior 

Figure 7.4: Electron diffraction pattern from double slit 
experiment.   
Source:http://iopscience.iop.org/article/10.1088/1367-
2630/15/3/033018/pdf 

Figure 7.3: Double slit experiment results 
with classical particles.  
(http://scienceblogs.com/startswithabang/200
9/06/01/a-tale-of-two-slits/) 
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Remember, analogies are a good way to understand abstract topics, but they are limited.  The analogies 
above do not give exact representations of electrons, but instead help to explain some of their more 
abstract behavior.  The purpose of this example is to illustrate that the behavior of electrons in an atom 
is similar to that of delocalized waves spread out in space, not localized particles. 

 

Matter waves and the de Broglie wavelength 

The finding that electrons can behave as waves was a surprising one, and it raised new questions about 
the true nature of electrons. Louis de Broglie, a French physicist, wondered if electrons behaved as 
waves, does that mean one could calculate their wavelengths? It was already clear that electrons had 
momentum in the classical particle sense – i.e., the momentum of an electron was equal to its mass 
times its velocity (p = mv). The equation for the momentum of light, however, is different than for 
classical objects. For light, the momentum is defined as: 

 𝑝light =
ℎ
𝜆light

                                              [7.1] 

where h is Planck’s constant (6.626 x 10–34 J⋅s) and λ is the wavelength of the light. This now provides 
an interesting comparison between photons and electrons. Because electrons also have wave-like 
behavior, it stands to reason that they would also have a wavelength. De Broglie, having observed a 
diffraction pattern for electrons passing through crystal, made a logical leap that, if electrons were 
behaving in a wave-like manner similar to light, he could combine Einstein’s formula for the 
momentum of light with the equation for momentum of a particle (p = mv) to find the wavelength of 
an electron (λelectron): 

 𝑝electron = 𝑚-𝑣 =
ℎ

𝜆electron
=

ℎ
𝜆db

 [7.2] 

where me is the mass of the electron (9.109 × 10–31 kg), and λelectron = λdb is the de Broglie wavelength 
of the electron wave.  Rearranging this equation we can solve for the de Broglie wavelength:  

 𝜆db =
ℎ

𝑝electron
=

ℎ
𝑚-𝑣

 [7.2] 

 

Worked Example 7.1: What is the de Broglie wavelength (in m) of an electron (m = 9.109 × 
10–31 kg) moving at a speed of 5 × 105 m/s? 

Solution: the de Broglie wavelength of an electron (9.109 × 10–31 kg) moving with speed of 5 × 
105 m/s is computed with equation 7.2: 

𝜆db =
ℎ
𝑝 =

6.626	 ×	10678	J ⋅ s
(9.109	 ×	10–7<	kg)(5	 × 	10A	m/s) = 1.5	 ×	106B	m 

Careful: units can be a problem here; the mass must be in kg (not g) because Planck’s constant 
contains J.   
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Based on this equation, an electron traveling at a speed of 500 km/s would have a de Broglie 
wavelength of about 1.5 nm (1.5 × 10–9 m).  While this seems small, it is significant compared to the 
size of an atom, which has a radius on the order of 1 Å (= 10–10 m). 

However, what would happen if we applied formula [7.2] to everyday objects? After all, according to 
de Broglie’s equation, anything with a mass and a velocity would also have a wavelength. To answer 
this question, consider a baseball in worked example 7.2. 

 

Worked Example 7.2: What is the de Broglie wavelength (in m) of a baseball (m = 0.15 kg) 
thrown at 90 miles per hour (40 m/s)?  Does this baseball have a de Broglie wavelength? Why 
or why not? 

Solution: the de Broglie wavelength of a baseball (0.15 kg) moving with speed 40 m/s is 
computed with equation 7.2: 

𝜆db =
ℎ
𝑝 =

6.626	 × 	10678	J ⋅ s
(0.15	kg)(40	m/s) = 1.1	 ×	10678	m 

 

It is clear that we can calculate a wavelength for this heavy and slow classical object, such as a baseball 
thrown at 90 mph, but there is no real meaning to the value.  Because the de Broglie wavelength is 
much smaller than the baseball, there are no wave-like properties ascribed to this object. However, 
objects with very small masses (like electrons) will often have measureable and meaningful de Broglie 
wavelengths. An important implication here is that the boundary between classical and quantum 
objects is perhaps fuzzier than we might imagine. At what point do we decide that a particle is acting 
like a wave?  

 
Particle-in-a-box model 

Up until now, we have considered electrons moving freely (outside of an atom). But what happens to 
an electron when it is bound to an atom? Does it remain a wave? To help us answer this question, let’s 
start with a more familiar scenario that illustrates a wave between two boundaries. Suppose two people 
were to hold a spring or a jump rope at both ends and one person started shaking one of the ends. At 
first, waves would likely travel back and forth rather chaotically. But with continued shaking (and 
adjusting of the amount of energy supplied to the spring or rope), the two people would be able to 
create standing waves.  The more energy put into the spring or rope, the more peaks the standing wave 
would have.  If the two people moved farther away from each other, the spring or rope would be 
stretched out to fill the space, and the amplitude of the waves created would decrease.  The activity 
below provides a CDF player to help you better understand this relationship with standing waves.  

For classical standing waves (such as our example of the spring or jump rope), the number of loops is 
quantized.  This means that there can only be specific values of wavelengths within these types of 
standing waves (i.e., whole number multiples of ½ λ).  As we have seen, if the wavelength is quantized, 
then the energy of the wave is also quantized. This is an appropriate analogy to an electron inside an 
atom.  Because the electron is attracted to the positive charge of the nucleus, it becomes bound to the 
atom.  The electron wave disperses around the nucleus and forms a standing wave much like a spring 
or jump rope.  The boundaries in the atom are therefore created by the energy of this attraction.   
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Activity: Standing Waves Simulation 
 

Go to the following applet:  

http://quantum.bu.edu/CDF/101/09%20Standing%20Waves%20applet.cdf 

When this first opens, you will see two sliders at the top.  The first, labeled Barrier Separation 
(L), indicates the separation between the two barriers.  The second, labeled loops (n), indicates 
the number of loops (1 loop = ½ of a waveform; one full wavelength is two loops) in the wave. 

Exercise 1: Set the separation of the barriers (L) to 5 nm.  Draw the wave for: n = 1, n = 2, n = 3, 
n = 4, and n = 5. Answer the following questions based on your drawings.  

a. How does the number of loops affect the wave? 
 

b. Will you ever have only part of a loop between the two barriers? What does this mean for 
the number of wavelengths you can have inside the barriers?  

Exercise 2: Set n = 1. Change L and answer the following questions based on your observations.   

a. What happens to the amplitude of the wave as you change the separation of the barriers? 
What happens to the wavelength as you change the separation of the barriers?  

 
To simplify and help visualize this phenomenon, a one-
dimensional electron wave can be trapped in a “box” of energy 
barriers. The result is a one-dimensional standing wave, much like 
the analogy to a spring fixed at both ends, called the “Particle in a 
Box” model (Figure 7.6).  The separation of these barriers (L) can 
be equated to the size of the atom.  For bonding electrons in a 
molecule, this same concept applies. In this case, the separation 
between the barriers (L) represents the size of the molecule.  A 
similar CDF applet to the one used in the standing wave example 
can be used to describe the Particle-in-a-box model:  

http://quantum.bu.edu/CDF/101/12-ParticleInABox-1.cdf 

The model is based on the following assumptions: (1) the particle – usually an electron – is confined to 
a one-dimensional box with length, L, which has a uniform and flat bottom (lower energy than the 
wave) inside the box; (2) the walls of the box will be infinite (infinite energy), which means that the 
particle/wave cannot escape and will have zero amplitude at the walls (creating nodes); and (3) only 
whole numbers of loops (1/2 wavelengths) can be found in the box.   

Understanding the different energies (or “energy states”) of these standing waves gives insight into the 
quantized properties of electrons. We can demonstrate this by doing a little algebra. First, we can 
calculate the average energy of the particle trapped in the box by using the formula for kinetic energy 
and substituting p/m for v (from p = mv): 

 
𝐸 =

1
2𝑚𝑣

E =
𝑝E

2𝑚 [7.3] 

Figure 7.6: Particle-in-a-Box Model 
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where m is the mass of the particle (usually an electron) and p is the momentum.  Recall from de 
Broglie that the momentum of a matter wave is equal to h/λ for the wave (equation [7.2]).  Substituting 
equation [7.2] into equation [7.3] gives us the energy of the matter wave in terms of the wavelength: 

 
𝐸 =

ℎE

2𝑚𝜆E. 
[7.4] 

As you have seen in the standing wave activity above, the wave contained in the box must have a 
whole number of loops (n, or half-wavelengths). Therefore, the total length of the box, L, can be 
written as: 

 𝐿 = 𝑛 H
𝜆
2I. 

[7.5] 

Rearranging equation [7.5] and substituting it into equation [7.4] gives the formula for the energy of a 
matter wave with mass, m, with n loops that is confined to a box of length, L: 

 
𝐸& =

𝑛EℎE

8𝑚-𝐿E
. [7.6] 

Because h and me (mass of an electron = 9.109 × 10–31 kg) are constants, we can further simplify this 
equation to: 

𝐸& = K
ℎE

8𝑚-
L
𝑛E

𝐿E = 𝐾
𝑛E

𝐿E  

where K is a constant equal to 6.02 × 10–38 J2 s2/kg. 

Notice that equation [7.6] (the particle-in-a-box model) indicates that matter waves that are confined to 
one-dimensional boxes will have finite, discrete energies that are proportional to n2. That is, the two 
lowest energy wave states (n = 1 and n = 2) will have energies E1 = K/L2 and E2 = 22K/L2 = 4E1, but 
there will be no states possible between these two! (Because standing waves cannot have fractions of 
nodes/loops – n must be a positive integer). This result constitutes a huge leap in our understanding of 
the nature of electrons in atoms – specifically their quantized behavior. Of course, unlike our particle 
in a box model, the electron will be a 3-dimensional wave, which will require a little more 
investigation. 

 

Worked Example 7.3: 𝛽 -carotene (right) is a strongly 
colored orange pigment found in plants and fruits (e.g., 
carrots). The molecule is long and straight, so the electron 
waves of the molecule can be modeled using the particle-
in-a-box model.  𝛽-carotene absorbs light most strongly 
around 470 nm (blue and green light), which means that the rest of the visible light shines 
through (is transmitted) or is reflected.  As a result, you eye picks up the colors of visible light 
that are not absorbed, making it look orange-red.  The absorption of blue light (470 nm) 
corresponds to a change in the electron waves from n = 11 to n = 12 due to the absorption of 
energy.  Based on these observations, estimate the length of the molecule (the “box”) in nm. 
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Solution: Changes in electron waves (such as the absorption of light) involve two energy states.  
In this case, we are studying the change from n = 11 to n = 12, from the absorption of one 
photon of 470 nm light.   First, we must calculate the energy of one photon with a wavelength 
of 470 nm using equations c = λν   and Elight = hνlight.  

𝛥𝐸 = ℎ𝜈 =
ℎ𝑐
𝜆 =

(6.626	 × 	10678	J ⋅ s)(3	 ×	10Rm/s)
(4.7	 ×	106Wm) = 4.23	 ×	10–<B	J 

 Using equation [7.6] for the energy of each state, we get: 

𝛥𝐸 = 𝐸final − 𝐸initial = 𝐸<E − 𝐸<< 

𝛥𝐸 =
(12)EℎE

8𝑚-𝐿E
−
(11)EℎE

8𝑚-𝐿E
= (12E − 11E)

ℎE

8𝑚-𝐿E
 

Solving for the length of the box (L), we get: 

𝐿E = (12E − 11E)
ℎE

8𝑚-𝛥𝐸
 

𝐿E = (12E − 11E)
	(6.626	 × 	10678	J ⋅ s)E

8(9.109	 ×	1067<	kg)	(4.23	 ×	106<B	J)
= (3.28	 × 	106<R	m)E	 

𝐿 = 1.81	 × 	106B	m = 1.81	nm 

If we assume that the electron wave that we are modeling is delocalized over the length of the 
entire molecule (it is), then we estimate that the molecule is approximately 1.8 nm long. 

 

 
Standing waves on a spring are a good analogy for electron waves 

As we saw, standing waves with specific energies and wavelengths can be produced on a spring (or 
rope) by applying the right amount of energy. Because we are producing standing waves, only specific 
waves with are possible: 1 loop (half-wavelength), 2 loops, 3 loops, etc. In the language of quantum 
mechanics, we would call the spring itself the “field” and the waves that are produced on this spring 
are the “excitations.”  

Electrons are also excitations of a field: the quantum field.  All space is permeated with the quantum 
field, and electrons are specific excitations of that field.  Similar to the excitations of waves on a spring, 
the electron excitations of the quantum field are also limited to being 1 loop, 2 loops, 3 loops, …, n 
loops.  These are what we will refer to as electron waves. 

While it helps to think about quantized electron waves as being similar to the one-dimensional (1D) 
standing waves on a spring, they are actually three dimensional (3D) inside an atom.  The 3D electron 
wave is often referred to as an “electron cloud” around the nucleus.  While “cloud” is a helpful name 
for visualizing the electron, remember that it is just an analogy – an electron is a single delocalized 
wave in three dimensions. Just like the one-dimensional particle-in-a-box model, there are a finite 
number of energy states that a three-dimensional electron can occupy in an atom.  In the next section 
we will explore the nature of the 3D electron waves. 
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Three-dimensional electron waves 

In the 1920s, the Austrian physicist Erwin Schrödinger developed an equation that can be used to find 
the energy states of electron clouds. While the mathematics of the Schrödinger equation are far beyond 
the scope of this course, we can discuss some of the different ways that electrons can exist in three-
dimensions. Just like adding more energy to a jump rope will increase the number of loops in one 
dimension, adding more energy to an electron will increase the number of “loops” that it has in three 
dimensions. When describing the energy states of electrons in three dimensions, we will run into two 
types of loops called radial loops and nodal planes. As we will see, the number of radial loops and/or 
nodal planes influences the shape of the electron cloud.  

 

Radial loops 

Radial loops form concentric spheres around the nucleus and are the 
reason why it is most appropriate to visualize atoms as being, for the 
most part, spherical.  Let’s investigate these radial loops and learn how 
to identify the number of radial loops (3D loops) an electron cloud has 
by looking at it. Moving forward, we will indicate the number of radial 
loops by the letter “j”.  

Figure 7.7 shows the lowest energy electron wave that has only a single 
radial loop (j = 1).  Electron waves with this shape (spherical) are called 
“s” orbitals.  An orbital is the electron cloud energy states. Note: the 
term “orbital” is somewhat problematic when it comes to describing the 
behavior of electrons, as it suggests an “orbit” or a planetary model of 
the atom.  Instead, “orbitals” describe electrons as waves – it is 
important to keep in mind that nothing is actually “orbiting.” Since the 
electron wave in Figure 7.7 only has a single loop, we call it the 1s 
orbital.  Figure 7.8 shows the second lowest energy electron wave that 
has two radial loops (j = 2).  You can see there is a node (black ring) 
between the two loops, much like where a standing wave passes through 
a zero point. This electron wave is still spherical, but because of the two 
loops we call it the 2s orbital.  

As the number of radial loops increases, so does the total number of 
loops in the electron wave.  As we have seen, the more loops present in 
a wave, the smaller the wavelength and the greater the energy.  
Therefore, the 2s electron wave is higher in energy (more loops, more 
energy) than the 1s electron wave. 

 

Nodal planes 

In addition to having multiple radial loops, many electron clouds are broken up by nodal planes.  Much 
like a node in a standing wave (where the energy is zero), nodal planes will result in two-dimensional 
areas where the electron density of an orbital is zero. In this section we will investigate nodal planes in 
an electron cloud. The example provided in Figure 7.9 shows the difference between an electron 
orbital with one radial loop and no nodal planes (Figure 7.9 on the left), versus an electron orbital with 

Figure 7.7: 2D 
representation of a 1s 
electron cloud 

Figure 7.8: 2D 
representation of a 2s 
electron cloud 
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one radial loop and one nodal plane (Figure 7.9 on the right). Note that the addition of a nodal plane 
has changed the shape of the orbital from a sphere into more of a “dumbbell” shape. 

If an electron orbital with 
one radial loop is cut by 
two perpendicular nodal 
planes, the resulting shape 
is a 3d orbital (see table 
below).  The number of 
nodal planes in an electron 
wave are indicated using 
the letter “l”, known as the 
angular quantum number. 
The 1s orbital has an l value of 0, meaning there are no nodal planes in this orbital, whereas the 3d 
orbitals have an l value of 2, meaning that there are two nodal planes in each of these orbitals. A 
summary of the different types of orbitals and their shapes is presented in Table 7.1. 

 

Table 7.1: Shapes and names of atomic orbitals with various values of l 

l Name General shape of the electron 
wave 

Image 

0 s Spherical, no nodal planes 
 

1 p Dumbbell shaped, 1 nodal plane 
 

2 d Cloverleaf shaped, 2 nodal planes 
 

3 f More complex shapes (see 
visualization activity)   

 

 

As the number of nodal planes in a wave increases, the energy of the electron wave also increases in a 
manner similar to the increase in energy with increasing radial loops. The total energy of an electron 
wave is thus calculated as the sum of the radial loops (j) and nodal planes (l):  

j + l = n 

where “n” is the principal quantum number. For example, the electron orbital with two radial loops 
and no nodal planes has j = 2, l = 0, and n = 2, and is called the 2s orbital. 

 

Figure 7.9: Bisecting a 1s orbital (j = 1) with a nodal plane (l = 1) makes an orbital 
with 2 loops total (n = 2) called 2p. 

Nodal 
Plane 

l = 1 

Radial 
Loop 

j = 1 
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The two remaining quantum numbers: ml and ms 

In addition to the principal quantum number (n) and the angular momentum quantum number (l) that 
describe the energy and shape of electron clouds, there are two additional quantum numbers 
(variables) that describe electron cloud configurations.  The first of these is called the magnetic 
quantum number (ml), which describes the orientation of a given electron cloud in three-dimensional 
space. For example, an “s” orbital (l = 0) can only have one configuration in three dimensions because 
it is a sphere.  Therefore, there is only one value of ml for any “s” orbital (ml = 0). For a “p” orbital (l = 
1), however, there are multiple orientations.  Each of these orientations results in a different possible 
electron cloud.  For example, the 2p electron clouds (Figure 5.9) have three possible orientations – the 
nodal plane can be located along the x-, y-, or z-axis.  Therefore, the electron cloud 2p has three 
possible values for ml.  

You will notice that each of these orientations is an individual orbital.  That is because while they each 
have the same energy value (because they have the same n and l values) each one is a separate orbital.  
This quantum number is written as subscripts on each orbital label to indicate the difference in 
orientation (e.g., 2px, 2py, 2pz).  

The final quantum number, ms, is called the “spin” quantum number.  This title can be very 
confusing (and misleading), because there is nothing here that is actually spinning (remember, we are 
talking about a 3D wave, not a particle).  What this term represents is an intrinsic magnetic property of 
electrons.  Based on this property, electron clouds can have two different orientations of “spin”: “spin 
up” and “spin down”.  The “spin up” magnetic property has a slightly lower energy than “spin down”.  
This property results in the following rules of electron configuration in an atom: 

1. The two different spin orientations allow two electron clouds to exist in a single orbital (one 
“spin up” and one “spin down”) without cancelling each other out.  
 

2. While electrons may repel each other through the electromagnetic force (two negative charges 
will repel), it is more energetically favorable for two electrons to occupy orbitals with a specific 
number of loops (n) before creating an orbital with a greater number of loops (because a higher 
n is a higher energy).  
 

3. Within a single energy level (set of orbitals with the same value of n and l) electrons will 
spread out within the orbitals before pairing up due to their repulsion.  

 
Together, these form the Aufbau Principle for electron configurations. 
The box diagram on the right (Figure 5.10) shows an example of how 
electrons would fill energy levels by using boxes to represent orbitals.  
The single box on the left represents an s orbital (such as 2s), while the 
three boxes on the right represent three p orbitals (such as 2px, 2py, 2pz). 
The electrons are drawn as arrows to represent either “spin up” or “spin 
down”. Note that due to the Aufbau Principle, the two 2p orbital electrons 
will have different orientations.   

Please take a moment to note that box diagrams are easy to misinterpret.  Remember that electrons are 
not particles that are “in” orbitals – the electrons are the orbitals.  
 

 

 

Figure 5.10: Electron 
configuration box diagram 



 CC212: Reality and the Modern World 

©2019, Binyomin Abrams, Emily Allen, Robin Stevens 13 

 

 

 

Activity: Exploring Hydrogen Atom Electron Clouds  
 

1. s orbitals 
 
Go to the following applet (Java-based, you may need to Google how to enable Java in your browser): 
http://www.bu.edu/dbin/quantumconcepts/Hybridization/explorers.html 
 
Select the “Hydrogen Explorer” from the radio buttons on the screen.  Next, select the “Slice” radio 
button. You can switch between the “Slice” or “3D” radio buttons on the right.  The “Slice” view will 
allow you to look at any cross section of the orbital where the “3D” view will allow you to rotate and 
see the shape of the orbital.  Next, select the “Density” radio button on the bottom right of the screen.  
You will see an energy diagram on the left hand side of the screen, and a view box on the right hand 
side.  The view box will initially be blank because no energy level has been selected.  Once you select 
an energy level, you will be able to see a 3D rendition of the electron cloud on the right. You can also 
click on this image and drag to rotate the view of the electron cloud.  

Finally, select the “View All Orbitals” radio button at the top left of the screen.  As you hover your 
mouse over each energy level, the energy value will be displayed on the left.  What you will notice is 
that there are multiple lines drawn for many of the energy values, or orbitals.   

Select the “1s” orbital.  The image you see on your screen should match the image given below. This 
cloud shows only a single sphere, indicating that it has one radial loop (j = 1).   

 

Exercise 1: On the energy diagram on your screen, select 2s.  You should see an image that matches the 
image given below.  How many radial loops does this image have? Indicate where the loops are on 
Figure 7.8. 

Exercise 2: Select 3s.  Sketch the 3D shape in your notes. How many radial loops does this orbital 
have?  

Exercise 3: Based on the two sketches above, see if you can predict what 4s electron cloud would look 
like by sketching its 3D shape.  Give an explanation for your drawing, and then check your work using 
the applet. 

 2. Nodal Planes 

Select the “Hydrogen Explorer”, “3D”, “Density” and “View All Orbitals” radio buttons at the top 
left of the screen.  Select the 1s electron orbital.  Now, imagine that a nodal plane bisects this orbital.  
The resulting shape can be seen below (l = 1, and j = 1).  This results in a 2p orbital.  Select the 2p 
orbital and compare the shapes. 

Exercise 1: If a 1s electron orbital is cut by two perpendicular nodal planes, the resulting shape is a 3d 
orbital.  Select the 3dx2 – y2 orbital and sketch the shape. Indicate on your drawing where the nodal 
planes are located. 

Exercise 2: Select the 2s electron orbital.  Predict what the shape will look like when it is bisected by a 
nodal plane.  Sketch this in your notes and check your work by selecting the 3p orbital. 

Exercise 3: Select the 3s electron orbital.  Predict what the shape will look like when it is bisected by 
two nodal planes.    Sketch this prediction in your notes.  What electron orbital does this represent?  
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Rydberg, Bohr, and other models of the hydrogen atom 

The story behind our understanding the modern electron cloud of the hydrogen atom is a long and 
difficult one.  While it begins in the 1880’s with the experimental observations of the emission 
spectrum of hydrogen by Johann Balmer and some mathematical work by Johannes Rydberg, it is Bohr 
that is the real “hero” in the story – or perhaps the unwitting villain.  In 1913 Bohr proposed the most 
famous – and categorically incorrect – model of the hydrogen atom: the Bohr model.  Bohr was a 
genius and probably did more for the furthering of atomic physics than any one other person in history.  
That doesn’t mean that he was right. He wasn’t, but his result is still important. 

The best guess at the time was that negatively charged electrons orbit the positively charged nucleus 
(this is not true, but let’s see where he was going). The energies involved in the orbits would naturally 
depend on the strength of the attractive electric force between each electron and the nucleus, which in 
turn would depend on the number of protons and hence the atomic number of the element. There were 
two other major clues:  

1. Electrons orbiting the nucleus should lose energy by making light. This would cause them to 
spiral into the nucleus in only a millionth of a second. Something must prevent them from 
doing so.  

2. The pattern of wavelengths of emission lines is always the same for each element. The visible-
light spectrum of the hydrogen atom (below) is particularly simple, with 3 (or 4 for people 
whose eyes are sensitive to deep-violet light) lines that are closer together at shorter 
wavelengths.  

 

 

 

Bohr’s solution was to combine the orbit model with the finding that light transfers energy in quantized 
amounts called photons. Bohr applied the concept of quantized energies to the orbits of electrons in an 
atom. The key idea was that an electron bound to an atom could only have certain discrete energies 
(for some reason that was unclear to him at the time). These energies are traditionally given as negative 
values, because electrons are bound to the atoms by the electric attraction to the nucleus (which, by 
convention, makes them negative). The lowest (most below zero) energy is called the ground state, 
while the higher (closer to zero) bound states are called excited states.  

In Bohr’s model, each excited state has a definite energy that is greater (closer to zero) than that of the 
ground state. If an electron absorbs a photon of just the right energy — exactly equal to the energy 
difference between two states — then the electron “jumps” up to the higher energy level and the 
photon of light is completely used up. On the other hand, an electron that is already in an excited 
energy state will spontaneously “jump” to a lower (more deeply negative) energy level. It does this in a 
small fraction of a second. This downward jump causes light to be emitted in the form of a photon with 
energy exactly equal to the difference between the energies of the two states.  

Bohr’s model thereby explained why the emission of light from atoms in a gas occurs in the form of 
lines: the atoms of a given element can only emit photons that have very specific energies and 
therefore very specific wavelengths. Each gaseous element has its own characteristic pattern of 

Visible light emission spectrum of hydrogen. 
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emission lines.  But could Bohr’s model explain the values of the wavelengths of the emission lines? It 
is (by far) easiest to consider the hydrogen atom, since it contains only one electron.  

Bohr started with the Rydberg equation, multiplied by hc to get the formula in terms of energies, and 
broke up the formula into a “change” from one state to another: 

 
𝛥𝐸atom = −𝛥𝐸light = −𝑅ℎ𝑐 K

1
𝑛[	E

−
1
𝑛\	E
L       [7.7] 

where nf and ni correspond to the final and initial states of the electron, R is the Rydberg constant 
(1.097 × 107 m–1), h is Planck’s constant (6.626 × 10–34 J⋅s), and c is the speed of light (3 × 108 m/s).  
Bohr’s model, therefore, is the assignment of energies to the different possible “levels” of the electron 
in the hydrogen atom: 

 
𝐸& = −𝑅ℎ𝑐 K

𝑍E

𝑛EL [7.8] 

where Z is the nuclear charge (Z = 1 for the hydrogen atom), n is the 
“level” of the electron (and must be a positive integer), and Rhc = 
13.6 eV = 2.18 × 10–18 J.  As a result, we can plot the energy values 
for the hydrogen atom for each value of n (Figure 7.11).  You will 
notice that the energy values are negative (based on equation [7.8]).  
Therefore, as the value of 𝑛 increases, the energy becomes closer to 
zero (increases to be less negative). What we see is that as we 
increase in energy (as 𝑛 increases), the energy values become closer 
together.  Thinking back to chapter 4, this means that the greatest 
energy of light that could be absorbed or emitted would be between 
the two energy states with the greatest separation.  For two 
consecutive energy levels, this would be between n = 1 and n = 2.  

Although his model was based on the wrong picture of the atom — 
the electron is not like a tiny charged ball orbiting the nucleus — 
Bohr’s equation is exactly right for computing the energies of all 
single-electron atoms. The biggest comedy of this story is that it is 
right, but for the wrong reasons – i.e., the model works to compute 
the energies of the electron, but it has nothing to do with orbits! As 
we know, n does not refer to an orbit, but rather the number of loops 
in the electron wave. So when an electron absorbs light it isn’t 
moving anywhere, rather it is transforming from a wave with some 
number of loops into a wave with more loops.  Conversely, when an 
electron wave with many loops becomes a wave with fewer loops that 
causes the emission of light. For example, we can model an electron 
that transitions from 1s (n = 1) to 2p (n = 2) or 2p (n = 2) to 3d (n = 3) 
using the following CDFs: 

http://quantum.bu.edu/CDF/101/1sTo2pTransition.cdf 
http://quantum.bu.edu/CDF/101/2pto3dTransition.cdf 

Bohr insisted that the mathematical equations that he proposed (based on Rydberg and Balmer’s 
works) have a certain philosophical meaning; moreover, he was insistent that the meaning be 

n = 1 

n = 2 

n = 3 
n = 4 

Figure 7.11: Energy levels for a 
hydrogen atom (in eV) 
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attributable to the more classical physics of the 18th and 19th centuries, rather than the newer physics 
that was emerging.  This is one the dangers in making models and using analogies. As new 
information became prevalent in the search for a quantum model of the atom, the desire to hang onto 
inaccurate classical examples was (and still is) very common.  Wolfgang Pauli, a theoretical physicist 
studying the quantum nature of the atom once said, “It’s much easier to find one’s way if one isn’t too 
familiar with the magnificent unity of classical physics” (Lindley, 2008, p. 76).  This quote illustrates 
the danger in being unwilling to let go of the common experiences of classical physics because it 
obscures the true nature of the atom. 

Later, Bohr did come around to the idea of matter waves and was a leader (if not the leader) in the 
march toward the quantum mechanical model of the atom. We’ll never know if events would have 
played out differently if de Broglie and Schrodinger had preceded Bohr. What we do know, is that the 
model Bohr is perfect for calculating energies, but has no physical meaning whatsoever in regards to 
the nature of the atom.  

 
 

Worked Example 7.4: Using the Bohr model, calculate the longest wavelength (in nm) of the 
light that will be absorbed by a helium ion (He+) in its ground state (n = 1).  

Solution: the longest wavelength corresponds to the lowest energy.  Since we are talking about 
a helium ion (Z = 2) originally in its ground state (n = 1), then the final state is n = 2.  If the 
state were any other value of n, then the energy difference between the two states would be 
higher (see Figure 5.11).  The energy change in the atom is therefore:  

𝛥𝐸 = 𝐸final − 𝐸initial = 𝐸E − 𝐸< 

𝛥𝐸 = −𝑅ℎ𝑐 K
2E

2EL + 𝑅ℎ𝑐 K
2E

1EL = −𝑅ℎ𝑐 + 4𝑅ℎ𝑐 = 	3𝑅ℎ𝑐 

The energy associated with this change (according to the Bohr model) is 3Rhc, which will 
correspond to light with wavelength: 

𝜆 =
ℎ𝑐
𝐸_\`#%

=
ℎ𝑐
3𝑅ℎ𝑐 =

1
3𝑅 =

1
3(1.097	 × 	10W	m–<) = 3.04	 × 	106R	m = 30.4	nm	

 

 
Photoelectric effect and photoionization 

We have seen how different frequencies (and energies) of light can be absorbed by matter from low 
energy IR being absorbed by molecules, to the absorption of higher energy visible light by individual 
atoms.  We have also seen that the frequencies (and energies) of light must be resonant with matter in 
order to be absorbed.  However, what happens when light with even higher energies interact with 
matter? What happens with the higher values of n in an atom (the top of figure 7.11)? 

In 1921 Albert Einstein received the Nobel Prize in Physics for “his services to Theoretical Physics, 
and especially for his discovery of the law of the photoelectric effect.”  Sixteen years earlier, Einstein 
had published a paper wherein he describes how light with sufficiently small wavelength can cause 
electrons to become ejected from the surface of metals. 
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Bohr’s model of the atom provides us a perfect way to understand how photoionization occurs.  In the 
Bohr model, electron clouds gain energy as they absorb light. The frequencies that are absorbed are 
only those that cause the mixing of two different states of the electron cloud (i.e., two different number 
of loops, n).  Notice, however, that the theoretical maximum value of n (positive integers) is infinity 
(the dotted line at the top of Figure 7.11).  What does n = ¥ look like? A wave that has an infinite 
number of loops, with infinitely small wavelengths – such a wave doesn’t look very much like a wave 
at all. In fact, it isn’t.  It would be an unbound electron – a particle.  

The ionization energy, the energy that involves mixing the current state of the electron cloud with the  
n = ¥ electron cloud, is required for an electron to become detached (ionized) from the atom.  For an 
electron cloud initially in the nth state, the ionization energy is IE = Efinal – Einitial = E¥ – En = –En.   

For a hydrogen atom in the ground state, this is IE = 0 – (–Rhc) = 13.6 eV.  That means that a photon 
of light that delivers more than 13.6 eV to the atom will cause the electron to be ejected from the atom, 
and the “excess” energy that is not required for the ionization becomes the kinetic energy of the ejected 
electron. 

 

Worked Example 7.5: What is the kinetic energy (in eV) of an electron ionized from the helium ion 
(Z = 2), originally in the ground state, by light with photon energy 60 eV?  

Solution: first, we calculate the ionization energy of the helium ion: 

𝐼𝐸 = 𝐸b − 𝐸< 

𝐼𝐸 = −𝑅ℎ𝑐 K
2E

∞EL + 𝑅ℎ𝑐 K
2E

1EL = 4𝑅ℎ𝑐 = 54.4	eV 

Since it takes 54.4 eV to ionize the helium ion, and the light can transfer 60 eV, the electron will be 
ionized and will have kinetic energy 60 – 54.4 = 5.6 eV.  
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Practice Problems 
 

1. What is the de Broglie wavelength of an electron traveling at 0.1c? 
 
2. Now that you know that you must have only whole numbers of loops in the Particle in a Box model 

(contained in an atom), what does it mean to say that the electron energy is quantized? (Hint: 
remember the relationship between wavelength and energy). 

 
3. How fast (v) does a neutron have to travel so that its de Broglie wavelength is 1 Å (= 10–10 m)?  

The mass of a neutron is 1.6 × 10–27 kg. 
 

4. How fast would a beam of neutrons have to go in order for the neutrons to diffract through a 
sample of solid NaCl in the same way that light of 2 Å (2 Å = 2 × 10–10 m) would diffract through 
the sample? 
 

5. Estimate the size of the molecule (L) for which absorption of yellow light of 500 nm causes mixing 
of the ground and first excited state. (Remember, a molecule can be considered a “box”).  
 

6. Which of the orbitals 4s, 4p, and 4d is the largest, that is, has the electron density distributed over 
the greatest volume?  
 

7. Which of the orbitals 4s, 4p, and 4d is has the largest number of total loops? 
 

8. For the two hydrogen electron clouds below identify the quantum number “n”, the nodal planes “l”, 
the number of radial loops “j”, and the specific name of the orbital. Which of these has more 
energy? 

 
        
           n =            n =  

 l =        l =        
 j =                j =       
    

 
 
 
           name: ________                               name: ________  

 
9. Shown below are displays of the density in the xy plane of an electron in several hydrogen atom 

orbitals.   The brightness of the displays is proportional to the probability density. For each display, 
correctly name the orbital, for example, 1s, 2p, etc. 
 
 Display A: _____      Display B: _____              Display C: _____        Display D: ____ 

 
 
 
 
 

z 

x 

z 

x 



 CC212: Reality and the Modern World 

©2019, Binyomin Abrams, Emily Allen, Robin Stevens 19 

10. An atom’s emission spectrum contains lines of red light and green light (and nothing else).  The 
reason why there is no orange light in the spectrum is because … 

a. The atom would need more energy to emit orange light 
b. The atom does not have an energy level corresponding to that of an orange light 
c. The atom is not resonant with the orange light 
d. Atoms always only can give off two lights 

 
11. Circle the correct configuration, and indicate why the others are incorrect. 

 

 

 
 

12. What electron cloud energies account for the line corresponding to the wavelength 434 nm in the 
gas discharge spectrum for the Balmer series of H atoms? (Choose one) 

a. Only the n = 3 cloud energy 
b. Only the n = 4 cloud energy 
c. Only the n = 5 cloud energy 
d. The n = 2 and n = 4 cloud energies 
e. The n = 2 and n = 5 cloud energies 

 
13. Consider the ionization of a hydrogen atom originally in its ground state (n = 1). What energy 

would be required to ionization this hydrogen atom?  
 
14. How would the energy required to ionize a hydrogen atom in the first excited state (n = 2) compare 

to your answer in problem (13)? 
 
15. What is the expression for the energy (in J) for the ground state of an electron cloud in Li2+? 

 
16. Calculate wavelength (in nm) of the light corresponding to the Li2+ electron cloud resulting from 

mixing a 3 loop electron wave with a 1 loop electron wave?  
 

17. In terms of the variables R, h, and c, what is the smallest possible wavelength of light that will be 
emitted by a He+ atomic ion, starting with the energy corresponding to level 6 loops? 

 
18. The work function (ionization energy), of chromium metal is 7.2 × 10–19 J.  

a. What is the kinetic energy of an electron ejected from chromium by light of λ= 250 nm? 
b. What happens to (i) the speed and (ii) the quantity of the ejected electrons if the wavelength 

of the light increases? 
c. What happens to (i) the speed and (ii) the quantity of the ejected electrons if the wavelength 

of the light decreases? 
 
19. For the two hydrogen electron clouds in problem (8), which has the largest ionization energy?   

 
20. Photons of energy 13.6 eV are able to ionize the hydrogen atom in its n = 1 energy level. Are 

photons of this energy are able to ionize He+ in its n = 2 energy level? 



 CC212: Reality and the Modern World 

©2019, Binyomin Abrams, Emily Allen, Robin Stevens 20 

21. The figure shows three H atom electron clouds. Write down the numerical expression that when 
evaluated gives the value in eV of smallest ionization energy of these three clouds. 

 
 
 
 
 
 
 
  

 
 
 


