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ABSTRACT

The Cauqﬁy problem in the goneral theory of relativity, in
both a metric and a tetrad formulation, is treated with the help of
the Li;‘dorivative. A more geometrically intuitive and covariant
treatment cf 8 mumber of probiems is therebw.achieved. Expressicns
for the evolution of the hypersurface metric on a famlly of geodesical- '
ly parallel hypersurfaceé in an arbitrary [iemann space are gtveﬁ.
%hen the field equaticns are imposéd, the role of various components

of the Riemann tensor =ith respect to the surface and normal direc-

" tions in determining this evolution is shown. An Ainterpretation of

the constraint equations is developed which reduces their solution to
the rroblem of embedding two hypersurfaces with srbitrary metrics into
a Riemamn spice with vanishing ficci tensor. The problem of coAiing-
ing the hypersurface metric on an arbitrary family of hypersurfaces is
solved. A lagrangian and Hamiltonian formulation of the problem for
g&odesicglly parallel hypersurfaces is given in terms of Lie deriva-

tigps.




Ie INTROMCTION

It was recognized many yoars ago that, in a certain sense, |
the field equations of the general theory of relativity were of hyper-
boiic normal type. Conaaqucnuy, the Cauchy problem was conaidered
fairly early in the development of the general theory of relat.ivity.l
MYore recently, it has becane clear that the Cauchy problem in relati-
vity, as in electrodynamics, is closely bound up with the rumber of
degrees of freedom of the pwre gravitational field (i.e., the field
in source-free regions), and therefore with the problems of gravita-
tional radiation and tho definition of anergy.2 These last matters,
associated as they are with questions of quantization, have sbimlated
re—;ewed interest in the Cauchy problem, |

The aim of this paper is to give a mare conplet.e ani covarie
 ant geometrical interpretation of the Cachy problen in the general
'theory of relativity than has heretofore been given. This will bo
done with the help of the lie derivative. But first, we shall dis-
cnss the nature of the Cauchy problem, and some ways in vhich t.h:u
problen in general relativity differs from the usual one.

Cauchy's problem, aé usually‘ vformlnted, is a problem in
amlyaia.3 The basic space considered is that of the independent

variables xi (4 = 1,..0,n), which form an n-dimensional arithmetis




spacee e shall symbolize thip space by A e A gysten of differential

equations is given:
(1) \P (\\ \{ J\s\‘ )" Y\‘) - D (P\JB =\J ** JN)

where the y are a seb ofunkmm functions of Ww x s and y ’iik
partial darivatives of the y up to some finite order. e assume that
the system 18 determined, 1.6., that the mmber of equations is equak
to the mumber of unknown functionss If we choose some arbitrary hyper-
surface S in A , Lauchy's problem is to give data on S abcub y‘\ and
its derivatives which 1is jJust sufiicient to determim uniquely a solu-
tion to V(l) with these preséribed values on 5 {called the initial val-
ges or initial data). The question of the typos of partial differen-
tial equations for' which the Cauchy problem mly be correctly set, ox=
plicit conatruction of the solution functions, snd the relation be-
twoen the ﬁréper‘ties of the initial data and those of the solution
function are important aspects of the Cauchy prohlem.h
In general rclativity we deal with two spaces, rather than

one. The fundamental space is the lj=dimcnsional geomatrical manifold
of events, which we shall symbolize by Xh. This manifold is coordiné-
| t.lzed by placing it in one-one comapondence (at. least in patches)
with regions of Ah' Since we regard Ih as the basic physical mani~
fold, coordinate transformations == that is point transformations in
A, — ave to be locked upon as prodacing no more thea @ changé in the
description of Iundanentally unchanged entities. In the case of gen=
" eral relativity, we want to consider a fixed hypersurface in Xy (1.ee,
an 13) in formlating the Cauchy problems But this hypersurface may
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be represented by an arbitrary coordinate hypersurface in A, depend~

ing on the coordinate system used. Thus, we are led to a more geo-

. metrical formulation of the Cauchy problem in general relativiiy:

Find geometric entities to be given on a hypérmrface of an Xh, ‘such
that these entities serve to determine a unique Riemann space which
obeys the Einstein field equations. Since the field variables of the
theory are the gp;v s the components of the metric tensor, one would be

led first to look at the g v and their normal derivatives with rospect

to the surface as candidates for the initial data-on the hypersurface. .

However, a fundamental complication arises here; as is well
known, the field equations of general relativity are not of Cauchy=-

Kowalewski type. In itseif, the fact that a theory is expressible in

-an, arbitrary coordinate system does not prevent it from being Cauchy-

Kowalewski in character. For example, the scalar wave equation,ex-
pressed in a space with an arbitrary but fixed background metric, can
be solved in any given coordinate system for the second normal deriva-
tive to an arbitrary spacelike hypersurface. Of course, if we find
two solution functions in two different coordinate systems and the
solutions are related by the same coordinate transformation ihat con-

nects the two coordinate systems, we regard the two solutions as

" physically identical. In the general theory of relativity, on the

other hand, no variables occur in the empty-space field equations ex-
céeﬁ the metric and its derivatives; and the field equations GP.-V=0
are 1nvariant in form in every coordinate system, The group of co-
ordinate transformations act as a gauge group, and it is well known

that a theory with a gauge group canrot be of Cauchy-Kowalewski type.




In general relativity, this can be seon from the followirg considera-

tionst Take any solution to the field equations, and consider the

set of values on same hypersurface of the metric tensor and all its
normal derivatives to that hypersurface. If we make a coordinate
transformation which reduces to the identity on and some distiance off
the initial hypersurface, we can turn our solution into a formally
different one which agrees with the original solution on the hyper-
surface up to any finite order of derivative that we choose., Thus,
no set of values of the g v and their normal derivatives on an ini-
tial hypersurface can determine a unique formal solution to the field
equations, Of course, all theaq solutions are to be regarflad as
different descriptions of the same physical solution in different co-
ordinate .systcx:ns,mt the faét renaing that field eguations co_mpgt.ibh
witﬁ such behavior cannot be of Cauchy-Kowalewski t:?{_;;qzé_.s |

Formally, this can be scen from the fact that, given any

hypersurface of X,, there exist four linear combinations of the field "

equations which are free of second normal derivatives with respect to

'that hypersurface. These are called the constraint eﬁuations of the

theory. Thus, not all of the tield variablss can be determired ty
the field equations,but only certain combinations of them. This does
not imply any lack of causality in the theory, but merely that less

~ than the total number of field variables are causally detcrmined by

the field equaticns since less than the total mumber are reeded to
characierize physically distinct solutions. 7The geometrical signifi-
cance of this fact in the case of the general theory of relativity
vdli be seen in Sections III and IV,
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There are soveral wuys of handling the problem of the gauge
group. One can, for exanple, modify the fleld equations so that they
are no longer inv#riant under the gauge groupe The resulting oqua;

, ﬁona mot be of such a nature as to contime to admit at lcast one
solution from cach equivalence class of ~numerical sclutions which
correspond to a physical solution. However, they willthen usually
admit additional solutions, not corresionding to any physical solution
of the original emations, and a method for eliminatirg these spurious
solutions must be given. Examples of this method are the use of s

- Lorents condition in electrodynamics, and the De Donder or harmonie
coordinate conditions in general relativity, vhich make the modified
field @atiom of Cauchy-fowalewski type, at the expense of admitting
spurious solutionsj; the latter are then eliminated by imposing the
Lorents condition or De Donder condition respectively on the solution
functions. This pproach to the Cmuchy problem was among the earliest
used in general relativity, and has since proved useful in a muaber of
investigations, particularly those concerned with questions of exist-
ence proofs, domains of innu§nce, et.co6

Another approach is based upon the idea of splitting the
field variables 1nj_bo two gro:ps -— one grovp whose evolution is de~-
termined by the field eg\iationa, and another group whose evolution is
not. This can be done, for esample, by using the coordinate oqnditim
Eov = Dovs and solving the Cauchy problem for the Bap (8,071,2,3)
startirg with the surface x° = constant in such a coordinate system.
This approach was also used at an early stage in the discussion of the
- Canchy problem in general roht.ivity." The field equations then break

[




up into two sets. Ono sei, composed of f.he four @4y oquations, re-
stricting the initial valucs of the g, and their [irst derivatives
with respect to x°; and the other set, coaposed of the remaining six
gy ecuations, which dotermine the evolution of the gab\c;ff the ini-
tial surface x® = constant, Howcver, the use of vcoordirﬂte conditions,
as woll as the ordinary derivative, obscure the geometric content of
this method, and restrict it to the troatment of geodesically parallel
faniiies of surfaces. o |

dore recetly, it was :horu?\ by Dirac and Anderson that a
casiltontan formlation of the general theary of relativity could be
given, in which the gg-v huve zero canonical momentd, &0 that they may
be eliminated from the thecry, if we choose to look at the evolutipn
of the s;,;st,e:n only along the faally of surfsaces x° = constant.
Again, the use of a particular coordinate systea tends to obscure the
gecmatrical significance of the resultse I is clear from this ap~
proach, as uell as that of Arnoaitt, Deser and ldisner, that the geo-
netrical entities needed on the initial hypersurface of Xh to uniquely
characterize a Kkiemann space satisfyling the field oquationa are the
first and second fundamental forms of the mrfaceo These cuantities
are ot freely specifiable, of co.rse, but are subject to certain cone
straint equations, which will be discussed in Sections 1II and IV, ‘
But the rclationship of these grantities to the metric tensor of the
X'b is not clear, except in a special coordinate system.

However, if wo want to proceed covariantly and in such a way
as to gaintho maximum geomeirical insight, it 48 best to put the co-

ordint e systam into the background,and concentrate on the geometrical

e e




uanifold.. 7irst, we want to krow what data must be given on the ini-
tial hypersurface of Xh to determine & unique Rlemann space saiisfying
the Finstein field equations. As we indicated above, the answer to
this has bocome clear: it is the first and second fundamental forms
on the surface. We show in Section IIT that the choice of a hyper-
sirface in a Riemnn space induces a breakup of the metric tensor into
surface and normal components; and that the fii'st fundamental form of |
the surface is just the surface components of the metric tenat;r writ-
ten in terms of the coordinate system adopted on the hypersurface,
while the sccond fundamental form is the Lie derivative in the sur-
face unit rormal direction of the first fundamental form. The choice
of coordinate systems in which to express these relationships, both
for the X) arxﬁ the initial hypersurface, ' is completely arbitrery,

Piexf. we are interested in the way. in which the metrioc e&olvea off the
initial hypersurface. To malée this question determinate, we mist give
some family of hypersurfaces in the Xh, one of which is our initial
hypersurface, and indicate what geometric character we want for this

—family of surfaces in our iiemarn space. To get us from one surface

of this famdly to the next we meed a fanily of point transformations.
Since the Lie derivative 1s the covariant expression which tells us
how any geoometricalquantity changes under an 1nfig;1tesim1 point
transfornationy,this proves to be the tcol uhich' enables us to compute
how the surface camponent of the metric tensor evolves from surface to
surface.

Section II 18 primarily expository. The concept of the lLie

derivative is discussed, together with a mnber of rules for its use




which will be needed.

In vections IIT and IV we treat the Cauchy problem for empty
8pace (1.0e, G'w=0) by a new method. Instcad of starting from the
field equations, we calculate the higher arder Lie derivatives of the
first fundamentsl form of a surface for an arbitrary Riemann space,
and then show how the field equations serve to determire the second
and higher order derivatives. This might be called a ‘ewtonian ap-
proach to the problem, In Seétion III we carry out thie approach for
a family of surfaces geodesically parallel to our initial hypersur-~
face; this family turms out to be the simplest and most natural family
for which to formulate the problem. The constraint eguations are dis-
cussed in this section.

In Section IV, the iewtonian treatment is extended to an ar-
bitrary family of hypersurfaces which includes the initial hypersur-
face. The four arbitrary functions which occcur in the Dirac formaliss
are seen to be interpretable as the components of an arbitrary vector
field with respect to the geodesic normal vector field at that point.
The constraint equations are rewritten in such a way that they may be
regarded as conditions upon the orientation of this vector field.

Section V contains a discuasion of the interlor case, in
which Gpuv= Tyv , where Tyv is the stress-enargy tensor corresponding
to some arbitrary sources. GSectlon VI is a reformulation of the Cauchy
problem in terms of the tetrad forwalism. The field equations are
shown to determine the evolution of certain of the rotation coeffi-
cienta. If the spacelike triad is parallel propagated along the time-
1like vector of the tetrad which is tangent to a geodesic normal field,




these rotation coefficients are the ;:hysical components of the second
fundamcntal form of the hypersurfaces.

In Section VII we discuss the Lagrangian and Hamiltonian ap-
proachea to the Cauchy problem in terms of Lie derivatives. The vari=-

V2 R d'&
aticnal principle for the Einstein field equations, (‘@ »

is reformulated in terms of Lie derivatives, and is shown to lead to

t.hé correct. deccmpos;tion of the field equations. Subtraction of a
tétal Lie derivative results in a first order Lagrangian. %hen the
usual method of paasj.ng from the Lagrangian to the Hamiltonian is ap~
plied, using Lie derivatives, the Dirac form of the Hamiltonian 1s
shown to result,

A summary, mentioning some of the remaining probleas to
which we hope to apply this method, and two appendices complete this
paper.

All of our considerations will be essentially local. Thus,
we shall not, at this atage, discuss such important questions as the
role of boundary conditions in solving the constraint equations on

the initial hypersurface; or how far the construction of the geodesic

normal field may proceed off a given hypersurface before caustic

points develop; or whether the imjosition of Minkowsklan boundary con-

e _""‘ditions at spatial. infinity would eliminate the possibility of any

source-free singularity free solutions to the field equations. We
hope, with the aid of the method developed here, to gain more insight
irto the geometry of those Riemann spaces which satisfy the Einstein

field equations. With the help of these insights, it may be possible

to formulate these global questions as geometrical problems, as well

SO S S



as ihe many local questions still unsolved (notably the consiraint
equations). If “"physics is geomeiry," which many a relativist has
taken as his watchword, then perhaps geometrical insights may point the

way forward to the solution of some of the difficult physical quese-

tions of energy and radiation raised by the gencral theory of relaliv-

ity.

We conclude this introduction wiith some remarits on the nola-

tion to be uscd. In the main, ve follow Schouten's \jxotat,ion.lo Al-
though requiring somec initial effort to learm, it greatly facilitates
many inlricaie calculations. The kerncl-index notation is used con-~
sistently. Any geomeirical object, suéh as a lensor, is denoled by a
fixed zernel symbol, which never changes. The indices of its compon=-
cmé »11ll change, however, every iime the coordinate syslem changes.
A given vector, for example, might be represented by the symbol "§ .*
mErr and ¢ g" " will then represent the same vector in two different
coordinate sysiems. "', however, since the kernel symbol nig v ig
different, will represent a different vector in the same coordinate
system as " §* ." Iqualions which hold in all coordinate systems are
vritten with the usual equality sign " = ." Equaiions which hold in
only particular coordinate systems are written with an asterisk over
the equality sign: € .n Thus, E&ﬂ\& asseris that the vectors §
and ) are ihe same vector; while g« '-‘:S': Y]“, or more explicitly

“ WE‘L(‘IJ‘) !:S‘;d\'" ()\)“) agserts only that the components of the vector

f in one coordinaic system (the x* one) are mumerically equal to the

components of a different vector 4] in another coordinatle system (the

’

x*  one).

After Scction II, all Greek indices will refer o the

10
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four-dinensional manifold Xh and a1l latir indices to a three-dimenw

- sional submanifold. The metric tensor g Py will be taken with aigna-

ture -2, while the metric tensor 'gap Will be negative defiidite with
signature =3,

11



II. THE LIE DERIVATIVE

In our formulation of the Cauchy problem, we wish to relate
the values of certain geometrical quantities at different points of &
four-dimensional manifold X). It will be sufficient, of course, to

" have some method of comgaring values at neighboring points, 80 long as

this differential operation may be iterated in order to compare values -

at points with a finite separation. Ordinarily, this is done by adopt~
_ing some coordinate system, and using ordinary derivatives. But ordi-
nary derivatives of quantitieé 1ike tensors are not geometrical ob-
jects, in the sense that, given only A}LVin some coordinate 8ystem
(where A)). is a tenaor) , one cannot determine Ap,v' in another coordin=-
ate system. If we were going to treat some generally covariant field
theory involving f1eld variables other than the metric in a fixed back-
ground netric space, we should mt.urally thirk of using the covariant
derivative in order to relate quantities at different points., How-
 @ver, since it is the metric field itself yhich is to be determined by
. the field equations of general relativity, we have no covariant differ-
entiation available until our Riemann space is constructed. fa’hat' we
need, then, is some intrinsic or geometrical method of comparing the
“values of geometrical ‘quantities at different points of a manifoldj

some generalisation of the ordinary derivative, which is applicable




to a bare manifold. The Lie derivati;e provides just such a generali- f
zation, which we shall now discuss.
Lot us consider some region of an n-dimensional manifold *
%, wich wo shall call B Lot Ps §°—>"M"“={"(E)ve a point trans-
fornation which takes the point " of R into the point 1), which may
or may not lde in R, but at any rate lies in some sub-region R' of Xpe
Yiow, with any such point transformation there is uniquely correlated
a coordinate transformation: namely, ‘t.he coordirate transformation
such that the point _'T}K‘in the new coordinate system has the same co-

 ordinates as the point EK in the old coordinate system (as shown be-

An | xn

Arithmetical Space ~ Manifold

Figure 1




Analytically this coordinate transformation is given by

(11-1) “ﬂp = K\L' f(“ Y‘Wﬂ

Let i'\be a fleld of some set of quantitios defined in the regionm Re

¥e can correlate a value of the field at g" with a rew value at the

point '\'\‘Laa follows: let the new value at Y\‘dbe guch that in the new
coordinate system it is numerically equal to the original value of
at the point g in the old coordinate system. e called thia value
the dragped-along value of the field, and symbolize it vy @ (the "a"

(€24

standing for the German word, mitgeschleppt) « Symbolically,

I WY X CM 'S .

§.\M V2§ N@ig } . Clearly, the difference between P, and
%h, taken at any point where both are defined, will be a quantity of
the same kind as @u if @Aia a quantity which obeys a homogeneous 1lin-

ear transformation lawe
How there is a gac-to—one correspondence between infinitesi-

mal point transfornmations and contravariant vector fields given Xy

(41-3) M =T+ vl

where v‘is arny contravariant vector field, and dt is any scalar in-

firitesimale, Thus, with any vector fleld o , we may assoclate an
infinitesinally dragred-along field % A3 and we may write the differ-
erce beitween the original value of the field and the dragged-along

value at any point, which is clearly proportional to di, as

(11-h) - @».’ %,\ _ (% @k) ‘“

were % §, 15 the syabol for the Lie derivative of P, 1n the directim

e o ettt bt g e et
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of ¥ % . It is clear from this definition that if we knom the lie

e et S A

derivative of any quantity @hat. some point S‘“ in a certain direction

T s

\J‘L » WO can compute the value of the quantity at the point ‘E -V c“.

H.a0y = PLEY + RN ]
=P w - RS,

(11-5)

 Yow we shall show that if we are given some vector ﬁoitl v* s and

the value of a quantity @,‘ s a8 well as the values of its Lie deriva-

 tives of all orders with respact to the field +™ at some point P, we
can f£ind the values of the quantity @hat all points of that traject-

ory of the « [ield which passes through the point Fe

In order to show this, we first show that any vector field
v‘L gives rise to a one-paraneter family of finite point transforma=

" gions,through iteration of the infinitesimal point transformation

‘ E“—a E‘L—\—\g‘(éﬁ . tihat we are looking for is a fanily of point trani-
formations “gv‘—» 'Y\Ktﬂ, where + is a parameter,such that for =0, say,
the transformation reduces to the identitys &"-'T]K(O\; and such that |
+ % gt shall be the infinitesimal element of the groupe This last

condition implies that

o YEHaD) =) ¢ V“D\ﬁﬂ .

But the left-hand side of (11=6) , when expanded to first order in 4t

¥,
13 eqal to ) (t) + (u\‘“/dﬂ dt. Therafore,the differentlal equa-

tion for sich a famlly of point trangforpations is

(11-6") av/av =v "l , - |



#ith the initial condition that Y|Tor = . The solution to this

differential equation is easily seen lo be

2z © A ER
wn =8N N"Br\vk%h..%\ﬁ,wa@ g

or, symbolically,

| "
(11-8) _\q\ﬁﬁ e‘\‘(\f Br\-) g\ﬂ

This one parameter fauily of point transformations may be aymbolizod
by "‘]‘L ‘hg . If we choose some initlal Wrmrface, which we
shall take to be a subwanifold symbolized by xn_l, then this fanily of
peint. transformations genarates a one-parameter family of hypersur-
facess For each transformation g"‘—efqvit) takes the points of our
‘hypersurfacé into a new twper_gurfaceg This new hypersurface will
clearly be & sulmanifold, since by dragging along the or{ginal co~-
ordinate systems of both the X, and the &, we see that the saze
_ paramet.fizat.ion will do, for each succeeding hypersurface, in the new
coordinate systen. e gymbolize that hypersur ace in the famlly cor-
responding to the value b of the paramster oy xn-l‘

Fe can always choose a coordinate system in which the veo=~
tor v has the components S’: . In this coordinate system, we see
from (ii~7) that 1{‘ a g“.w‘“(. From the definition of __t.hév dragged=
along field, it also follows thal in this coordinate systea

(14-9) ?@, e D, - v

and, expanding the right~hand side in a power seriss, we geb

wo HAT 2N -3RAN

16




But in this coordinate system the Lie derivative reduces to the ordi-

nary derivative:

(11-1D) f R 2,248

so that we 'na; rearite (ii=10) as follows:

(11-12) \‘A D, S\g\) \‘SZCP “\;‘ ‘*i é@ \QZ. +...

But this equation is invariant tem by term,so that we can drop the

asterisk, and write it symbolically as

(11—13)‘ ?@A‘Eﬂﬁ = Q:’Yi ?é'\xgk

Suppose we row apply the invarse family of transformations
generated by ~*. ‘l‘hon?é S\ggbecomes the value of the @ f£isld in
the dragged-along coordinate gystem, ab succesding points of the tra~-
joctory of the v field. Equation (11=13) when applied to the "

field becomes

n A% ES
(11<1k) @'\ = Q ~N @'\f_ ejv @,\

Thus, if we know the value of the @h field and of all its

Q@

lie cierivatives with respect to some veclor field at one point,we can
" find the values of the field inthe dragged-along coordinate system at
all points of that trajectory of the vector fielldi,phich passes through
‘our original point. The values at the succeeding points (in the sense
of increasing t) are found froa (ii-lh))_ and of precodiﬁg points (in
the sense of decreasing ) from (11-13).

If we know all the values of some nem?‘j?kon a hypersurface

17
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of é manifold, as well as all its Lie derivatives in the direction of
some vector field which does not lie in the hypersurface,or as we
ghall say, which transvects the hypersurface, then we can calculate
‘the values of the field @kon all hypersurfaces defined by the fanily
e of point transformations associated with v ; and thus calculate the
values of @h throughout some region R. It is this propertj of the Lie

derivative of which we shall make extensive use in the treatment of

the Cauchy problem. Ve shall symbolize this procedure by 14315y

(11-15) @ N (;«v\—\) : é\'% @ N (:/\“—\) R

using our previous notation for the hypersurfaces.

As an example, we shall compute the Lie derivative of a co-
‘variant vector field w wi th respect to . By definition, the val~-

“
ue of the dragged-along field at the point S in the dragged-along co-

~ ordinate system equals the value of the origin field at the point

gv" - \J“ AT in the original coordinate syslems

Ve = e w ATty
£ Gty - VR ]

) 0 & ' ;
to first order in dt. But !’,‘,\{Q: P\vicxv\.sﬁ‘&,,where P\“)\ = % .

Thus
(11-16) Q\‘ \i\ = NJ)\ %\:: K_\‘j w\(g -V"3 r\W vj\“ A‘l .

The coordinates of the new point 'Sv“ have the same values in the

dragged-along coordinate system as the old point in the old coordinate

systems




iy

g% = g% (3F v dY)

f\\g}“ "%NQ ux D\\jcﬁ“}
(14-17) :'%Kc U\c)\ -V AJ‘) ’

< .
¢ d% -
where f\}\ "'E'}\ Combining equations (ii~1§ and (11-17), we get

Tu00 = SRS &) SRR -V wed T AT
(11-18) =Wy, - QORI NS+ MY V\‘N)A 3V .

A1l quantities in (11-17) are taken at the same point S s and we have

s0 that

dropped the asterisk, since the equation now involves quantities in
only ore ceordinate system., From eqation {1i=l), it then follows

igmediately that

Further examples of the comuting of the Lie derivative may be found
" in Schouten. ™t

Teo nnall be concerned not only with tensors of the Xp,tut
also with tensors of an arbitrax'y X1 of ;the manifold (in all our

w are the coordinat.e- of

applications, of course, n = ). Suppose x
X, (}L-}.,.",n), while the 'x” are the coordinates of the submanifold
(a=l,,,,n=1})s The relationship between the two manifolds can be de-

scribed in either of two ways. e may give an equation C(x ) =0,

for the submanifold; or we ﬁy give the parametric repraaanﬁtion

M= Moy, The contravariant connecting quantities




e

hadt™ ) &)Q" » which are contravariant vectors of the X, and covariant
vector of the Xn-12 BOrve as projection operators. For example, if
¥ 18 a covariant vector of X, B: Vi gives the covariant couponents

in the 'xa systea of the projection of vr\ into the hypersurface. Sim~

a
ilarly, if 8® 1s a contravariant vector of the X1 B’:s gives the

contravariant comporienté in the x™ coordinate system of this vector,

considered as a vector of the X,» In a manifold, given nothing but a

hypersurface, we can form 1o nmore thain these, In order to define the
projection of a contravar iént vector of X, on the hypersurface, or the
vector of X, correspondirg to a covariant vector of the K)o we must
rig the submanifold. In ths case of a hypersurface, rigeing ueans
giving a direction at each point of the hypersurface which does not
lie in the hypersurface. For a metric space, the normal to the sur-
face provides a natural rigging field (so long as it is not a null |
gg.rrace, in which.case the normal lies in the sur_face), Once the sur-
face ia rigged, cavariant connecting quantities B» can be defimsd
uhich allon us to find the hitherto undefined projections and coupon=
enmts. The connecting quantities B} and B obay the folloning rola-

tic:na:
BYBL =B\ s BRG=0 ;B‘N‘ =0,

where Bb is the unity tensor of the X r and v"'ia any con-

travariant vector in the direction of the rigging.
For tensor fields defined on the X,.3 the Lie derivative is
not yet delined, for we do not have a unique prescription for the be-

hsvior of the conncoting quantities Br and B; » under the dragging

J—




process. Homever, if we project the surface tensor onto the fuil mani-
fold, we have a tensor of the X, whose Lie derivative can be computed
Just like that of any tensor. ‘e then can define the Lie derivative
of the surface tensor as the component.s of the Lie derivative of the
corresponding tensor of .Y whlch ile jn the suhnanifold.lz

For a vector 'pa of Xm, for axample, we first form the m-

tor
) 3
(11-19) Pa” Du P;

of X n? take the Lie derivative of ""p« with respect to any vector
field vV‘, and defire the Iie derivative of 'p, as

C R RUE
(1i-20: Pa ~ Da P .

4 A '

With this definition, should 'v” be a vector field lying in the sub-
manifold, then the Lie derivative of a tensor field on the X, will
abovo dofinition, or by. ing

\\ \ g \) N
out the operation of tuking t‘\e Lie derivativo entirel,v on the mrfaco,

be the same uhctner oompubed rrom the

as is clearly posaible in’ this ca.,a. For’ emple, VY

Ve

(-2 :{é‘); =B \‘ﬁ'\%\ B*EKBKPQ‘\J ¥ \;\@d\\l “1
/%;k N 3\4?"\ ‘\'% P 'BJ\\‘
= %Y 0a P da'\k = :ﬁ’(’ Q"

where Bak = B‘\ BV\.

If we should be given soms tensor field over a hypersurface,

together with all its Llie derivatives as defined above with respect to
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B.

Ce

D.

Ao’

some vector field vH, then we can build up the tensor field on the
family of hypersurfaces generated by vt by a formila analogous to
(11-1) if we carry along the coordinate system 1x® of the original

hypersurface to each succeeding hypersurface.

We shall end this section with a few useful, easily proved

rules for the manipulation of the lie derivative, as well as a list of

Iie derivatives for some tensorial entities.

The Lie derivative of a sum of quantities equals the sum of
the Lie derivatives.
The Lie derivative of a product is given by the rule of

£(37)- BEL TER .

The Lie derivative with respect to the sum of two v-ector
fields of any tensorial entity is the sum of the Lie deriva-
tives with respect to each of the fields separately .

The rule for Lie derivation of a tensor is as followss Take
the ordinary derivative of the temnsor and contract it with
the vecfm' f£ield. Then,

1. for every covariant index, replace it by a dummy
index, take the derivative of the vector field with
respect to the replaced index, sum over the dumay
index, and add these terms.

--@¢-for avery contravariant index, replace it by a dum—
my index, put this index on the vector fieid and

differentiate it with respect to the dumny index;



e v,

23

sum over the dummy .'mdm:, and add these terms.
E« In a space with a linear connection, all ordinary derivatives
may be replaced with covariant derivatiioa in the formula for
the Lie derivative of a tensor. |

F. The Lie derivative commites with ordinary differsntiation.

A few examples of the Lie derivatives of tensor fields of

various ranks which we shall use are:

- Scalars
T

&0 = Qrp”

Coniravariant af;ﬂk = (Brﬂ\\k)\“\— Y\P‘(BV\VK)
cormrtazt F10, = (3, MNP + v (30)

Tensor, rani_: twos

Two covariant indices %T d\e = (3\3 ,\@\l ry T‘\&Bd\p" x\ J\‘.\B (\l ~
Two contravariant 1nd1cea %\" d\? = (B‘t("\@\{“-‘v%‘\\( < —-T*t\s‘k\‘@
Wixed indices %“d: ? = (BFTTKQXVP‘“’V?‘;B‘LV* . kf\‘“} ev"\ s

As folloss froa rule N, Lie derivatives of higher rarnk tensors ¢an
easily be taken by noting that each covariant or contravariant index
is to be treated in the same way &s the covariant or contravariant in-
dex of tho mixed rark two tensor, kespingv all other indices fixed. In
all the above formulae, as rule L above indicates, the ordinary derive-
tive may be replaced by the covariant derivative if the space has an

affine oonnection.
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"I1X. THE CAUCHY PrOBLEM —~ GRODESIC NORMAL FIELD

Our problem can be stated as follows: given a manifold of
four dimensions Xh and an arbitrary sutmanifold of three dimensions
?(3, to zive such geometrical quantities on g} a9 will enablo us to
construct a metric which makes xh into a fiemann space of signature -2
in which Gpv=0. “e shall agsume Xh to be Qf some simple topologieal
structure, for example, the product of a Zuclidean three-space and a
line, so that there will always exist at 1&;3‘&. one contravariént vec~
tor field v™vwhich transvects cur original surface, and whose trajec~
tories fill up the space. Then we shall demonsirate by conastruction |
that (locally at least) given a negative definite mstric ‘g, on 10(3,
the initial hyporsurface,‘ and the first Lle derivative of 'g,, with
respect to the vector rield v' (both of which obey certain constraint
equations which we shall discuss later) it is always possible to eon—l

struct such a iliemann space. Further, it will be seen that the ini-
t}.ial data on the §3 is oq{xivalent. to thae surface components of the

" metric tensor (which me gymbolige by 'gyy) on tho hypersurface ard the
first Lie derivative of 'g\w with respect to vk,

7e shall proceed in two stepss In this section we consider
the problem of constructirg the mtric in such a way that v K s fter
our corstruction of .the Riemann space, will be the time-~like geodesie

normal field to our initial hypersurface. It will be seen that this




——— .

~..

constitutes a determinate geometrical problem, with a geonetrical con-

straction leading to its solution. In the next section, we teke up

* the case in which v\kbecozrxea an arbitrary vector field, i.e., one

whose relat.i_cnship to the geodesic ncrmal field is arbitrary. . Here,
of course, an additional eleaent of arbitrariness entors the probleaj
the geomstric arbitrariness of the relationship botween the two vector
fields. Ilowever, this élement of arbitrariness does ot lead to the
constraction of a different iiemann space; for with the saze initial
data on the initial hypersurface, it merely results in a new geometri-
cal constructicn of the same meiric space.

To facilitate compreheusion, we start our analysis in re-
verse, i.c., we {irst analyze a given Rignann Spaces JIn such & space
for which G py =0, we develop certain relationships which involve only

the initial data on a hypersurface of the manifold on which our hie-

#ann space ig 0iilt. Then we shall easily bs able to reveree our rea=

‘soning, and see that starting from a bare monifold, upon & hypersur-

face of which we impose certain initial data, we can build up & e~
mann space satiafying the iinstein £icld equations.

Ve assume w6 have a vh of signature -2, for which Guvy 20,
and freely use all metrical concepts in our reasoning. Lat gpy be the
Rotric of ‘the V. Then the metric of ow initial hypersurface 33

{which will be our %3) is given by

1 [
(111-2) 'an = Bhb 2 v

Let us symbolize the unit geodesic normal field to 83 by n'k, which

shall be our v' (we shall alsays use n™when vMis intended to e &
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unit geodesic normal field). If C‘.\—n"‘-}\" (whers C( x) = 0 1s the
0 -
equation of the V3), then we shall define © =N\C , so that

Tpo* = 1, 1.e., CN 4s tho covariant normal field. Now let us com-

pute . 'Bgy, remembering our definition in Section II:

il‘&\’ - Y;;‘%‘h/pﬂ = ';\V’ %(66‘.@ “V\y\\‘\\b
(gi—Z) /\5 WY ‘\-‘l‘v“\r\) Z’Bwq"\y\‘,

the order of differentiation oﬂ,&amay be reversed since n"*'_ia a gra-
. N v

dient field. But DRy Yo\ is equal to minus the second fundamental

form of the hypersurface, which we symbolize by hab‘ Thus,

(114-3) & "&ap = -2 by,

In other words, giving the Lie derivatives of the surface metric in
the direction of the unit normal is equivalent to giving the ;second
fundamental form of the surface -- a knowledge of the first and sec-
one fundamental forms is equivalent to a knowledge of the metric on an
infinitesimally close parallel hypersurface to the initlal one. Now

let us compute the second Lie derivative of 'gab on the init.ial hyper- -
\i‘\;\o =2 ﬁh 2%3\9 \%\ﬁ w Ny
EQ\L\V ) nE 4 T ,xV\Y‘) +

{.V\ ﬂ-P\Y)-\L\"\V i ’P\KM\Y\‘Y\\ :
(TN (T +\¥ v\v.)km W)y

E R\(‘w nin© +WVJ\\L (‘IVV\ )]
A \

O ) e )

surface:

ll

- n

I (VRN W TR S \
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e —gprface metricy, we must kiow certain projections of the iiewann tensor

r{j

-

B L -
since 0 V\LY\\;’O Locsunoe \(\p\ VS targent to a geodesic

= 2R NI N YT -2 R R g AN
= 2 e\ Gv‘\@KYK*““\) —Z%;,\.‘R\«\wg‘(\(\\v\
- 2R WO 2B Ry ol

-
since (\ V‘\ 5() because A" 1s a unit vector;

\:;"\*5 \06 W) (Ny X\?) - 2%"\:\)? xwig S\ |

- 2\ X\«K— S‘\ﬁ\b(' y\\ofw - Z/\S ‘:\,K\P\\A\N n ‘(\Y‘
(13i-h) \f‘\ %A\o Zk &\;\\\W /\% R\&\w \(\(‘\) 1

AN

Thus, we see that in order to knos the second lie derivatives of the

onto the surface and rormal directinnge FMirst of all, let us sae what
iyres of projections are possible. ‘e cun project four times onto the

\'4
garface by means of the operator B\;}:n, getiing m]}t Qv e Ve oan

n

project the fiiemann tensor R‘q\‘,,, on to the normal direction n' once,

~

and hree times on to the sarface by :wans of the operator Bk}\lm n

getting Bklm n Rippe o e can project taice on the normal direction i
¥\

and twice on the surface by means of Bk}i nM nv s getting auﬁ" t? RH’\)“’ 1 3

and that i 2lle For, if we project threec times on the normal by
“

mwems of n n , we shall get zaro, beoause of the symt.x?i_.g; of

the iiiapann tensar.

jow the projections of the Liemarm tensgor four tines on the

surface, and three times on the surface and once in the normal



direction are completely determined by the first and second fundamen-

tal forms of the hypersurface. Indeod this is the content of the gen-
13
eralized Jauss-Codazai equations, which state that,

(111-5) B \N\@ AN 7 Ridimn & e R~ Tem R

(1136 k\m‘\ (\{\q\\m N  NPRER B

. Thus a krowledge of the first and second fandamental forms on the hy-

B

persurface dotermines all the projections of the Riemann tensaor excapt
those twice in the normal direction and twice on the surface, which
are left undetermined by a knowledge of the intrinsic and extrinsie
curvature propertics of the surface. Indeed, equation (iii-h) shows |
‘us why this mist be so in general., A knoaledge of the projection of

. the Hiemann tensor in the double normal direction (as we shall c¢all
the Bﬁ\ nP\nV anv% components) , together with the secord fundamental
form, su‘fices to determine the metric on the second infinitesimally
close parallel surface, and knowledge of the higher Lie derivatives of
B;; a0’ Rygp€ould saffice to doteraine the metric on further and
farther distant geodeslcally parallel surfaces, by the method dis-
cissed in Section IT. And 1t must certainly be true that in an arbde
trai-y Riemann spacs, with no {leld equaﬁions imposed, we have t.he
freedom to specify the metric arbitrarily (perhaps sabject to iomo
continnity requirements), on such succeeding surfaces.

The field equations eliminate that freedom, by {ixing tle
Wy o \

Bgn 0

the surface. In addition, thay also impose certain restrictions on

n” By in teras of the first and second fundamental form on
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the initial data as well, through the Gauss-Codagzi equations,but we

shall return to this point later,

AR cpv ’l‘XKXPR"NV\ NN R

Since RPW =
BER B R g 4 BN Rugn
= %W /1&\&\: l“&A E “\H\}\/)\V\VVX
But from Gauss'! equation {(1ii-5), we have |

Y\ A 2\&@‘)\ "Rirn) + )\kv\ y\m\ )\k\y\‘“\ .

\L\'\Y\\

Thus,

e B Ry =R+ R i -0 A VBl

and 4f R ,y= 0 (and imdeed for any surface for which B™ R 'wm),
(iii-—ﬁ) ‘ v , | v . I S

o
Thus, with the help of the field equations R‘k\lq) on the sqrfaco V3
(which are of course equivalent to Gy =P}, we can now determine the

secend Lie derivatives of the surface metric:

(111-9) i %}\o 2 (R“ ¥ 2$\ y\\vf "Of\ ))\z\:)

It is clear that this has been the erucial step in cur problems for
successive Lie derivat.ivea of the mrface matric can now be ﬂ/‘ound by
using the fact that all auccesaivo Iie derivatives of tho surfaco pro=
Jections of the field equations, B"""R!"V s Vanish on the initial hy-
persurface, Equation (1ii-l) always holds, and therefore,

\g\u\




BAS

()
(111-10) im‘ga\, Zi(u))\ 9\\, - B i RK‘\N\ V\\ \0/2

Bt \é)—\c‘: &“\, are x:own, since they only depend on a knowledge of ,
i&v.-\).; b and we assums all lower order lie derivatives kaocwn; and 1f |
| we assume iwﬁfp\\,\\ro s then ey:ation {11i-8) gives us %LV:IJB‘:; K‘»{)\‘\H\\

in terms of K\qgh and %M'R ' The Cformer we have seen is known;j

as far as the latter goes,il.s., ﬁ(\‘ﬂ R, it is clear geometrically

that this is krown, since it depends on no more than a-knowledgq of

the metric on the (k-2)nd infinitesimally close geodesically parallel

sirface while we actually k: ow the {(k=l)st metric. Analytically it is

clear that ik\o '3y, can be computed from ;%L\Q tgp ard property Fi

of the Lie derivat.ive, f.0., the fact that it commtes with ordinary

difrerentution.

Thus it is clear that all succeeding I1ie derivatives of the
gurface metric in the direction of the goodesic nornal field to V3 are
deternired by the firat fundamental form and its f£irst Lie derivative
in the normal direction (equivalent to the second fundamental form) and

the field equations on the initial surface, together with all its lde
‘derivatives on the surface (which is equivalent o the field equations
Yo |

L
Using the arg ument mtlined :Ln aectic@ S{, 1% now follows

throughout V

that the matric on any snrface geodesicad& parallel to the :Lnitial

surface can be written in the form:

i)' Y ({13\ = Qﬁa ("x;\. \\]3))



¥e can, of course, project 'g,, into the V) with the help of the con-

necting guantities B‘:L to get the tensor '%}w
i (XVN a\o | %/a\o N
This t,ensox"f is £he surface component of the metric tensor. Indeed
% %w*‘\\d\v . Similarly, the Lie derivative of 'guv
with respect to n'k' is a sarface tensor, whose components in the sur-
face coordinate systea are -2h .. Thus, it is the surface components §
of *he nmetric tensor whi ch are detrrmined by the fleld equations, and o
we nay write C&VN k\lg) = e %\N k\l 3) , '
Before proceeding with our original problea, of constructing
3 netriec with vanishing G‘W for a manifold X by giving initial data
on an initial hypersuriace 33, it ls necessary to discuss the condi-
tions which the 'gabhnd %}'gab satisfy on any hypersurface cn which
the kticci tensar (and therefare G\,w) vanizhese To do this, let us
evaluate the ccmponents of G projected twice in the noraal direction o
G\W a™ nV , and projected once in the nosmal dirsction and once on
the surface 0 Y ‘:\uv o
For this purpose, we nsed the following expressicn for i,
the curvature scalar:
R g R g 8 R - P Repor i R
= %m\ qg-\l /R‘ WA 2 })\\ “L\\ /Kk\k\\l

:'%K\"\V ) ta\k /\{\L\;\\\l X Z’R\L‘VY\ '\

Leln
B:,X;\K W XA‘%\“‘ »2 R
(:@-12) R-(B " ,,\X.W\L ‘\)\\,\'Xl X +2f\iv~v‘(\ W,
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Jsing Gauss® eqiation (11i-5), we gob .

(19 R = ‘?;\ma"g" '%d +2 Xos ey cg\o“xd £ 2R,
" Tpen we easily find thab

e G = B B Ruged %“’ (Cﬁ

~ and using Gauss' equation again

(ai-1) N ‘\\G N ,,\,&f‘{*\;\“w" ’9‘\: &“)

' Z - LR N
aztdsinco\{’? 220 2hab’ the vanishing o n G‘o\hga as a con-

gequence thal . _ .

(1115 R

for any spacelike hypersurizce in a manifold on which O W vanishes.
e use here the sbbreviation h for ha, the trace of Bype

Similarly, it is easily seen that
> \f\ - N \‘ AM
Bm 0\ Gy\\ /\3) Y\/\l'\l\\\v\
ard by the use of Codazzi's equations (11i-6) this reduces o

(111-16) %\: CT‘,Q\ V “ ‘\va\

Again, for any sarface for which B .\n)‘ G ‘,\)\vaniahos, we mst there=~

n
AN ST :
fore have , _, L o b

.\‘

(44117 Y, bhm - 'V h=0 .

Ye shall refer to equations (111-15) and (111-17) as the constraint




equations on the initial data.

Now we arc ready bo return to owr original problem. Given
a manifold Kh’ we pick a hypersurface %3_ in it, and a vector field ™
Ve choose 8 negatlve defipite metiric 'Kab for the initial mrfacrze
(ncgative because of owr sign comvention, definite, to moke the ini-
tial surface epacelike) together with the first Lie derivatives of the
surface metric % 'g,p » With respeci to the vector lield a™ . Ve
{mpose the condition that n™ 1s to be the timelike unit geodesic nore
mal field to our initial surface after we finish constructing our Vh
out of the X;. The n! field rigs the surface 23 (which we have ale

ready made into a V, by choice of a surface uetric) , so that we now

3 v
know a?; as well as Bk e %e can use the procedure explained above to

normalize C » 8o that n\f"{ r,becomes the unit covariant normals:

n“ n™ = 1 (positive to make the v\"‘ field timelike). Then we deline

" the {ull metric guv on the initial hypersurféce as follows:

(111"18) % ‘k\) = E‘;::\/ : %W\‘\“‘ Y\"&‘\V ';k % WV *V\rs.“v [y

ow we deline the higher Lie derivatives of 'gg, by equaticm (1ii-9)
and its successive Lie derivatives; and u6e (iii?-lﬂ) to deline the
full metric gpv on each sua face we reach by the point tranafomtig;;g
generated by n' : 'q'\= Q‘,‘%g"‘, as discussed ia Seotion II. This faui-
1y of surfaces,of co.rse, will be geodesically parallel, by virtue of
this definition of the metric. It is clear from ocur discussion of the
congtrair:t. equations above, that unless our initial data satiscfies

equati-ns (1ii-15) and (i4i-17), we ccnnot have the components of G,w

“in the normal-noramal and nommal-surface directions vanish,with the

33




| definition of the fall motric given by (.111-18). Thas initial data
gnot be given which eatis{ies the constralnt. equations, Now, if this
data evolves accerding to (11i=9) and 1its Lie darivatives, it is clear
from the identity, | |

2 . AT p
sas)  F 7 ey, = 20y Anghy, = g = Bafey
n

which follows by substituting (1i1i-7) into (iii-h), thal Babxt',y s and
4¢3 s:ccessive lde derivatives migh vanishe Thus, on the initial sure
AJ p\ . "
foce 3‘“, N and n" n GW and B n Y\" all vanighe It is easily seen |
that this implies that Babu also vanishes on the initial surface, v/ :
w
- in aralysis of the contracted Bianchi :!.dentit.ieg; VKG O

(see Appendix I) shoma they can be remrit.tc;n in the follo*ing form.

‘g“ W (Qr (E"‘ W) - 06‘“\ %1 Kq\ggw\\Y\G‘,\\\\’“@‘ SBV‘*
v (G SNMUMESS BLGWBLE,
((‘:\\; v\‘\ \(\‘:&V‘\LY\ N \51(()'}\\; V\“V\) O

(111-20) '

(448~21) -

‘\\0\ %‘\k {“ ((-y) V‘\}\ %‘f\) X (G'}\v%;\y(&lr—xq\{%';\’
- /g)“‘ 9)‘\,“ %L\ -\KYN V\\‘\\‘\A‘\'}\ “\:G‘ ) 0

Thus, if Bmor“ , E;n GN, and ' rY G G, all vanish on the
fnitial hypersrface, the Lie derivatives of the constraint equations
will vanish as well, T7he iterated lie derivatives of these equations
show that if the constraint equaticms hold initially, and the Lie
darivatives éx B v t“’ vanish to all orders, then the Lie derivatives

of the constraint equations will vanish to all orders as walle ’nmc,

St KGN R B GE \w'»fss‘gxﬁg%‘:}d\my o
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e e

the use of (1i-9) and its Lie derivatives with initial data satisfylng
the constraint equations, together with the definition of the metric
(111-18) does yield a Riemann space in which the Riccl tensor, and
therefore Gp,v vanish everywhere.

Several elements of arbitrariness seem to be inherent in

this argument. First of all, if we had used another coordinate s tem

with which to describe the manifold, it is clear that the analytic form.

of the gpw aé funcbions of the new coordinates would be different
from their form &3 functions of the qld coordinates. But & coordinate
transformation would connectjthese forms, so that the sane Riemann
space gould be described by both.

secondly, we could just as well have used the same goordi—
nate system, bab picked a different surface as cur initial surface,
and a different vector field as our geodesic pormal field. Here again,
the analytic form of the result 8 would then be different. But there

will always exist a point transformation carrying the first initial

/’”sﬁrface, and all the surfaces gotten by dragging it along the first

vector field, into the second initial surface and all the surfaces got~
ten by dragging it along the second vector field. If we carry out the
coordinate transformation corresponding ‘o such a point transformation,

then the coordinates of the new surfaces in the new coordinate system

,_ will be the same as tnose of the old surfaces in the old coordinate

gysten. If we place the initial data on corresponding surfaces, then
in this new coordinate system, the metric tensor resulting from our
construction will be the same function of the new coordinates as the

old metric tensor was of the old coordinates. Choosing & new initial

3»




surface and vector field result in f.ha same Riemann space. Stated
another way, since there is no such thing as absolute orientation or
jpherent metric in a manifold, we have done nothing but change the

way in which the metric 4s attached %o points of the manifold. Such

a change does not influence the resulting Riemann space.
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TV, THE CAUCHY PROBLEM - ARBITRARY FIELD

liow that we have seen how to solve the Cauchy problem for &

geodesic normal field, we shall generalize the results to an arbitrary

vector field. This is mob only of formal interest, showing how the
metric tensor lield may be built up using an arbitrary family of sur-
faces, but proves useful in treating other problems, such as the case
where a time-like Killing vector field exisbs (statlonary solution) .
e start again with the wanifold %), an initial hypersurface 13, and

a vector [ield v/ tramsvecting tae jnitial hypersurface. #e row glve

& suriace aetric teasor ‘g ab? which is negative definite, for the ini-

tial hypersurface, togethar with its Lie gerivative with respect to
the vector field v/ , %'g Ly Our provlem is to build up a metric
for the Xh, guch that the resulting Vh will have a vanishing Gl“v »

and will give results on the 1nitial gurface coincid;irig with the given
initial data. As vefors it will prove casier to first imagine gsach a
h given, and work ocut the necessary relationships.

' in this section, we congider the field v to be eantirely
arbitrarye Its relationship with the geodesic normal field passing

through our initial surface must be of the forn

{iv-1) \1|“= ﬁ)“f‘ ¥y 6™ , “"‘6“&: 0
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where n" is, as usual, the geodesic normal fieldjthe v I field at
each point has comronents parallel and normal to the nP' field. Thus
P and O "'may be any scalar field and tensor field respectively, sub-

ject only to 6" being orthogonal to n™ .

S e can reach any arbitrary first Unfinitesimally distant)

neighvoring surface by proceeding a variable distance Pdt along tho
normal direction. Thus P a % takes us to an arbitrary neighboring
gurface; while 6" serves to drag points along the original surface.
Together, they take us from a point on the initiai gurface to any
other point on an arbitrary neighboring surface.

Let us express the Lie derivalive of 'g ab with respect to

| v in terms of its Lie derivatives with respect to n P and 6™
! =R* { = N\ i
% @ B % PR Bat % “8“\? ’“*‘\@ '/Bg\g%%ale
(1v-2) -3 B3
S B Ee
using rule C for lLie derivatives (pe22)+ We need to evaluate both

d‘Q % g‘,\Q and Babi g‘k(3 , which are equivalent to & 'gab and \f Sgabe

'ﬂms, our calculation breaks into two parts. Now we havo

%“‘%;\f 1&%%\% = BN YV«(KY\@ 4\ e((‘\e\)l |

= p &3 (Nergr Fna) %ﬁ\“eh(m*sa@,

(4v=3) %\l%éb - ,1({3\“ )
On the other hand

- (dveh) 3;;"8;\, = E*:g :ﬁ%a\ﬁ ® ,%J;& ‘N*SQJ"‘I@SQ = 'V¥G\ .\" VL Sa ,
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since G on the initial surface 1s a tensor field entirely on that
surfacee

‘e may express results (iv-3) and (iv~}) in words as fol-
lowss The effect‘ of taking the Lie derivative with respect to the
' rcld v” 1s the sum of tmo terms. The first is just P times the ef=
fect of taking the Lie derivative with respect to the rormal field;
the second is the effect of taking the Lie derivative with respect to
an arbitrary surface vector fielde Putting these results back into

(iv-2), and solving for hgy,, we get
\ ’ {
wen  hao® 20 (&g a6y F'TeS)

Yo see from this equation that.\P cannot be zero, which iz clearly the
case, since it it were, tho vt field would mt transvect the initial
' gurface, ard could not take us off the initial surface.

In the last section we showed that there were four equations
shich the 'g,, and by of any hypersurface in a Vj with vanlshing GpV
had to satisfy; the constraint equations (11§-15) and (1i1-17). In
the present case we <an take one of two points of view with respect to
those equations. Either we can regard then as resirictions on the
ff\ 'gab expreased indirectly through (iv-5} or we can regard the i'gab
as being caapletely arbitrary, but the relationship of the ™ tleld
to the n™ field, i.e., the fanctions D and 6N, as determined by the
constraint equations, through substitution of (iv-5) into the con-
straint equations. We can express the situation in this ways the pro-
jections of the Lie derivatives with respect to the v™ field onto the

unit pormal direction must satiafy the constraint equations. Fowever,
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and

4f the Lie derivatives with respect to the vl field are gZiven arbi-
trarily, we may regard our provlem as that of tilting and stretching
the vt field in such a way as to gat the projections to obey the
constraint equations. The resuits of this substitution of (iv-5) into

the corstraint equations are:ls

‘ y : LGl b _ableed)
(17.&"&*@\61_)&‘\?3;\,-\-‘%6\ fV\Sz\(‘\é:‘ &Achﬁa*flg&)(‘g ? ? ‘Q ) - Q)

avn' ) W et bt )] T B CH ¥ 0T 5&\ 20.

Equation {iv-8) can be regarded as an algebraic condition on P o for
which it may be solved, so long as 'R # 0 ; while (iv-7) may be looke(\l

upon as three differential equations for the €me
Geonetrically, this réformlation of the constraint equa-

__tions, has the following significance. The metric of the initial sur-

face is given arbitrarily. Giving the Lie derivative of 'gg, with re=
spect to some vector field vi*is equivalent to giving the infinitesi~
mally different metric on the "firat® neighboring surface which re-
éxxlta from the oﬁ:ginal surface by dragging it infinitesimally along
the v/ field. If the metric of thi.s surface is given arbitrarily, the
constraint equations in the form {iv-6) and (iv-7) expross the neces-
sary relationship between the two surfaces in ordar for them to fit
into & Riemann space in which Opv vanishes. 1f, for example, we de-
mand that the surfaces be geodesically paraliel, then P =1, and
(iv-5) remairs a geometrical condition on the two metrics, while

(1v~7) expresses the fact that we must drag one of the metrics over

i




its surface an jnfinitesimal amount with the surface field 6. until the

petric "Cits" properly, l.0e, until (iv-7) are satisfied. If we do-

mand that the surfaces not only be geodesically parallel bub that the

metrics shall correspond ab

the points on cach surface connected by

the normal field, then 6= 18 also zero, all four equations become geo=

metrical conditions on the two metrics; and we are vack at the view-

point of the last section.

¥heeler has alao exanined this way of

looking at the constraint equations. He has further conjectursd that

it might de possible to extend it from a relationship between neighbor-

ing sarfacess and that given any two posit.ive—definit.a surface motrics,

there will always exist a Rienann space of vanishing G py into which

16
both surfaces may be fitted.

However, the narrower question of whe-

ther (iv=6) and {(4v=7) can always be solved for arbitrary choice of

' 8ab

and § g, still needs further investigation.

Having obtained the conditions which a set of initial data

in an enlarged sense must 83

tisfy, let us calculate the second Lie

' gerivatives of the 'ggy with respect to the vl field. We find that

(1v-8) 33“%:» = Ki‘ b *i ‘2@,\)
= ilmv’ + \52\5'\ ‘k_\\, &'ii (}S“’ +\£ %3\’1

through the use of the rule for 1ie dorivatives with respect to the

sum of two vector fields, Ve mmt. erva]nata t.he tour terns 1n equa-

tion (iv=8).

) . . " . Y ! .‘“ N \
\ . O : " "' \‘
: 1 - ]
!

!
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Thus

% L
(iv=9) %\\C\G:\oc «Zﬂfﬁ\;\, "E&\a\)\%\\(i \"IBQQ“B\,Q
» p‘\ n :

2L
laxt we evaluate % ‘gab:
o s

) ,4 s
(4v-10) % ‘@‘D cjé(“i 36y ¥ 'y €a)

=1t '
LTl sy e .6\‘ ¥ (T & ' Yo Vac™s
z\ ;&\ ugab) yieldss | * UG ‘ka;) ‘VbG"* .
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< e¢m

Finally, ve evaluat.e\& \38\ '8ab’
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Kow, |

B (S Cervias ) =R IR 6) - (Tp¥)) +R%n" Y |
Ut e\kwm < B o e

and

\—%:éb = (%%v %@( = (%Q\XLW \&@ n \‘G\L‘ie‘\ki\
= %eﬂ\\"V\L@Q ¥ /%%“\16\& Yate

" Thu

2 WSy © Roy -2 B &* TN\
- ‘?;G v tL 6Nk«

S — Combining these resultst

o kB~ R U6 FRR) 123 Gy w26 b
% %9(& es v 26

Putting (iv=-7=-12) together, we finally ovtain

(iv-13) %’q‘aa\, = QU&L‘ W -ZQ?\&: —ég *Z&ng( a1
x { 2\ TaCer h6a) ¥ 020 % S »(B\Q\;:gd

2. (g +3v ) -
Sk 0 kR +E .

We see that to find %l'gab, we nood lt'gab, vhich we have
. ¥

of course ovaluated in the previms section for the case when G rv VH
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mshes, and in addition thep and 6™ fields on the initial hypersur=
face as woll as their first Lie derivatives with respect 4o the nt

ﬁeld. Lie difforent.iation of \iv~1h) an arbitrary rumber of times

. ghows that to find the nth Lie derivative of 'gab with raspact t.o the

v"'rield we need the nth derivative with respect to the nt field and
a11 140 dorivatives otp and 6" fi.elda up tho nth with rospect to' ﬂfo
nt"field. But., clearly, giving the f and G rie]da t.hroughout all
space is eqaivalent to giving t.hem on tha initi.al surface, t.ogether
with all their Lie derivatives with respect tao the n"‘held; 80 w6
have just the dcgree of arbltrariness in t.nis procedure conaia‘oent
with really chooan.n,3 the JO and 6" x‘ields i'reely throughout all space.
If we know all the Ilc derivatives of the initial surface

" metric with respect to the geodesic normal field, as well as P and € v

throughout the nanifold, we can find all the Lie derivatives of the
1nitial surfaco metric with reapect to W Geometri.cally, t.h:.s means

we can find the surface metric on an arbltrary family or surfaces

v(generatad by the np‘field); wit.h the mrfaco metric draggod arbitra—

rily over the surfaces (gemrawd by theﬁ"field). The net.ri.c of t.h.

RE P 3 '{;,\,

Vh is rehted t.o this aurface met.r:lc byx
(iv=ll) ng?‘-‘”’ = Bw'g - u*‘n »

where it is the unit nomal of the hypersurface. Only in t.h. case of

the geodaaic normal field uill the dragging field and the normal ﬁeld

"

coincide evarywhare; and it :ls t.hia circumstanco t!nt sinpliﬁ.ea thc

geodesic normal case 80 moh. In every ot.her case, t.ha N’L ﬁeld and

‘\%
»

the n ' field will only coincide 62 tho initial surface. The uPrie1d
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at other points is found by drageirg the surface normal field along

the vV field, 1.ee)
(av-1 N U\s\ Q,)% V{’W\Q *% I\ \\Lﬂ

Since, from equation (iv-1) we know that nl",, I/Q (v"-é") , We see

that knowledge of the Lie derivatives of o™ with respect to v" is

equivalent to knowledge of the Lie derivatives of Q and 6T with respect

to v~. But, given the Lie derivatives of p and €™ with respect to
a™, we can compute their Lie derivatives with respect to .

Once we know the N\L field, we can break ®p the vI" fierd

into components parallel and perpendicular to Nr':

ara  vh NSt Npst=0 .

Fron the last paragraph, 14t follows that

(v-11) X U\q) Q,'c% (’W\'ﬂ S*{}Q "Gﬂ\(:«)

Alternatively, W v we could have sbtarted out by giving T r: and sp‘

on the initial hypersurtace, and specified their derivatives of all

orders with respect to v” . This would enable us to compube the "
field directly from (iv-16)» This approach would parallel Dirac's me=~
thod, as we shall indicate la ter.

As in the last sectlon, we have arrived at a geries of re~
sults which can be expressed in terms of a bare manifold, an ;rbi.trary
initial hypersurface of the Xh, and initid data on this initial hyper<

surface. 7Thus, we are able to reverse our steps,and construct & Rie~

mann space which satisfies the empty~space field equations. In this
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case, four arbitrary fuanctions, P and§T, enter our deseripticn. They

describe the orientation of the arbitrary vector field at each point

with respect to the geddesic nermal vector [ield passing through the

jnitial hypersurfacee. In buildirg our Riemann space, this means thab

wo construct the petrie on an arbitrary family of hypersurfaces, in-

sbead of

the unique geo_desically parallel family of hypersurfacos,

containing the initial hypersurfaces The geodesic normal field might

be described as acting like a ncompass” to give us & fixed direction

at each voint of the rani folde () and §M describe how our fanily of

surfaces
is clear,

then get

sarfaces

tional ar

1s oriented at each point with respect to this direction. I%
however, that we could solve equations (iv-13) for{'gab, and

the weiric on the geodesically parallel fanily of hypersur-

~ faces. The Hiesann space is tha same in elther case} the element of

——srbitrariness irtroduced by p and §™1s Just that of T family of

on which the metric 1s constructed. ‘7e  still have the addi=-

bitrary elements of choice of coordinates systam, initial hy-

persarface and vector field discussed in Section III, of course.

By adopting a special coordiatie systém, we can compare our

~csults with those of Dirac.n Let us use the three coordinates of

the initial hypersurface tx® as three of e coordinates of the X),

agreeing

to label the corresponding points on all the hypersurfaces

resulting from the initial hypersurface by dragging 1% along the v g

field with the same values of 'x*. for our fourth coordinate, we shall

take t the paramoter of the family of point transfornations generated

by V"\‘

(iv-18) -

In this coordinate gy stems

PO S R R

ué

ek e i -



4t is clear that Wi %\: , and B: 2 8% . The following results

are then easily proved:

avas) N : &“&0\"\‘1 ’ V z (“é)o)'\u & P “’*ﬁﬂ“a

'8, = B 3 g & agm 4 (g%0)-1gomon o

From the definition of ¥ and ™, equation (iv=1), it then
follows that in this coordinate system (}‘-_ \‘Qoo)-\lt. The contravariat
components of 8 in the surface coordinateasystem are S* & —°§°‘°‘°‘“ .
Thus, T and s® correspond to the four arbitrary functions not restric-
ted by the equations of motion in Dirac's formalism, in which these
| funcf.iéns are represented by (£°% -z and -g " gab (which are equival-
ént to the gav)e Thelr geometrical significance is now clear. Dirac's
general expression for the total time (x°) derivative of any dynamical

variable not involving the gav corraespords to the equation

N e AL AN

whiéh holds for any function of the ‘g.y and ha ,18

If the v field is taken eqx_zal to the n! field, i.e.,(, set
equal to one and § "z 0, then *\'f~ =\‘\*.Q‘Y ,i¢"=0and the above coordinate
system reduces to geodesic pormal coordinates. No information is lost
ﬂ_p}_zeﬂréby, of course, since we can still construct the Riemann space via

geodesically parallel hypersurfaces.

u?




V. THi CAUCHY PRCBLEM IN THE IKTER IOR REGICH

So far, we have considered only tho case of regions in which
the ticcl tensor Rp.v vanishes. Physically, they represent those TOo-
glons where no matier (including in this term, as usual, all non=gra-
vitational {ields present) is to be found, only the pure gravitational
rield. This region is often called the exterior rcgion, on the assump-
tion that the gravitational field here ig generated by non-gravitation-

.al sowces in some other region or regions. Of course, everywhere
_noh—singular, and therefore presumably sowrce-{ree sclutions of the
 empty-space £ield equaticns are chrxmrm;l9 and even with the iumposition
‘of dinkowskizn boundary conditions on the gravitational field at in-
rinity it hap not been proven thab non=stationary solutions of this
type do not exist.m So the problem of everywhere regular solutions

of the empty-space {ield oecuations is neither an unimportant nor a
fully resolved one. 411l that can be said, on the basis of work done
on the local extorior Cauchy problem, is that mfﬁcimtly regular
{nitial data will evolve for some finite time without the davelopment

of such singularities.

S lowever, another set of problems of great interest arises in

connection with the evolution of systems which do have matter sources.
In these regions, due to the prescnce of the sources, the Riccl tensor

doos not vanish. More specifically, to each point in such regions

L8



there are attached a certain mumber of dynamical variadles, such as

densities, pressures, velocity f{iclds (in the case of a fluid), charge
and current densitiss and the electromagnetic field tensor. These dy=
- namical variables, usually tensars themselves; will cbey some set of
covar lant field equations, such as the hydrodynamical equations or
Haxwell's ‘equtions; usually involving the metric tensor explicitlye.
In addition,a stress-cnergy tensor is constructed from these dynamice
gl variables and the metrile tensor. Coupsling between the metric, as |
the expression of the gravitational ficld,and the dynamical variables |
is then established by the Einstein field squaticns, which set G pv
equal to a gravitational coupling constand {(which we pick to bel for
\sriwnpl‘icity) times the stress energy tensor. There thus arises a set
of coupled eqations, the dynanical field equations and the gravita-
tional field equations. Solving this set means finding some sst of
aetrical and dynamical variables which together satisfy the equationa.
Ogviously, different choices of the dynamical fields to be
| considered lead to rather different problems. Some work has been done
on the Cmachy problem for the hydrodynamical, electromagnetic, etC., |
casas.zl However, we shall confine ourselves to that part of the geﬁ—
eral problem arising fram the Linstein fie]d' equations. That is, we
ghall assume that a certain set of dynamical variables has given rise
%o a stress tensor, and shall thon investigate the modifications in
our previous wrk that arise from the fact that Opv now no longer
vanishes but mist bo set equal to T r:d . Ye only consider the case of
the geodesic normal field, since ail the essential points are thereby

. btrought oute Generalization to the case of the arbitrary field is




straightforward.

first of all, let us examine the form baken bty the constraln
equations on the initial hypersurface. Equationa (111-1)) and (111-}6)’
give us expressions for Gy o n' and 0y Bw Mn’ respectively, that |
are correct independen‘bly of any fleld equabions; therefore, in this
case, all we need & is to set these expressions equal to the corres-
pondim projections of 'Spv in order to get the form of the constraint

equationss

(v-1} J’K R-\—&\;‘o&\a\o _}\2> TT"VY\ “ >

and

(v-2) \ﬂ'\o }:\ ,\V“\ }\c TVN Y\V-’%V;\ )

~ fundamental dynamical variables, which would load ue to contract P\['\\j

It shoald be noted that, on tho right-hand side, we nay raise or lower
the v and m'as needed to contractT\,.v in the most convenient way,
since we know nw and Bf" For ecxémple, 4n the cass of the so-called
1ncohorent natter stress tensory ()\l \" , o may choose to regard the

coritravariant ccaponents of the velocity field and the densily as our

with nuny e Should the metric tensor of \ , ocour explicitly on the
right. in Try , even with our choice of fundamental dynamical variables,
we use the fact that QG.W ‘hm Mvto eliminate it from the constraint
equaticnsa

Thess eq: ations may be interpreted physically as followas
Suﬁpose a fanily of observera situated on test particles to start out

from each point of our initial hypersurface, with velocity veotor




given by n . Then Ty 0" n’ is the lc;cal density of matter-energy
which each sich observer woald £ind in his local 4 nstantaneous threo-
space. Equation (v-1) then states that the local demsity of natier=
energy, as defined by these obssrvers, wist equal the geometrically
piven quantity on the left-hand side. Tpv a” 8%, for sach observ-
ers, is the romentua density, 80 that (7—2) states that the momentum
density is given by the divergence on the o ft. If the observers
| were Yo be connected together, say by a network of ropes, the intrin-
sic and extrinsic geaaetry of this rope netmork would be given By 'Zap
ard h ab respectively. Since test particles move along geodesics, and
since the n' field's trajectories are geodesics, the observers will
contimse to wove, with a™ aa their velocity vector. The rope net~
work will then move in such a way as to trace cut the family of hyper-
gurfaces generated from ocur initial hypersurface by the n* rield;
ﬂheir intrinsic and extrinsic geomclry will be given by the geonmotry
of the hypersarfaces, and (to anticipaté) since the constraint equa-
tions must hold on each hypersurface, the varying matter-energy and
momentum densitlies encountered by the observers are correlated with
the changing extrinsic and intrinsic geometry of the rope network By
(v=1) and (v-2).
Assume that we have a first and second fundamental form and
a set of initial values for the dynamical variables which satisfy the
constraint equaticns, amd 16t us examine the evolution of the matrice
Equations (11i-h) and (111-7) , v ich hold in an arbitrary Riemamn
space, allow us to express the second Lie derivative of the surface

mtﬁc with respect to a!* as followss
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Yow, as is well knomn, the fleld equations G uv = 'i‘ py are equivalent

4o the set Rpv = Ty = tgp T s whare T is the trace of the stress

gonsor. LS 1n the oresence of natter, we have
(-1 %f‘czs EPARCS wﬂ\; k ~S -V W\m L}) )’X

o Bt S Q&ﬁ*@ e i\}m\\‘ it ) g
BTz M 4 et g

Bub (v=1) expresses n* ot T"e in terss of '@y, 20d Bapl and when we

substitute this into (v=5), and the result into the last term of (v-u),

e {inally gets

(v=6) iz“h\o 2{&\9 "2 Wa y\w A\ *J?:Sh“‘QRW\“\w'%S’
"B;»T‘m '—Z é\”qh B e\Q’x o

Thus, we see that it is the mrrace-surface ccmponents of the stress
tengor (which our observers would see as the threo-dimensioml stress
tonsor) Bﬁr ‘M*, shich drive the evoluticn of tha metric, as far as the
\’1nf1uence of the matter dynamical variables is concerned. Clearly, if
wo know the successive Lie derivatives of these componenta, we can
contirme computing the higher Lie dorivatives of the 'ggpe HoW far
those lie derivatives of B’NT‘N are freely spccifiable, and how far
they are already determined by data already given will, of course,
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depend on the field equations for the dynamnical varisbles (a problem
weo are rob considering), as well as on their relation to the Finstein
field equationse Thus we can say IO more about this question without
referring o specific cxanples.

| Hosever, there is one question that can be still discussed
in general, namely, the avolution of the constraind equations. For
shatever the rature of the dynanical field equatiocns nay be, we know
that they demand the vanishing of the divergence of the strese tensor}
which is also & consistency condition for the existence of solutions

4o the Einsveln £icld equations alone. «e can show (8ee Appendix II)

that as a con;aquenca of V \LT\K':O » that
(v=7) ‘“&‘\‘\‘ U Lo T\ - \‘g.\g %\% %\k\u{(g rl'/\,»)) ‘\\B}L’W\g\){
PR (S < 'S | —
| - c\g 9\\44\\/_(% P}\’ \V‘\A‘\\“{X X &\ ‘:%‘:\g((‘f‘w - \‘»5&‘\‘
PG TN = 0.

Thus, if the conatrait equations hold initially, and the surface~
surface ccmponents of the field equatlons hold initially (ie€ey

\J
B&G = Bn‘g'r WV }, then the lie derivative of the constraint eqaat;on
(7}-1) %111 vanish as a consequence of the vanishing divergencs of the
gtress tensor. A similar result holds for (v-2)« Eeiteration of this
procedure ahcas us that if the constraint equations hold initially,

n

and B, (O - T‘W) vanishes together with all ite lde derivatives;
then the constraiat equations will hold everywhere off e initial

surfacee
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As a very sii'nple exanple of this procedure, we ghall take
the case of incoherent matier. As indicated earlier, here the stiress
tensor is of the form TP (3\1"‘\[“ . As relations restricting our dy-
namical variables ‘ie' have the requirement that vr,,v"‘= 1, and the equa-
tion of continuity; as well as the inequality {37/0 . Homever, the '
equation of continuity follows from the consistency condition for the
Finstein field equations that the divergence of the stress taiaor van-
ish. It is thus not an irdependent field equation. This leads us to
suspect that everything may be determined by the gravitational field
equaticns alone in thi's case, as indeed we shall see to0 be the case.
Instead of using the four v P as cur dynamical variables, we shall
£ind it convenient to decompose v into its surface and rormal coa-

ponentss |
(v8) ve=antab™ b =0

We shall use the surface components of b’k » bl'l = Bﬁb'\' (or their
covariant components hm) , as well as 3, and P as our c_iynmical vari-
ables. From the condition thab vM™ e of unit length, it follows that

e a2 4% 1.

Consequently, if 'gm and b® are known, a can be found, Similarly, by
taking the Lie derivative of (v-$), it is easily seen that if ‘g, »

h

4p and ?;: Y™ are known, {;\ a 1is known} Therefore, 3 is not a




fundsmental dynanical variable and may be eliminated from the follow=
2 X
ing equationse Ty ™ n’ is easily seen to equalp a, vhile

NEN .
T pv B B equals P ab_. The constraird equations then becone

. T\
@ -5 (R Yan 10— 30 ) = Qi\z
w1 Velw- \Q“s\ = Qa\o ~

Suppose that we have found a set of *g s Ny P s b, and 8, which
satisfy (v-10) and (v-ll) , as well as the algebralc criteria demanded
by (v-9) and the fact thate mist be positive. f"v Bnm is easily seen
to equal? b b, while T equals f « ‘Tthus,

(v-12) i \(K'\'b 2 Rap r 2k N Q\N\’b vyt ‘k,x\; ?3

The lLie darivativo of the surface-surface componant of T v is

e R TWBRR= ook p b nRbwx o lon

. But, as we have geen, the Lie derivatives of the constraint equations
are zaro if the constraint equations hold, as well as the surfaco-
mxrf;ca conponerita of the Einst_ein field equations. Thas the Lioe de=
 rivatives of T a™n' and Ty n"BY are inown functions of the
variablas already supposedly known. They are equal to the Lie deriva-
tives of the normal-normal and normal-surface components of G,\,\I »
which involve no higher than the kmm aecond Lie derivatives of the
surface metric. On the other hand, they involve jJust the four Lie de=-
rivatives we need in order to campute the Lie derivative of B"' Tw 3

mme]y,“f::g s and \'& b, (as well as ?‘\\ 3, which, however, can be
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eliminated as we have seen). Thus, in the case of an incoherent fluid,

N
the Lie derivative of BT is deternined by the initial data al-

ready given.
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Vi. THE TETRAD APPROACH TO THE CAUCHY PROBLEMN

1t is well known that the theory of Riemannian geomelry and

the general theory of relativity can be formulated in terns of tetrads,

and the rotation coefficients. The Cauchy problea has also been dis~
cngsed from this point of v‘.i,mew.22 e shall use Lie derivatives and &
specially chosen tetrad to show that the Cauchy problem in the tetrad
formalima may be given & simple geometrical {nterpretation.

_ A tetrad is a seb of four linearly independent vectors de~
fired at each point of the space, tangent to four congruences of
carves ard usually chosen to be orthonornals The matric can be ex-
pressed in any coordinate gystem in terms of the componentis of the
tetrad vectors in that system. If we daesignate the tetrad voctors,
which we shall always take to be orthonornal, b7 Q,"‘, where the index

under the kernel symbol e serves o 1abel the four tetrad veciors,

~ then

(vi-1) % M[ = 6 6 A "

with a siailar expression for ¥ £ nvolving contravariant components
of the %w. Ary tensorial quantity can be projected onto the tetrad
voctors by contract.ing each of iis 1ndicea with the indices of one of
the Letrad vectors. 7Thus a seb of scalars arisos, eqal in mmber'to

the muiber of components of the tenscr. Among physicists it has

O




pecome customary to refer to these scalars as the physical components
of the tensér #ith respect to that tetrad system. In particular, the
covariant derivatives of the tetrad vectors may be projected onto the
totrad, giving rise to the rotation coefficients, which play a some—
what analegous role to that pla,yc.d by the Christoffel symbols in the

petric formulation of Riemannian geounebrys:

o N = (a2 ¢ €

The coefficients {which, it should be emphasized, are scalars) are
“‘é}'xtisymmotric in the first two indlces since eaQ e(‘ =8 w. The prop=
¢rtics of the rotation eoafriciéat.s reflect bot.h the properties of the
particular congruences of curves to which the tetrad vectors are tan-
gont, ard these of the particular fiemann space in wich the curves
1ie, With & special cholce of the congruences, certain of the coeffi-
clents can be made to vanish or to take on additional symmeiry proper=
ties, The remaining rotaticn coef ficients will ﬁhen better reflect
the underlying properties of the space; acd if we have mb imposed any
properties on the congraences of curves wnich caanot be fulfilled by
gome Congruence or congruences in an arbitrarj Riemann spacea, o gen
erality will have been loste A€ shall take advantage of this poséibi-
1ity in our ireatment of the Cauchy problem.

Je shall need the expression for the physical components of

the Liccl tensor for our worke This'is convenierntly caléulated from

the formula for revaraing the arder of covariant differenﬁat.ion of &

voctor 3'23

) ) |
(vi=3) V},ﬂy% ’VVV"\Q\L ’\Ktw )\e,e o

w

s8
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Contracting W and )\ » WO geb

(il Rve %f %V Q WAL Q A AN “)

expressing the various terms in this expresslon in torms of the rot.a-'

yion coefricients, We finally geb an upres.,ion i‘or the physical coa-
ponents of the: ficel tensor {nvolving only tbe robation coefficients

and their ordinary derivatives projected onto the various tetrad vec—

— torst (br\h \,_Lﬂ va‘ . These latter are somebimes referred to as in-

- A
trinsic derivatives;z wt since the rotation coefficients are gcalars,
these are the Lie derivatives of the rctation coefficlents with re- .

spect t.o the telrad vechors. We may £inally write:
v
(vi S)%\x( Q »Z‘%\\gm i}\\(“-“' '\'i- &\(M\(\N\ Xu*\{k\«)

(tiove the formal similarity % Lhe expression for the Ricei tensor in

torus of the Christeffel symbolse) N ‘
Yow we are ready to look at the Canchy pr\éble:,nu in terhs of

‘ the rotation coefficients. e _shall restrict ourselves again to the

P gsodesic normal case, wrich allows important simplifications; and

ghall again first work in a given Hiemam space where the empty space

field equations holde tie pick an initial spacelike hypersurface in

\
|
|
%
i
!
i
: _ -
the space, and choose an orthonormal triad tangent to three orthogonal ;
congruences of curves in the three-spaces As the fourth vectoar of our t
i

!

tetrad, we pick.the unit normal to our hypersurface, and continue this x
' i

field by usirg the geodesic congruence normal to our hypersurface. Up i
to now we have called the anit tangent to this congruence anh Jsout in %
3

this se€tion we shall denote it vy e'“' uince 4% is one of our tet.rad




2 .

vectorse

Wwe continue our other thres triad vectors off the initial

hyper surface by parallel-transport along the e M fielde We now have a

getrad field everywhere in our space. Let us examine the rotation co~ -

efficientss It is rcadily shown that the\{omare gero and that the
% b = \60\,3 as a result of the fact that g"' is a geodesic normal

" [icld; and that the Y abo= O as a result of the parallel propagation
of the (:J:L .25 Thus, of the 2k possible rotation coefficients, only 15
are left, the n.’ma\(a\,c , ard the six\‘oa‘o (six because of the sym~-
metry in the last two indices that parallel propagation induces) «

The spacelike triad of cur tetrad forms a complete triad for
the hypersurface when the triad components are taken in the hypersur=
facé coordinate system. Ve denote these componenis vy Sb‘ We can
then compute the hypersurface rotation coefficients "Yabc 5 bub since

the covariant derivative of a vector in the hypersarface, when pro=

jected into the hypersurface, equals the hypersur{ace covariant deri-

____xative of the vector, the " abe will equal the \‘ahc' o Thus, given

the hypgrsurface metric 'gab and .an orthonormal triad onthe hypersur-
face which enable us to compute the hypersurface rotation coefficients,
we know all the rotation c.:‘o?gficients \‘3\% . Al\t_ggnatively , we might
try to give an orthonormal triad on the hypersurface and the LYQ\;C_

directly, together with a set of integrability conditions on them

which assured their derivation from a sarface metric; but we shall not
o '

purgue this possibility further. Y
Now we shall examine equation (vi=8) more closely. The

physical components of the Ricci tensor break up inte the six
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surface-mnrf sce projections when K and \I\ are given the valuea k and
1; the throe gurface-nornal projections shen K=0 and N=1 ; and the
one rormal-noraal component when k=N=0, vdrg the facts that
Xu_)\” e )’\(A\a ¢ Y and Yows™Q since 5"‘19 a tangent to a geo-
desic congrience, we can show that

| | ~ R
w1 R0 = - ENIL + R G 4 Z e

R Z\w_\ Nowr

while

(vi= /R\:(QQ Q« it%—\\&w\ '\&\&0“‘“\3 *Z&\()cm\\ vm Qn\\{ha}

and ‘ .
s R Qﬁcqc,gﬂ‘%ym «;\*m\(m_ R

'P\m E 2 &" arc the physical components of the hypersurface Ricel ten-
gor, Wb :.ch we shall s'ymbolize by 'R(kl)' In general, indices 1n par-
ent.heses will be used for hypersurface physical componmta.

Tt is easily shown that the physical components of the sec=
ond fundamental form on the surface, h (K1) are just the negative of
the \60\4_ e For

b
@ hw het' T - REMLALCY
P _,_QG (Vo &) = ok -

lote again that ﬁg\,_\ \‘o\k because of the g@desic normal character

i

of the c’“’ fielde Thus, we can rewrite eqnat.ion (vi-6) as

8 Y Loy




(vi-6") RVQ % \éa\d + 'P\&\«\) ‘M)\Q\A) b

remenbering that \ﬂb«fo if we parallel propagate the e“‘ along the
of* field, and thatl\fl: hyyyy™ Be Thas, the vanishing of .the surface~
:urface physical components of the Ricci tensor enables us to compute
" the Lie derivatives with respect to gP’ of the Xt‘“ from their values
on the initial hypersurface together with the metric of the hypersure.

face and the hypersurface triads

(vi=10) %\6 o (\{(\\\} 9\ 9\ W)

Equaticn (vi=7) represents the set of three constraint_equations on
the initial data analogous to equation (111-16). The vanishing of the

surface-normal components of the Ricci tensor requires tha

(vi-11) "Z %L\ 9\ o) * ;;& & ‘\'% k" k\x\)\(}“\sa Al y\(;“\)\'ﬁ\ma) = O,

The fourth constraint equation can be obtained from (vi~6') and
(vi-8) bty sumairg the former over k = 1, and equating the resulting
expression for 2\%\‘ ki #ith that from the latter equation (this is

equivalent to finding the normal-normal component of G‘,.V) » givings

(vi-12) '? - N\Z +?; 'y\g‘) y\&%\ﬂ = D .

: b
Tote that z 'R( am) = 'R, and that the last term equals habha » Since

~thisis a scalar equation with respect to the hyperaurface metric, it
s clear that it must take the same form in the tetrad formnalism as
in our previous' worke

How let us compube the physical components of the ALia

62
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é3

. - : n~ ) :
derivatives of the g vectors with respect to e; 3 :

_ ' <
(vi-13) Q{P\ é% = e{\\ eg V\g %\\,\ Y 6}:"\ S\‘KVV\QQ\;

T Nedo FNomN -

1¢ \= 0, this gives sero, because of the symaetry properties of the

rotation coefficients. If <1 , we got

(vi-1h) Q\;\% Q;\Y\: \< "\\.o ’\’\(le = \{Q "\1_)

— ‘since tbe\( «l o are zero for parallely propagated g F’. The surface
physieal components of the Lie derivatives of the triad vectors with
respect to ¢ P are tims the negative of the physical camponents of the

sccond fundamental forme ¥ow,
(vi-15) C’iﬁ\,‘ Q_\)%Qbie,@ - é)\f\e«b 3

S R G S
g0 that we may perform the calculaticn entirely with hypersuriace
quantities. Tmus, for parallel propagation of iho triad axes with re-
spect to the € N f1eld, the Totation coefficients el (or the h(gy))

tell us how the iriad axes change their orientation relative to the

" original, arbitrarily chosen, triad directions on the initial hyper-

i
surfacg.
| Yow we can roverse our analysis, as in Section III., Suppose
we are given a manilold Xh, together with an initial hypersurfa(_:ogy
and a tranavecting vector field g which ig to be our geodeaic normal
4 ficld. ¥e give a hypersurface metric 'gab, and a triad of orthonormal

[« .
vectors gb at cach point of :(3. This enables us to compute the'\‘ab,& »




B

e

shich will equal the \6&& « ¥%e also give the Xoa\a (or the physi~
cal comoonents of the second fundamental fora), these data being cho-
gen in such 3 way as to satisfy the constraint equations (vi-ll) and
(vi-12). YNow we caspate the Lie derivatives of the \‘m\o from ecuation
(vi-10); and the physical couponents of tho Lie derivatives of the
triad voctors from (vi-1i) and (vi-15). If we drag along the hypere
gurface coordinate system of the initial hypersurface to the family of
hypersurfaces generatsd by tho 8 > field, we can then compute the triad
yoctors on these hypersurfaces, and construct the metric for each hy-
persurface,from the triaﬁ_vectors and the hypersurface equivalent of

(vi-l)e Thus the N%\b are known everywhere, and we sot \‘g\, & "‘;\&.

, mo\(oa\o are known, since iheir Lie derivatives with respect to gf'\'

can be computed to all crders by siuccessive diffcreantiation of equa=
tion {vi-17). If the other rotation coefficients are set eqal to
%60, the Riemann space is entirely detgrm‘lned; and in such a way thad
Ry vanlshes everywhere. The triad vectors ®ill then be seen to be
parallely propagated along the gf“nem with respect to the metric of
this Riemann space. Thus, the Cauchy problem has bocn solved in the
tetrad formslism, It should be noted that the use of barallel propa=
gated triad axes served only to simplify the calculations, but was not
essentlial,




vII. LAGRANGIAN AND NAMILTONIAR FORMULATIONS OF THE PROBLEU

Up to now we have given a formzlation of the Cauchy problem
in tho general theory of relativity which might be called "Hewtonian,"
in the sense that we have actually computed the second lLie derivatives
of the app.ropriate f£ield variabtles = the naocelerations" — directly
from their definitions. Like ordinary mechanics or a Lorentz covari-

ant tiéld theory, general rclativity may also be given 8 Lagrangian

and a Hamiltonian formlation. Of course, the usaal Lagrangian form~

lation dates back to the sarlisst days of the t.heory;26 but in this
for.a the %\,u are the basic field varishbles, with the well-known result
t.bat the field equations ars not of Cauchy-Kowalewski t.ype.27 But, as
we have seen, the choice of the 'guv (or the 'g,, in the hypersurface
ooordinéte system) as field variables, although assoclated with a par-
ticular breakup of the manifold into a family of hypersurfaces, does
cnable the Cauchy problem to be uniquely formulated and solved symbol=
_ically by a covariant iterative process. What we intend to do 1s to
aho- how a Lagrangian and Hamiltonian formmlation of this proeadnre
¢an be set up. ¥e shall restrict curselves to the cagse of a geodesic
normal field.

To do this, we start from the usual variational principle

for deriving the fieid equaticnas




(vii-1) . % f (_‘@tlt"\{ A‘W =0 ,

where the variation in the integral is to be induced by arbitrary va-

riations Sg‘&, in the g‘k\, , and the variation of the integral is to
" vamigh over any arbitrary volumae. Somewhat more explicitly, we may
formilate the procedurs as follons. Ve start with a four-dinensional
panifold, which we braak up into volise" elements arbitrarily (me put
quotes around the word volums to indicate that all we mean here are
{nfinitesimal regions of the manifold — no volumo being defined until
a metric is impogsed on the marifold) e Then we impose a metric on the
manifold, and compute the volume with respeci to this metric of the
uyolupe® elements, as well as thé value of Riwithin each volume ele-
ment, and perforn the integrations As i3 well known, in any given co-
ordinate system, the volume clameat dV formed by the coordinate sur-
faces will be given by (-g)éahx. Then we lock for that class of met~
rics we can impgse on the manifold which has the property that the in-
tegrand of (vii-~l) 1is -a,n extremiz, with respect to sanall changes of
the metric. WHaturally, the result of this process is independent of
both the breakup of the manifold inte nryolume® elemonts we choose, a8
well as the coordinate system in which we carry out the cal culation,
sirce the integrand is an i.mariant.

In particular, we may braak up our manifold by means of a
fanily of hypersurfaces genarabed froa ore initial hypersurface by
means of a transvecting vector field 'L » in the usual waye Now sup=
pose we givc the hypersurface metric 'g ab® °F the equivalent contra—

variant coavonents 'gab

-~

on each hypersurface. If we plck the V' rield
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as the geodesic normal field to the family of hypersurfaces, as we

have seen to be always possible, then the contravariant metric for the

full manifold is given by
| Y \;
(vi1-2) OSN - LX»: PN N B‘:« '\a RN

we notice that, if we do not change the coordinate systems on the mani-
fold or on the hypersurfaces, variations of the six ,gmn and of the

four n? will produce variations in the g w given by
' N
- Sl = RIS VIR R

Thus we have a set of ten variables 'gm and n ™ whose variations are
| all independent of each other, and which may therefore be used instead
of the g V¥ 4n applying cur variational principle (vii-l). The varia-
tions of the 'gm produce different surface metrics on our fanily of
hypersurfaces; while the variation of the‘ b change the family of
hypersurfaces into which the space is broken upe SI\P itself may be
broken up into. normal and surface components with respecf. to the ori-

einal n' field:
(vid-b) NN A+ BLET, npghE0 .

We can easily see the result of using these variables in the
variational principle (vii~l). If we choose the g Y as our fundament-

al variables, the result of variation of (vii-l) can be written
- W MWN -
(vii-5) j("‘x) G'V.VSCK 9}\@* =0 .

y ;
If we substitute in equation (vii-3) for S‘g » keeping in mind the value

67
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(wvit=l) for nP, we get finally:

(vﬁ.aj HTRNGL S+ 2(G ) r2(GuW B0,

and since the S' N and@ are ten independent variationa, we see

~~~-~Ehat this form of the variational principle results in field equations

i

of the forms
e _ N
(vit-7) rB‘::a\ Q’\NCO 5 Gw“\v\“i\I -C , Gv\v‘\“\%«\‘ Q

as wo might have expected. The variations of the 'gm, which are asso-
clated with varying hypersurface motric give rise %o the field equa-
tions taking vs from hypersurface t.o hypersurface, -ahile t.he variations
with respceld to the fanily of hypersurfaces give rise to the constraint
equationse The latter ensure that a set of data which make the sur-
face-surface components of GVN vanish for a particular family of hy-
persurfaces will &lso wmake them varish for any other set.

Actually all of our resulte so far will hold true for any‘
faxily of surfaces, if n W represents their unit normal field, geo-
desic or nots, It is only mow, when we express the variational prin-
ciples in teras of Lie derivatives thal owr restriction to a geodesic
normal field bescomes important. To do this we need to express R in
terns of the Lie derivatives of 'g,, with respect to n /. Equation
(111-13) gives us |

o R R b -R "2??” “NQ’

contracting equat.ioh (iii-l) with 'gab gives

w9890 2 20" hae 2R
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sx;iastituting this value of R W a™n! into (vii-8) gives
_ g %y ‘R 4 W .
mi-10) R =-'Q é P R 3&\;} X' -XN
Thus we may write our variational principle as
CTEDIRY Sﬁ”b\h‘k’(‘@b %Q“‘@\o RN -X0) $v=0

hab is to be regarded as shorthand for -35 ﬁ 3 ab in this expression.
If we adopt that particular coordinate system for the whole
ranifold consistiﬁg of the 'x® of the initial hypersurface as dragged
to each succeeding hypersurfice by the n M field,and 1,the parargter
"J:_;belli_ng thev hypersurfaces {a ccordinate system that we used once be-
.l‘ore in Section I'V)then (-2);’" dhﬁc = (—-'g)% d3 'x dt. If we set '
L= j{dg')\ =J(_‘KYILP2;\°§H %ab ¥ R 30 9\2’-\’ _D\":)AZIX ,
- then our variaticnal integral is of the form L dt; and it turns out
that the Lie derivative in this expression can be treated very mmch
like an ordinary total derivative in handling the variation.k In pare
ticular, a total Lie derivative may be added to the integrand without
altering the field equations resulting from variation of the integral.
‘The field equations will be of 'c-tmi usaal form %ﬁ:; (33(% ;\) +... -.-.0 ,
with %'%;\playing the role of velocities, the number of terus of
course depending on the arder of the highest Lie derivative appearing
in the integrand. This can be seen from the fact that in the particue
lar coordinate system we have adopted above, the Lie derivative with
respect to n’b reduces to the ordinary derivative with respect to 3
(as is easily seen from rules for Lie derivation of tensors given at

the end of Section II), and that S and ? ~commute for variation of

i
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the "Ep°

In particular, for cur variational intesral, a total lie
derivative can be sabtracted which will remove the term containing the
gecond lie derivatives. To find this term, we need the Ide derivative

of (-'%)‘/l which is found by the mothod of Appendix I to be given by

PP

Then it is easily shown that

w2 [ = %[&‘ N ‘yb% “Qa,\;l e P REX- R W’) ,

Wo arc thus able to adopt the new lLagrangian density

[P SRRl (S o W ) I

- ]
The field émations will then result from variation of[i d3'x dt 3 but
since our result is independent of coordinate system if we replace
v 1
(-'g)% d3‘x at by (~-g) zd"x, the field equations must result from vari-

ation of

e (R - he KT 4

A first order Lagrangian for the general theory of relativity
in terms of the first and second fundamental forms of an arbitrary fam-
ily of hypersurfaces and the normal field to that family has been given
ﬁy Arnowitt, Deser and kisner.za They actually write the Lsgrangian in
terms of the mta canonically conjugate to the hypersurface metric;
but, essentially, their Lagrangian reduces to equation (vii-lh) (in a
apedal coordinate system) for the case of a geodesically parallel

e et e L S e
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gamily of hypersurfaces. In their formalisa the four constraint equa-

t1ons rosult frm;i;é?i&tiaﬁ;bf the full Lagrangian with respect to the

gour arbitrary functions (equivalent to Dirac's four) which we dis~
cussed in Section IVe We referred to them there as r and g®, and ine

terpreted them as cozpenents of the arbitrary vector field taking us

rro:n hypersurface to hypersurface with respact to the normal fields

However, a5 we indicated above and shall now show in detail, the con-

gtraint equations may also be obtained from that part of the Lagrangi-
an an which describes only the evelution along a geodesically parallel
family of surfaces, if we vary the vecter £i¢ld of the manifold which

{s to be the goeodesic normal field. It is easily checked that the

a::o w = 0 rield emations resalt from variation of equation (vii=lk)

with respect to the 'gab. Weo ghall now show that the remaining field

oquations, the constralnt equaticns, result froa variation of {vii-ll)
wlth respect to tha n  field. If we write out (hz-h“bba in terms

of lic derivatives explicitly, it tecomes

av
R (G S R ST O
The variation of this expression induced by a variatica in the o™
field is found, of course, by taking the differcnce bataeen (vii-15)
with all Lio derivstives witn respect to n' replaced by Lie deriva-
tives with&respect to n™d n™ acd (vii-15), keeping only Zirst order
terms in the M , Usif:g the rule that the Lie darivative with re-

spect to the sum of two vector ficlds is the mum of the lie deriva-

tives with respect to each vector field, we see that

s 500 K (B By Ep
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nm£ %-\-\% s and, as we saw in ecticnIV, % » 8o that we

S“ an

f£inally az'rive at ,
J CREURE 0 CIRAL
-6 SCK -ha W)= [d\k‘g\ 06“\& Sl Y W) :6:&35 &l
{&& “(\.x\ ‘hc&t \g\‘(h“-‘%\ %\’33
= 2% W\L’%\& 'y ) v
\

SO - RN + 4R) |
where we have used the fact thal h,, = -{%\'gzb; and that (57" isa
hypersurface vector fisld, so that the ids dex'ivative of the hypersur-
face metric with respect to @“‘is the 8illing form of the @v\ ficld.

- =
Ye also need the variaticn of (-g)2 with respect to SY\"\ to carry out
the SN variation of (vii-lh). Since

(vid-17) S;(-‘@h' = '3:(‘@ GGNI 3“@
-G L S GRS o)

= LYy M&‘k 0 SR oV ‘
_ "'\'k‘@\h‘lx &\ RN "‘"K)hd\

t.he variation induced in (-g)ﬂ)E by the S\™ is just - d\(-g)z 'R of

oourse sul{fers no variation as a resuldt of S‘\‘\ e Variation of (vii-1)

"~ with respect to ST\'L is now seen to give

it j (T RARE - R 1) R j\‘%k\)(‘% Ry Vfadd%y )

cabining the resilis of (vil-1l6) and (vii-l7). Now an integration by



parts on the last torm of (vii~13) yields a total surface divergence,

¢hich may be discarded as 1% has no effect on the field eéquations,

leaving

[T R SRR -2 502 R

ghen we retarn to our spocial coordinate gystem. Now the coefficients

of A and (3‘.\ mst vanlsh, since these are the arbitrary variaticns
which together make uwp the S(\ variationj and we see that the con-
straint equations (11i-15) and 1ii-17) do indaed hcld as a result of
thig variatiors Tius equabicn (vii-l3) yields a Lagrangian involving
only first crder iie darivatives from which all the fleld equations

pay be derived.
The role of the ﬁ 'gab as “velociﬁes" in the variatliom

with respect to the 'gg, discussed above guggests the derinit.ion of

monenta and & Hamiltonian in the usgual waye And indeed if we define

o P gy T VTR

and

(vig=22) (\3( \’a\o i“’zga‘o i‘ = f('\\“(‘?\«&\;»\i‘\’ —D\?‘)
= (PR FE 00 e |
the rosilting Yamiltonian equations of wmotdon

P > AL
(Vi1=22) %(75‘;\0 y “b/@ ) i() g

are, indeed, equivalent to the definition of the momenta and the equa~

¥ W L4y
tions of motion Bmﬁ =(Q respectively. Thus we soe that (\’\ S f\

¢!
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nas bosn called the main part of the Hazsiltonian)governs the evolutlon
of tho surface metric on a family of geodesically parallsl hypersure
faces.” ify in additicn, the constralnt equations hold on one hyper=
gurface, they will hold everywhere, and the field equations rosulting
m(ﬂ’wm assure the vanlshing of G pv e Thess constraimd equa-
tions are easily rewritten in terms of the momenta by solving (vii-20)
for the hab and substitating into (1i1-15) and (121-17) giving

=0, %=0

Tt can be ssen fron eguations (vil-11), and (A1-19} that T,

( .

(w123 Vi

of the remaining field emations. This is analogous to the existence
of the Jacohian integral in ordlnary mechanics, the conserved quantity
assoclated with any Lagrsngian not explicitly cordalning the time.



VIiII. CORCLUSICIS

The wain feature characterizing this work has been the Kew—
tonian approach used in Sections III-VI coupled with the geometrical
enphasis gained by the use of the Lie derivativs. These have ensbled
us to develop the relstionship between the goometry of the initial hy-
porsurface and the first neighboring gzodesiecally parallel hypersur-
face; and the relationship of these two aud ’ché surface Fiemann tenmor
to the gecmetry of the second neighboring geodesically parallel hyper—
purface. The surface components of the Ricci tensor have been shown
to dotermine the evolution of the surface metric in an arbitrary space;
and we have shown how the vanishing of these components in the exteri-
or region or their replacemsnt by the surface components of the strese-
energy tensor in the interior regicn scrve %o detarmine this evolution.

. 7The constraint equaticns have been given their usual inter—
pretation in Section II1I, bat in Section IV it has been showa that
they zay be reinterpreted as pousing the problem of embedding two hy=-
persurfaces with infinitesimally differeing arbitrary metrics into a
' four-dincnsional Hiemann space with vanishing Riccl tensors If we
chooée to wmake the hypersirfaces geodesically parallel, the constraint
W\ations‘my be interprgted as imposing one condition on the two mot-

rics.
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The Cauchy problemhas been interpreted, in the tetrad form-

alisam, a3 the vroblem of determining the evolution of the physical

components of the second fundanental form with respect to a sultably
chosen tetrade

A Lagrangian and Hamiltonian formalisa for handling the evo=
lation of the melric along a family of geodesically parallel surfaces
{s-given in Section VII. It is interesting that, in the Lagrangian

formalism, not only do the ematlons of evolution of the metric follow

from variatians of the hypersurface meiric, but that the consiraint

oquations follow from variation of the vector field which is to be the
goodesic normal fields

It 1s evident dhat a mumber of important problems remain une-
solved. We phall menticn & few of these, which we hope the methoda
developed herein may be useful in treating.

Parhaps the cutstanding problem gtill unsolved is that of the
degrees of freedom of the pure gravitational field. Since the hyper-
gurface metric and the second fundamental form are restricted by four
constralnt equaticns, as well as belrg covariant 'uith respect to hypem
surface coordinate transformatioas, it. is evident that, as functions
of arbitrary coordinates, they contain more information than reeded on
a hypersurface for the construction of @ Riemann space satisfying the
extcrior field equations. It is well known that the number of pleces
of {nformation needed to specify such & space is four per point of &
spatial h:.rparsurfan:a.30 So far,however, no one has succeeded in iso-
lating four such pieces of information in closed form; nor in giving a
goometrical intarpretation of what elements of the surface geometry
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guch data might represent.Bl A major difficulty has been in ﬁ.;ﬁding
a closed-form solution of the constraint equations. Perhaps the geo~
petrical interpretation of the equations would help in nrﬂe.rsta}xdirc
what kind of geometrical data on the hypersurface they leave freely
specifiable. The relaterpretation of the constraint equations given
here seems to offar soms hope in this respect.

| Should it prove impossible to find closed=forz general soluae
tions to the consiraini equations, or until such are found; it may be
useful to fird approximite solutions to the corstraint equations in
the neighborhood of the kuown exact solutions to the constraint.equa-_-
\_-_;,__..,t.io.ns. ..Tha method owilinedin Appendix I may be used to solve this
prcblem, '
Anothier pirohlen thet moy ve treated by the msthods developed
here is the Cauchy prodlem on a3 mall hypersurface. Retent work onthis: .
smbject has proved it to be cae cf the mest fraitoul approaches to the
study of gravitaiional radiation.” % s ‘.wpsd that the use of the
approach developed here will lecd to & mcrs intuitive understanding
of the significance of thig work. |
| We alsc hope to study the probiam of the equations of moticn
using this methcd. Suppose that ¢n the initial spacelike hypersurface
the streass—ensrgy tencer vanishes everywhare except inside of a nmber
of {inite regicvms. A knowledge of the gravitational field outside
these regions, plus certain boundary conditions on the boundarias of
the regions inside of which Ty #0 , theuld serve to determine the
equations of motion of the scurces without detalled knowledge of the
interior fields. It way also prove rossible to pass to the limit of



point gingularities in the initial gravitational fields in this way.
A class of solutions to the exterior initial valus problem exists
yhich.seems to represent a number of gsources at rest with no gravita-
t.<ona1 radiation field present, as well as multiple sources initially
ot rest.33 It might be poseible through examination of the equations

of motion of these solutions to gain insightl into the important prob-
lem of the generation of gravitational radiation by the motion of

80X CCBe

78




17

APPENDIX I

1IF TERIVATIVES CF FUNCTIORS OF 'g.y

in this appendix we shall outdins a relatively simple method
o(:;;l'mlaﬁng the Lis derivatives of some funcilion of the 'g,ssuch
as the Christoifel syabols or the kiemann tensor,shen the Lle deriva-
tivé of g,y is kxm.% It is clear that, since these quantitics are
fcmed froa the gy oy & nunber of ordinary differentiations and al-
éebraic operabivns, that one could gvaluate these lLie derivatives
straightforeardly, wsing the rules given at the end of Leciion il on
tho Lie derivaiive. However, the aelnod we shall cutline is siupler,
and od&ider application. #e shall also suow how the hlgher order Lie
derivatives of 'gg,such as %3 'g,p aTe easily compubed in this ways
and give an aiternate proof of the fact that the ide derivatives of
the constraint equations vamish if the field equations hold on the
initial hypersuriace, by directly evaluating these Lie derivatives.

Suppose we hmfe any set of functions of e ‘gab,which we
wabolize by F) ('g,,) 5 where N stands for any indices that may oc=
our, We should like to £ind the changes that are induced in the ¥,
Yy any variauion whabsoever S’gab that we choose, subject Lo the re-~
siriction that it be of the same tensorial characler as 'gab‘ Clearly,

this is given by

e §F(g) - \:hkf'ka\o*ﬁt%a\o) -FL(gee)




This variation will be of the same tengorial natwre as F N F,\

is a tensorjy but it may be a tensor, even if F, 138 not, as in the
case of the Christoffel symbols, where the diffémnce betwean two sets
of Christoffel symbels at a polnt is a tensor. Now suppose the varia-
tion thaﬁ we have .’mdicéd is infinitesimals Then the change in F'\
will be infinitesimal, and to first order will be some linear function
of the %'gab. fros now on g'g ab will symbolize an infinfitesimal
variation of 'gab and 9§ Fp will symbolize the {irst order variation in
7, induced by this variation.

It can be readily shown that

(A1-2) (0 \ ~\V - lvv\ (g‘(\a;ﬂ - ‘Va QS‘K\V:J

T A
where S Q\o is the variaticn induced in the Christoffel symbols,

which in turn is given by
Wy §' T - % ‘x“\{'\vk%\%\o*lvb §wa +‘Va§‘8u;1 .
Substitution of (al-3) into (Al—-2) gives:
TETIG WSS e B \rm&‘(@w A ALTRL N AY

- 9T, S 4 V‘“F%»“‘S‘N— R ‘z;\ 1
Contracting over u and v in (A1-2), and subsﬁ.tutix\g from (41=3) we
get § "R
(u-nS'R;\f {‘%ﬁ‘[lvc'v&g‘za\ﬁévs i +‘v£v.i‘f3;a - ‘v;‘v,,%“fvﬂ .

Hog suppose the variation S 'gab is that induced by moving
to an infinitesimally neighboring hypersurface a distance Y\"&“ awaye




Then % Zap % 'gabé‘\? = —2hab<\‘\' s and substitution of this expres~
gon in {(A1=3, (Al-h), and (Al-§) will give us the change in the
Christoffel symbols, Riemann tensur and Ricci tansor respectively ine
duced by moving to the neighboring hypersarface. But this is just the
Lie derivative of these guantities with respect to n* times dt. Thus

we aro able to show laats

(AT, RENGAN AN 9T S 4
(A1-6) %IR;\ = Gd ‘chak\o ‘rs(v ° )

. . §
JC(RC&W\C& - Ra Ko )

where we have usad the rule for the commutation of the order of covari-
ant differentiation in deriving the lest resalt Irom (Al=5).
We can now tale the Lie derivative of equation (iii-9) to
n“d-%} "&ap’® |
(A1) %’M%w = 2[‘%"&( Sekhan 'V N MY« Kii‘éﬂ\da 20 K~
_2 08 e - FRL Rem Ko e S0 e e Ry +
¥ Kab Q\w\nw\w\u-«kﬂ\z 9\3\3 .

This technique may bo usel for the calculabion of all the higher order
Lis darivatives of 'gah‘ |
In order to coapute the Lie derivatives of the cqmtraint

:S'tvxgtions, wo also need the Lia derivative of 'R with respect to nP\ ‘z
(41-6) \&n‘)\g \_f\&((}:\, ID\A\D CL%;\%D\“ ¢ Q-Mo \%\ovb
n n
| oL b ! ‘ <!
- lngV§Q&\‘N} - kCAJ/X _\'l%} qi( VL“\\, va\.)‘\.
¢ 2 Rl o
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Using (i4i-3) and (iii-9), it is easily shown that

% Bl - 1) = - 2 ) Ray AR «kﬂ\d ).

(A1-9)

Thus,

,,,,,,,,,,, e 49 Ty W&b"\»\b* N
r 2 M‘ L 5 \\d Vé’ —Q}) ‘

e have used the field equations BWR l;“' =0 in est«bhshing (1ii-9); so
we sos that if, in additicn the constraint equations (1ii-15) and
(111-17) hold on the initial hypersurface,that the Lie derivative of
equation (i1i-15) will vanish. A similar result can be proven for
the remaining constraint equations (iii-i7). Repeated Lie differenti-
ation of the constiraint equations then shows that if the constraint
equations hold initially and the succeséive ILie dorivatives of - ' ’
B::R YN also vanish, that the constraint equations hold everywhere. |
Although the proof given here is somewhat simpler technical-
1y than that given in the text, Section III and Appendix II, it does
not bring out the role of the Bianchi 1.dentitim; in the result. -



e
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APPERDIX II
THE BIANCHI IDENTITIES

The Bianchi identities provide fowr differential relations

petwasn the field equations. A3 a consequence, there are four rela-

" 44ons between the lLie derivatives of the normal-normal and normale

gurface componsnts of G v « ‘e derive these relationships below.
' S VY —
Nk G W = 06 N K Gy\v =
o N RS
- (\% A ) V\QG’ l"‘\)

—_) \
(A2-1) - (‘&W NAY W W Vi G

rk\)a

Yirsﬁ we deal wlth%(G‘,\u\“\\VB. ¥ultiply equation (A2-1) Yy Y\P\:
WYY Ve + WO TGy =0

='W BETR G 5 0 T (Gut),

“Tetnes WV, \M 2O« But the last tera is the Lie derivative

of GrN Y\"\ \.\V .

kny P WY ' -
(a2-2) '06 N B Nk Gr" *\&(fov \ W) =0.

83




V
u%“‘“ w3 \;\,\ W\AG",N

= RV G R -

84

- RE G (W Bk Bl

= LGB Y B TGl (R,
+ G V“(%}xl)‘ (%r*\ A\ Y\(X |

i m};c« T (G‘w Vo) - 0\&‘“(\)3\4 GI\L/\S "‘) Y&
X (va‘\“‘\*\ “VX B

- B (GBI GBIty

- (A2=3)

substituting (A2-3) into (A2-L), we get equation (11i-20) ofitho text, .

Next we deal with % (G"B“\Y\ ) ,by multiplying (A2-1) by B'm 'k

 (a2-l) E":‘Oﬁ e I“V F N B Vi G ov =0

How
Ty Y\V KB‘* VKG ,,\v
 (A2=5)
and
B YVG

= WBN (VKKT‘WY\ )) |
[K\‘LV (e '\) + Gl V‘d\ ()'KVY\ VP‘V\{&
"Bt G- B SV G B GVt

Am w0 ) ~ BT BNBQ&

kn ‘ | ‘ CL | \ .'
o ? “% %«\uv\s\&ﬁvﬁ\«\3

e (Gw“ V\)V\ﬂ

J
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=B TG B Y B G RAT R BB
= ‘a\m N & ‘,\v%‘:’x‘\) - (g\“ g\ﬁkB & t“\/%':‘\\(%)‘ X O;,W A
' \-((Yt\\s%:\ ) Qg>"u)" QXF'\\ Vv:\j)‘::\
- \‘Ch\‘-NQ\‘ ( (7\'*\'(\7)‘:‘““3 _
SR DG B

B (%Px%i}i)ﬁ B~

._“8‘“\ 5 r&%,\v Qv\“\}‘) X
. VSl\:\ {2V %\:\)}L ﬂ V.8 ‘

{nserting (42-6) and (42-5) into (A2-L), we get equation (iii-21) of

the text.
Since the divergenca of the stress tensor must also vanish,

an exactly analogous argument to that above applied to V\g( ::-TD

WL yiald equation (weTye T
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FOOTNOTES

(Bivliographical references to books are
by author and to articles are by number)

Ses Darmois and 11 for early treatments of the Cauchy problea in
generﬁ relativity.

See Bargmann 5 and § for review articles with extensive refer-
ences to the earlier literature on this point; as well as 2, !
for related work. See 3 and references therein for the approa

of Arnowitt, Deser and Hisner; lh for the work of Wheeler and
Yisner; and 7 and 7a for the closely related work of Dirac onm the
Haziltonian approachs 17 contains a swmmary of the related prob-
lem of the propagation of discontinuities in the gravitational
fieldo

See Courant and Hilbert,and Hadamard for detailed diseussion of
the Cauchy problem for systems of differential equations.

Sea references in footnote 3. For treatments of these problems in
general relativity, see 8, J, 10, 15 and Lichnerowics.

See 5, for cxample. This paragraph and the next are heavily in-
debted to the work of Bergmann and collaborators.

See 11 for early work; and the references in note y_ for more re=
cent discussions.

Sea Darmois.
See 2, 7 and Ta.
See 3, as well as references in footnote 8.

See Schouten, passim.

See Schouten, pe 105.
See Schouten, pe 354 for this definition.
See Schouten, ppe 2374-238.

In Appendix I, we give a simple method of computing the lie deri-
vative of any function of the 'g,,, as well as an alternate proof,
based on this method, of the constraint equations (iii-15) and
(115-17). %’ ‘gap 18 also explicitly computed as another exanple
of this method. , :

&
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15

16,

17.
18.
19.

20,

21.
22,

27,
28.
29.
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Lqu tions equivalent to (iv-6) and (iv-7) are given by Peres ax_ld
Rosen in & special coordinate system (sce }_5). From our viewpoint,
the. possible behavior al spatial infinity of g o and 8os (equiva=-
1ent to ourP and 6™), which iroubles Peres ang Rosen, 1s merely
a refleciion of the fact thau once arbitrary values of 'g, are
chosen the metric on some neighboring surface to the initial sur-
face has been given, and the relaiion beiween the two surfaces
nceessary to £fit them both into a Riemann space with vanishing
Gw may be very complicaied. This by no means implies, in itself,
ithat once a full metiric has been consirucied from the initial
data, & coordimate sysiem cammot be found in which all the com=
ponents of the meiric are asymplolically lMinkowskian. :

J. A. Vheeler, remaris at Stevens Relativity Conferences, 19623
Lanczos had already discussed the fact that in the case of two

geodesically parallel surfaces the constraint equations imply one
relation belween the meirics of the t-o surfaces (see _1_.}_).

Sce 7 and 7Ta.
Sce 7z, equation (6).

Bonnor, for example, has found cylindrically symmetiric solutions
free of singularities.

See Lichnerowicz, Boox I, Chap. VIII for a proof that no singu-
larity-rree silationary asymptiotically Iinkowskian solution exists.

Sce Lichnerowics, Book I, Chap. II, and 9 for examples.

For the tetrad formalism, see Schouten, Eisenhart, or Weatherburn.
For the Cauchy problem, see 9. '

Sce Schouten, p.139, remembering that Sg iﬂ is zero for a sym=
mciric comnection. L

Sce Bisenhart, p. 98.

Proofs in Eisenhart and W stherburn.

Sec Linsicin and others, pp. 167-173.

Sce Bergmann 5, for example.

Sce 3, and refercnces o earlier papers therein.

See Ja. Actually Dirac's Hma:‘m differs by a surface divergence

fromour H .

See, for example, 1 or 6.
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3l. See 3, however, for an analytic approach to this question, which
may %ead to a geometrical solution. '

32, See 13 and 1, for example.

33. See 12, P 55k

4. The method outlined here can be seen to be of much wider scope
than the calculation of Lie derivatives. It can be used to find
the effcct of any small variation of the metric, in any number
of dimensions. It was worked out together with Dr. J. Plebanski
in connection with the search for approximate solutions of the
field equations in the neighborhood of exact non-flat solutions.
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