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This is the first of a series of papers developing the classical theory of a spinning particle. The equations
of motion will be derived from a Lagrangian, and solutions for the classical trajectory and spin precession
in external fields will be given. In this paper an abstract spin vector is introduced to characterize the spin
of a classical particle. Lagrangians for the classical trajectories and for the motion of the abstract spin
vector are derived from corresponding quantum-mechanical Lagrangians by the WKBIJ approximation
method for nonrelativistic and relativistic particles. The equations of motion for the trajectory and the
abstract spin vector following from the extremalization of these Lagrangians are given. The equations of
motion for the precession in an external electromagnetic field of the spin vector (or tensor) in space—time
is derived from the equations of motion for the abstract spin vector. In the relativistic case, they are
equivalent to the Bargmann-Michel-Telegdi equations [Phys. Rev. Lett. 2, 435 (1959)]. The
relationship between the ensemble and single-particle points of view is also elucidated.

I. INTRODUCTION

In this series of papers we discuss the theory of clas-
sical particles with spin. That subject has a long history,
which we will not review here, although we will give
some references to the most relevant literature in the
course of our work.! What distinguishes our approach
from most of the existing work in the field is that we
do not consider the spin tensor (or vector) as a primary
quantity in defining the theory, but rather as derived
from some more fundamental representation of the rota-
tion or Lorentz group, depending on whether it is a non-
relativistic or special-relativistic particle that is being
treated. This, of course, is the way that spin enters
into quantum mechanics, where the wavefunction cor-
responding to a particle with spin is taken to be a multi-
component entity, with the approriate transformation
properties under the relevant groups. The point is
that there is nothing fundamentally quantum mechanical
about such a concept of a particle, and the same ideas
may be applied at the classical level.

So our basic concepts are a trajectory in space—time,
to be picked out by some equation of motion, and a
spinor, vector, tensor-—what have you—attached to
each point of that trajectory with appropriate transforma-
tion properties under the rotation group (for nonrelati-
vistic theories) or the homogeneous Lorentz group (for
special-relativistic theories) which also obeys some
equation of motion along the trajectory. We shall refer
to this entity as the abstract spin—vector since it is a
vector in some abstract space on which a representation
of the appropriate group acts. Then, the usual spin
tensor (or vector) is derived from this basic spin rep-
resentation by some operation on it which produces an
antisymmetric tensor (or vector) in the Galilei—Newton-
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ian or Minkowski space of the trajectory.

In the earlier literature, we find this point of view in
Schiller, 2*® who starts from such a classical theory of
the electron; and implicitly in Pauli, * Rubinow and
Keller, ® who treat the classical motion by means of a
WKB expansion of the Dirac equation. Rafanelli and
Schiller® show that the classical equations of motion
for the electron may be derived from the WKB approxi-
mation to either the Dirac equation or the squared Dirac
equation.

Our approach is also characterized by the assumption
that the trajectory is not influenced by the spin cha-
racteristics of the particle. Thus, we eschew all those
theories of the spinning particle in which momentum
need not be parallel to velocity, with their accompany-
ing classical Zitterbewegungen. Such theories have
their interest, and indeed may also be motivated by
certain types of approximation to quantum mechanical
equations of motion, just as we shall motivate our ap-
proach in this paper, by a discussion of the WKBJ or
eikonal type of approximation. However, they are not
the type of theory that we wish to develop here, in which
the trajectory of the particle is not affected by its spin. 7

We could, at this point, just begin to consider such
classical systems, for example, by writing down a
Lagrangian giving rise to the desired equations of mo-
tion. However, we shall motivate our approach by show-
ing that the equations that we shall consider can be
looked upon as the WKBJ or quasiclassical limit of
well-known quantum mechanical equations.

The WKBJ approxima.tion‘1 consists in making an
asymptotic expansion of the wavefunction in powers of
7,

v = exp(iS/n) = exple/M[S, + (7H/1)Sy + (71/1)*Sy + - - - |,
(1.1)
with the assumption that S; is a real scalar function of

the coordinates and time, while S; (/=1,2,3,---) are
abstract spin vectors like ¢ itself. This is equivalent
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to assuming the expansion to be of the form
p=[Ry+ (/)R + - - - | exp(iSy/7)

as Pauli* points out, where the R, (i=0,1,2,--+) are
abstract spin vectors. This expansion is then usually
inserted into the wave equation for . However, we
shall insert it into the variational principle for the

wave equation, thus getting an expansion of the variation-
al principle to various orders in #. We shall refer to the
terms of this expansion as zeroth order, first order,
etc., meaning order in powers of 7, and not the order
of the highest derivatives in the variational integrand.
Variation of the #th order term will then yield the cor-
responding order in the expansion of the wave equation,
Of course, since the zeroth order in the WKBJ expan-
sion of a wavefunction corresponds to a classical en-
semble, ® we must expect to get the ensemble form of
our classical equations, involving the action function

S, Hamilton—Jacobi equations, etc., rather than getting
the trajectories directly. But, of course, since any
solution to the Hamilton—Jacobi equation corresponds

to an ensemble of mechanical trajectories which can be
derived from it, this constitutes no problem.

1.2

In this paper, we shall first discuss the spinless
particle, nonrelativistic and relativistic, in an external
electromagnetic field in order to demonstrate some
features of our approach, which works from the action
principle directly, in the simplest possible context.
Then we shall discuss the Pauli and Dirac equations
for nonrelativistic and relativistic particles of spin 3,
both interacting with external electromagnetic fields.
We could easily extend our results formally to particles
of any spin interacting with the electromagnetic field.
However, in view of the well known difficulties with the
external field problem for higher spin particles, ® it is
doubtful if these results would have more than formal
significance. It is interesting, of course, that these
difficulties do not manifest themselves at the level of
the quasiclassical approximation. Of course, there is
no difficulty with extending the results of this paper to
free particles of arbitrary spin, but the results then
are rather trivial: The abstract spin—vector is just
parallel transported along the free particle trajectory.
Finally, we shall consider the transition from the en-
semble to the single-particle Lagrangian.

In the next paper we shall generalize the particle
Lagrangian for the relativistic particle with spin 3 in-
teracting with an external electromagnetic field, de-
veloped here, to the most general possible relativis-
tically invariant interaction, and discuss the solution
of the resulting equations of motion.

Il. NONRELATIVISTIC SPINLESS PARTICLE

We start from the well-known variational principle
for the Schrddinger equation,

5 [u* (z'ﬁa%_ﬁ>wd3xdt=o, 2.1

where H is the Hamiltonian for the particle

. 2
Ao [VZ-EA] +7,
1 C

5 (2.1
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where V includes e¢, the electric potential energy, as
well as any other scalar potentials, and A is the mag-
netic potential. We now insert the WKBJ ansatz'’ ¢
=R, exp(iS/%) directly into the variational principle,
giving
s 1 e, \?
- -—= - = 2,2

6 [ R} [ T (vs CA) V] Rydxdt=0, (2.2)
where we have omitted all terms of first or higher order
in 7.

Variation of (2.2) with respect to R¥, yields

2
[§+_1. <Vs_.gA) +V]R0:0, (2.3)

ot 2m
and we see that if Ry does not vanish, the nonrelati-
vistic Hamilton~Jacobi equation must hold for S. Vari-
ation of (2.2) with respect to S gives

2 2
AR g, [ﬁ’—'- (VS_EA)] —o.
ot m c
The Hamilton equations for the trajectories correspond-

ing to solutions of the Hamilton—Jacobi equation (2. 3)
show that

(2.4)

mv:VS—gA, (2.5)

so that (2.4) is just the equation of continuity for [Ryi?

the density of trajectories in configuration space.

’

Thus, we have derived the equations of motion for an
ensemble of trajectories, from the zeroth-order WKBJ
approximation to the Lagrangian for the Schr&dinger
equation. The density of trajectories IR l? is also de-
termined by the equation of continuity, which is easily
converted into an equation for the ordinary derivative
of |R,l? along a mechanical trajectory determined by S,

v- [vs_fA]zoa
(4

But this does not enable us to determine R, itself, which
contains a phase factor, undetermined so far. As we
shall see, this phase factor can be determined from the
first-order approximation to the Lagrangian., This is
the reflection, at the spinless particle level, of the
same feature we shall find for particles with spin: To
determine the trajectories, we only need S, which is
fixed by the zeroth-order approximation to the Lagran-
gian as a solution to the Hamilton—Jacobi equation.
However, to fix the motion of the abstract spin vector
(in this case just the phase of R;), the next approxima-
tion must be calculated, even though the resulting equa-
tion of motion for the spin is independent of %, and in-
deed of any other quantities characterizing the next
approximation.

dIRI? | IR,

¥ -~ (2.6)

We shall not bother to give the derivation of the equa-
tion of motion for R, from the first-order approxima-
tion, since it can be deduced immediately from our dis-
cussion for the Pauli equation in Sec. III, by setting
the terms with 0=0 in Eq. (4.7). We merely note that
the result is

Ry__Lpv. (vs_§A>.

dt 2m (2.7)
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Comparing (2. 6) and (2.7), it follows that the phase
of Ry is constant along a mechanical trajectory,
4 R,
dt |R;l

=0, (2.8)

Summarizing our results, we see that the zeroth-
order WKBJ approximation yields the nonrelativistic
Hamilton—Jacobi equation; a class of mechanical tra-
jectories can be derived from a solution to this in the
well-known way. It also gives the continuity equation,
which enables us to determine the evolution of the mag-
nitude of R, along a mechanical trajectory, given a
solution to the Hamilton—Jacobi equation. Thus, the
magnitude of R, is determined for an ensemble of tra-
jectories; it corresponds to the density in configura-
tion space of the particles in the ensemble, but it is
not a quantity which has any meaning for an individual
trajectory independently of an ensemble. So it is not
surprising that its evolution cannot be determined in-
dependently of S. On the other hand, the phase of R,
along a mechanical trajectory is obtained from the
first-order WKBJ approximation. Its evolution is mean-
ingful for an individual trajectory, quite apart from any
ensemble to which the latter may belong. In our case,
this equation is trivial—the phase stays constant. But
this feature of the results will generalize to other cases
with spin: The magnitude of the abstract spin—vector
will be meaningful only for the ensemble point of view,
while the evolution of the “unit” abstract spin vector
will be determined by an equation of motion along a
single trajectory.

lIt. RELATIVISTIC SPINLESS PARTICLE

We start from the Lagrangian for the Klein—Gordon
equation with external electromagnetic field':

(SRR R P

(3.1)

Inserting the WKBJ ansatz ¢ = ¢ exp(iS/#) into (3.1) and
again keeping only terms independent of 7, we get

/d)*[(VS—%A)- (VS—%A)-—M c]tj)d"‘x (3.2)
Variation with respect to ¢* gives
e \2
vS-—A -mic* | b =0 (3.3)

and again, if ¢ does not vanish, the relativistic
Hamilton—Jacobi equation must hold (variation of ¢
again leads to the conjugate equation). Variation with
respect to S leads to

Lo (r5-24)] -

Since the Hamilton—Jacobi equation (3.3) implies
Hamilton’s equations of motion for the trajectories,

we again see that (2.5) holds, now as a 4-vector equa-
tion; and thus (3.4) is a continuity equation for ¢*¢,
the density of trajectories. Thus, the zeroth-order
WKBJ approximation again determines the relativistic
Hamilton—Jacobi equation, a solution to which yields
an ensemble of mechanical trajectories; as well as the

(3.4)
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equation of continuity, which determines the evolution
of the magnitude of ¢ along each trajectory, given a
solution §. We omit the details of the proof that the
first-order WKBJ approximation determines the evolu-
tion of ¢ along a trajectory given S; from which it fol-
lows that the phase along each trajectory is constant.

IV. NONRELATIVISTIC PARTICLE OF SPIN
3 (PAULI EQUATION)

We start from a variational principle for the Pauli
equation,

K] ~
5 w"(iiﬁa—f—H>z})d3xdt:0, (4.1)

where

H:é—;—? [oa(?V—-i—A)] [a -(?V-§A>] +V.  (4.2)

Here, ¥ is a two-component spinor, ¥" its Hermitian
adjoint, ¢ the Pauli matrices, A the electromagnetic
vector potential, and V a scalar potential energy which
includes e¢, where ¢ is the scalar electrostatic poten-
tial. We again insert the WKBJ ansatz, but this time
the coefficient of exp(iS/%) is a two-component spinor.
Since we shall have to consider both the zero- and first-
order approximations, we include two terms in our
ansatz:

n .
@y +yD = (0t~ 757 expic i5/m)
(4.3)
where D, and D, are two-component spinor fields. In-
serting this into (4.1) we expand the Lagrangian up to
first order in 7,

e \?
* - - D, d*
L ﬁ[ Bt 2m (VS c> V:l 0@
52 o)
J{?(DODI_DIDO) [_ ot~ 2m VS_CA -

o [eDy 1, 1 < e >
~--Dt — = - .vD
i D“l: ot + 2m (V28)D, + m vs cA 0

Y 5.BD ]}d"\
~ 2me

Variation of the first-,

e ( - )2 ]
R — - D juuas
SDj = [ + o vS - +ViDy=0,
. [DEDO (»V-——s‘;(:/c)A)] =0. (4.5b)

Variation with respect to D yields the Hermitian con-
jugate of (4.5a) and thus nothing new. If D;#0, we see
that (4. 5a) implies that S obeys the nonrelativistic
Hamilton—Jacobi equation; while (4.5b) is again a con-
servation law for the magnitude of D, from which it
follows that

) exp(iS/7),

(4.4)

or zeroth-order term gives

(4.5a)

-
88 == (D}Dy) + ¥V

)-1 /2

(4.6)

i + “1/2 1
dr (D)™ =57

=— VES(D}D,
n

Thus, the evolution of the magnitude of D, along each

mechanical trajectory is again fixed by S which deter-

mines an ensemble of trajectories. To determine the
evolution of d,=D,/(D}Dy)'/?, the “unit” abstract spin
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vector (djd;=1), we need to look at the first-order
variation of (4.4).

Notice that variation of the term in (D}D; - D}D;) with
respect to the D’s will yield nothing new, since its co-
efficient vanishes by virtue of the zeroth-order equation
{4.5a). Thus, it may be omitted from the Lagrangian if
only results involving D, are desired.!? Variation of the
remaining term with respect to Dj yields
D, 1

e 1, . ie
- = . — ——(o-B)D,=0.
3 m (VS cA) VD + 5., (79D, 2mc(‘7 B)Dy=0

4.1

Variation with respect to D, yields the Hermitian con-
jugate of (4.7) [it is easily checked that (4.5b) actually
follows as a consequence of these two equations]. Now,
the first two terms in (4.7) are seen to equal dD,/dt,
since myv =VS -~ (¢/c)A along a mechanical trajectory,
as a consequence of the Hamilton—Jacobi equation.
Thus, (4.7 is indeed the equation required for deter-
mining the evolution of Dy, given a solution of the
Hamilton—Jacobi equation. Our previous work suggests
that the equation of evolution of dy will be independent
of S. Indeed it is easily shown that

ditd":z—lnf? (0-B)d,
Thus, the motion of the particle and of its abstract
spin—vector in an external electromagnetic field are
given. It only remains to see how the spin—~vector in
Galilei space—time is determined as a consequence of
this equation of motion. Since dyody=S will transform
as a 3-vector in space as a result of the transformation
properties of the two-component spinors and the ¢
matrices, it is natural to take this as the definition of
the spin—vector (actually, any multiple of this could be
used, since the resulting equation is linear homogene-
ous in §). Using (4. 8) and its Hermitian conjugate for
d;, we find immediately that

4
at

(4.8)

-€
= — X

povps. (sxB), 4.9
the equation of motion for spin precession in a magnetic
field, for a particle with gyromagnetic ratio two, as
might be expected from the Pauli equation.

Note that if we break up D intoc an amplitude R times
d,

3

Dy =Rd,, RZ(DEDO)I /2, (4.10)
we get a representation of Dy similar to the amplitude-
phase representation of a complex number. We shall
use this breakup in our discussion of particle Lagran-
gians in Sec. VI.

V. RELATIVISTIC PARTICLE OF SPIN
1 (DIRAC EQUATION)

Now that our approach is (hopefully) clear, we take
up the most complicated example we shall consider in
this paper, the relativistic spin-3 particle in an external
electromagnetic field, described quantum mechanically
by the Dirac equation, We start from the variational
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principle,

5 {—;-[E(aﬁ%Ax)w*v“zp-ww‘(?ax—f

J

)¢]

+mc¢’¢}d*x:0, (5.1)

where ¥ is a four-component spinor field, ¢* its “adjoint”
field defined by
# =,

and ¢* is the Hermitian adjoint of ¥.'® Inserting the
WKBJ ansatz

(5.2)

Y= (Do + ?DI) exp(~iS/7), I = (DB - §D1> exp(~ iS/h)
(5.3)

(note that we have used the same notation, D, and Dy,
for the 4-spinors here that we used for the 2-spinors
of the last section), into the variational principle, we
get the expansion of the Lagrangian up to first order in

7,
" e 13 X
/.Do[- Ve <8KS - EA"> + mc] Dyd*x +/z—[@; YD,

- Diy*D, ))(axs - ;AK) +mc(DyDy — D{D,)

+ 33, DDy = Diyy*d po)] d*x. (5.4)
Variation of the zeroth-order terms in (5. 4) gives

50" :>[7/< (axs_-ziA) - mc] D, =0, (5.5a)

88 = 8, (Dt Dy) = 0. (5. 5b)

[Again, variation with respect to D, yields the adjoint
equation to (5.5a). '* Equation (5. 5a) will not have any
solutions, for nonvanishing D;, unless the determinant
of the matrix in brackets vanishes. This condition is
easily seen to be equivalent to the relativistic Hamilton—
Jacobi equation
v e e

7 (a“S_EA“> (auS—EA,)—mzc?:O,, (5.6)
The matrix is of rank two, as Rubinow and Keller
noted, ° so that there are only two linearly independent
solutions to (5.5a), once S satisfies (5.6). We will not
have to use the form of these solutions, given by Rubinow
and Keller, but will continue to work with an arbitrary
solution.

Now we look at the variations of the first order terms
in (5.4). Again, variation with respect to D, and D}
merely reproduce equations (5.5a) and its adjoint. Thus,
the first equations we require result from the variation
of the first-order part of (5.4) with respect to D, and
DB,

¥3,D, +[y‘ (axs —SAK) - mc] D, =0, (5.7a)

3, D" + Dt [y‘ (a,‘s——i-A,) - mc]:O. (5. 7o)

Note that, because of the first-order derivative form
of the Dirac equation, we cannot avoid the appearance
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of Dy and Dj in our first-order equations, as we could
in the previous second-order wave equations. Our task
is to derive equations of motion for D; which will not
include D;. We can do this by straightforward computa-
tion of d/dv(D;), using our previous equations and a
little manipulation of ¥ matrices. By definition,

dD, dx*
7 = %Dor (5. 8)
along any mechanical trajectory, where 7 is the proper
time along the trajectory. But the equations for the
trajectory following from the relativistic Hamilton—
Jacobi equation show that

dx* e

substituting this into (5. 8), and remembering that 7
=20+, we get

db 0 (YK')’)‘ -+ VXVK) ( : >
—H ML PP D V0SS -—A
dar 2m Do \S c

(5.9

(5.10)

When we expand the parenthesis in (5.10), we get two
terms, the second of which is

Y92,y ( e )
YY % i(hs_%A
o™ (AS o A . (5. 11)
By using (5.7a), and (5. 6) this can be reduced to
c
_E-/‘aKDOQ (5.12)
The first term in (5. 10) is
V’/\a D, (HAS—EAQ i (5.13)
By writing this as
Py (-8
2 { [YK'}/‘()\S"" )DO]—WBK axs‘zAl DO )
(5.14)

and by using (5.5a) (and adopting the Lorentz gauge
condition 2,4 =0 to avoid some additional steps) the
first term reduces to
c
§V6KD0 (as D, + ZW —— F,,0"*D,, (5.15)
where 0S means the D’Alembertian of S, and ¢
=4(v*Y* - %) means the commutator of the ¥’s. So

finally, the required equation of motion for D, is

dD, s e

ar —2—72 0+% (5.16)

A
ano'K DO-

Again, S is required to determine the evolution of D
along a mechanical trajectory. However, it is easily

shown that
ad .. as, .,
E(DODO) :'—W(DODQ); (5.,17)

so, again defining dy=Dy/(D5D)! /2, we find the equation
of motion for d,,

d

d—.,-do Fa0*d,. (5.18)

ch
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Note the close analogy with (4. 8), which can be made
closer by using the operator s**=4¢**, in Eq. (5. 18),
which is more directly related to the spin—tensor in
Minkowski space,

d ie

e . e~ (28
ar 0~—2mchAS d,.

(5.18a)

Indeed, we must now relate this equation to the equation
of motion of the spin—tensor in Minkowski space. As

is well known, ¥*s*”y transforms like an antisymmetric
tensor of second rank, so that it seems natural to define
the spin—tensor by

S*Y = distvd,.
Thus,

o v wouv( d
—s“ (dTa") s*Vdg+ dj u(dfd‘))

and substituting (5.18a) and its adjoint equation into
(5.20), we get

d y fte
dTS T 2me

(5.19)

(5.20)

AL M7~ B d F, . (5.21)

Using the commutation relations between s*”, which are
essentially those for the generators of the homogeneous
Lorentz transformations

s-chsu.v SU-VSKX

=i (ST - S 4 MY - sER ), (5.22)
we finally get
Dguv_ .S (swy» _ $% ) F, (5.23)
d mec

This is the required equation of motion for the spin
tensor, which is seen to be the relativistic generaliza-
tion of (4.9) for the nonrelativistic spin vector. Indeed,
we may introduce a relativistic spin vector S, by

Sy = CurarS et (5.24)

where ¢, ,,, is the Levi-Civita tensor, equal to
(=m'%¢, . Clearly, S,o* =0, and the S of Sec. IV
represents the nonrelativistic version of $*. On the
other hand, it is easily shown that $*“pT®® =0, where
poet=3,8 - (e/c)A,

2i(D4Dy)S e

=DM Y =YY pie® D,
=DY(y* ¥ pre™ — mey’)Dy= Dy(* pRe — mc)y’ Dy =0,

(5.25)

where we have used (5. 5a) and its Hermitian conjugate.
This is the well-known Frenkel condition on the spin
tensor!; it also guarantees, as we shall see in the next
section, that p™ " and +* are parallel. Note that it is
not an additional postulate here, but a consequence of
the equations of motion. When the Frenkel condition
holds, $*” can be derived from S,, so that the two are
entirely equivalent,

SHY = ghVRA S 0y, (5.286)
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where e #¥<

Levi-Civita tensor density:
Equations (5.23), or the corresponding equations for
S, are equivalent to the Bargmann—Michel—Telegdi
equations.!?

is again the tensor formed from the
e B UKA — (_ ,n)-l /2€‘“M.

VL. SINGLE-PARTICLE LAGRANGIANS

In the last five sections, we have seen how to develop
ensemble Lagrangians, the variation of which lead to
partial differential equations of motion for functions de-
scribing ensembles of classical particles without and
with spin, by WKBJ expansions of the quantum mechani-
cal Lagrangians for relativistic and nonrelativistic par-
ticles of spin zero and spin 3. We are now ready to dis-
cuss the transition to single-particle Lagrangians,
whose variation leads to ordinary differential equations

for the mechanical trajectories and abstract spin vector.

As we have seen, we cannot hope to find equations of
motion for the magnitude of the abstract spin vector
along a single trajectory, as this is basically a charac-
teristic of an ensemble density. Thus, we must expect
the magnitude of the abstract spin vector to be left un-
determined by the equations of motion; however, this
indeterminacy can be absorbed by a reparametrization
of the equations as we shall see.

If we remember that the integrand of the zeroth order
part of our variational principle is essentially the
Hamiltonian written in terms of S plus 3S/9¢ for the
nonrelativistic Lagrangians—and a similar expression
in the relativistic case—it will not be surprising that
we can form a homogeneous particle Hamiltonian by
taking this expression, and replacing all derivatives of
S by the corresponding particle variables. That is, by
letting 95/2f => — E, VS =>p in the nonrelativistic action

principles, and letting 9,S =>p, in the relativistic cases,

we get a particle Hamiltonian. Subtracting this from

p - {dr/dx) — E(dt/d)) in the nonrelativistic cases; and
from p, (d¥" /d}) in the relativistic cases we get a par-
ticle Lagrangian. We have here introduced a parameter
A along the path in space—time, to enable us to vary
with respect to the time / in the nonrelativistic case,
and with respect to all four x* in the relativistic case,
without worrying about constraints. The variational
principle is now homogeneous in A, and precisely this
enables us to get rid of the unwanted freedom in the
length of the abstract spin—vector.

We proceed to write down the variation of the Lagran-
gian for each of our four cases, and briefly discuss the
resulting equations of motion.

(a) Nonrelativistic spinless particle:

o/[p.%’_Ed—t_Rm ([—’(Te’f:’-)éf+ V_E>] a=0.

(6.1)
Variation with respect to:
dt
6E_>d>\_R3‘RO_ |R, |2, (6.2)
which relates the parameter A to the norm of R;
sp— T _in ol (e/c)A]'
p=> T |g, 1R /CA] (6.3)
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Using (6. 2), this reduces to
Q:[(p— (e/c)A] (6. 3"
dt m

(from now on, we shall omit this intermediate step, and
write time derivatives directly);

6r_>@:_VV+—p VA -

dt me A-VA,

2 — (6.4)
which, using (6.3') is easily proved equivalent to the
Lorentz force law.

- (e/ 2
ORE => ([p__(;_};_ch&_]_

the expression for the total energy as sum of kinetic
plus potential energy (with a similar expression from
6R0);

+V—E>R0:0, (6.5)

- (6.6)

== o \P~ EI

dE 3V 1 eA oA
"ot T om

which expresses the rate at which the particle’s energy
changes in a time-~dependent external electric field.

Similarly, the first-order term in the expansion of
the Lagrangian for the spinless particle can be convert-
ed into a Lagrangian for the phase of R,. But since the
equation of motion for the phase is so trivial (phase
=const), and the result can be obtained from the Pauli
equation results to be given later, we omit the details.

(b) Relativistic spinless particle:

dx* 1 v e
éj.{ﬁu T gore [77” ( u."EAu)

x( ”_SA”>_“7 c]}d?\ 0, 6.7
dr*
tp, =25 = o0 (pt - L), (6.8)
dpu¥ e e 0AY

which is again easily proved equivalent to the Lorentz

force law.
e [(pn-20) (5 -£4) -],
(6.10)

the relativistic energy—momentum relation for a par-
ticle of mass m. It follows from (6. 8) and (6. 10) that

ax* dx’
Maw 75 5 = (meg*¢)?, (6.11)
so that dT/dx=m¢*¢p, where T is the proper time along
the world line. Thus, all A derivatives can be converted
to 7 derivatives, giving the correct relativistic
relationships.

Again, we omit details of the derivation of the trivial
equation of motion for the phase of ¢ from the first-
order Lagrangian.
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(c) Nonrelativistic particles of spin 3:

Gf[p.%_E%-Df)(M+V—E)D0:|d>\:0.

2m
The analysis for the mechanical trajectories goes much
as in the previous cases, except that now variation with
respect to E gives

(6.12)

sE ~>

=DiD,, (6.13)

so that it is the norm of the abstract spin vector which
is related to A.

Now we shall derive the Lagrangian for the evolution
of the unit abstract spin vector along the trajectory.
To do this, we need to consider the first-order terms
in the Lagrangian (4.4). As noted in Sec. IV, the term
in (D}D; — DiDy) may be omitted, since its coefficient
vanishes by virtue of the zero-order equations of mo-
tion. The second term may be rewritten

+ d ie 1 y s
Dy—5—(0-B)Dy+>—
-/ (dt 2mwic (@-B)D, + Gy (V28)D,) &x.

Breaking up D, into an amplitude times d, (Dy=Rd,),
and inserting this into (6.14), we get (remembering that
did,=1)

f[;e((im—(stm) de*( dy- 7= (0+B) )] &

(6.15)
But the first term vanishes, using (4.6), and since we
are interested in a single-particle Lagrangian we may
take R? as a delta function centered on the position of
the particle. So we finally arrive at the variational
prineiple for dg, °

d ie )
éfd;)(Edo—'i’—n—c(O'-B)do dt =0.

(d) Relativistic particle of spin 3:

GAP“ A _DB[}f(px__AK) - 7}26‘] Do}d)\zo, (6 17)

(6.14)

(6.16)

dx*
ép :>—_D '}}‘DO, (6.18)
Byt = (f;; =< D}¥*Dydu Ay, (6.19)
5D} = [y<< K-%A,)—mc] D,=0. (6.20)

(6.20) can only hold for nonvanishing D, if the determi-
nant of the matrix in brackets vanishes, which gives
the relativistic energy—momentum relation

#"(Pu - EAu) ([)u - A,,) - mic? =0,
Multiplication of (6. 20} from the left by Dp* gives
[remembering (5.25)]

dx*

Tf’ <pK dx 2
and we see that by choosing d7/dx = DiD, we can go over
to the proper time parameterization of the equations of
motion. Letting v* =dx* /d7, it is easily seen that (6.19)
is the Lorentz force law of motion. The equations of
motion for the 4-spinor dy may be obtained by adjoining

(6.21)

>D'D0_mc (6.22)
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the Lagrangian

d ie
ﬁB(ZE s Pas® ) o
which may again be derived from the first-order terms
in (5.4).'® We omit the details.

(6.23)
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