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David Malament’s (1977) well-known result, which is often taken to show the unique-
ness of the Poincaré-Einstein convention for defining simultaneity, involves an unwar-
ranted physical assumption: that any simultaneity relation must remain invariant under
temporal reflections. Once that assumption is removed, his other criteria for defining
simultaneity are also satisfied by membership in the same backward (forward) null cone
of the family of such cones with vertices on an inertial path. What is then unique about
the Poincaré-Einstein convention is that it is independent of the choice of inertial path
in a given inertial frame, confirming a remark in Einstein 1905. Similarly, what is unique
about the backward (forward) null cone definition is that it is independent of the state
of motion of an observer at a point on the inertial path.

1. Introduction. Reichenbach (e.g., 1957) and Griinbaum (e.g., 1963,
1973), following the lead of Einstein {e.g., 1905), maintained that, in
the special theory of relativity, distant simultaneity is conventional in
the sense that it can only be established by some stipulation and that
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THE CONVENTIONALITY OF SIMULTANEITY 209

no matter of physical fact can depend on that stipulation.! Let a light
signal from a point a in some inertial frame be sent at time #, (as mea-
sured by a clock at rest at a) to a point b in the same frame and reflected
back to a, reaching it at ¢,. Einstein defined the event at « that is si-
multaneous with the time of arrival of the light signal at b as the one
with (¢, + 1,)/2 as its temporal co-ordinate. Because Poincaré (1900)
had suggested it earlier, we shall call this convention for defining
simultaneity the Poincaré-Einstein convention. In the literature, the
resulting simultaneity relation is often referred to as “standard simul-
taneity.”

Standard simultaneity has many advantages. In particular, it is in-
dependent of the choice of the point a in a given inertial frame. Nev-
ertheless, it is not unique: there are other definitions of simultaneity
that are consistent with all physical laws. In this sense, any definition
of simultaneity is based on a convention. To illustrate the stipulative
character of the simultaneity relation, Einstein (1905) noted the pos-
sibility of using the family of backward null cones of an inertial world
line to define simultaneity. As he put it: “We could content ourselves
with evaluating the time of events by stationing an observer with a
clock at the origin of co-ordinates, who assigns to an event to be eval-
uated the corresponding position of the hands of the clock when a light
signal from that event reaches him” (893). He rejected this possibility
in favor of the Poincaré-Einstein convention because the former “has
the drawback that it is not independent of the position of the observer
with the clock™ (893).

The contention that simultaneity in the special theory of relativity
is a conventional relation later aroused considerable controversy (see,
e.g., Bridgman 1962, Ellis and Bowman 1967, Griinbaum 1969, Janis
1969). In 1977 Malament proved a theorem that was interpreted by
some prominent philosophers of science as establishing the non-
conventionality of standard simultaneity. More precisely, the theorem
is supposed to show that the Poincaré-Einstein convention for defining
simultaneity relative to a straight time-like (i.e., inertial) world line O
in Minkowski spacetime (which can serve to define an inertial frame
of reference) “is the only ... relative simultaneity relation which is
definable from x [the relation of causal connectibility between points
of spacetime which, following Malament, we refer to as “events”] and
O0” (Malament 1977, 297). This result is said to follow from the geo-
metric properties of Minkowski spacetime when some “minimal, seem-
ingly innocuous conditions are imposed” (297). .

1. For a historical review of both the philosophical and the physical literature on the
conventionality of simultaneity, see Anderson, Vetharaniam, and Stedman 1998.
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Malament’s result has been interpreted as having resolved the phil-
osophical debate about the conventionality of simultaneity. Norton
(1992, 194) asserts that the result brought about “one of the most dra-
matic reversals in debates in the philosophy of space and time.” Tor-
retti (1983, 229) states: ““Malament proved that simultaneity by stan-
dard synchronism in an inertial frame F is the on/y non-universal
equivalence between different points of F that is definable (‘in any sense
of “definable” no matter how weak’) in terms of causal connectability
alone, for a given F.” This argument is one of the reasons why Torretti
rejects the conventionality of simultaneity. Friedman (1973, 310) says:
“there is a fundamental fact about the standard ... simultaneity-
relation-for-s [an inertial trajectory] that both Reichenbach and Griin-
baum overlook: namely, in Minkowski space-time the standard rela-
tion is explicitly definable from the space-time metric g (in fact, from
the conformal structure of g), whereas the nonstandard . . . relations
are not so definable.” According to Friedman (1973, 319), Malament
has shown that the “standard simultaneity relation is the one and only
would-be simultaneity relation that is ‘causally’ definable in Minkowski
space-time”’; hence “it cannot be varied without completely abandon-
ing the basic structure of the theory [of special relativity]” (320).

Even a decidedly less enthusiastic commentator, Redhead (1983,
114), observes: ““Malament (1977) has proven the remarkable result that
standard synchrony is the only nontrivial equivalence relation even im-
plicitly definable from the relation of causal connectibility and the world
line of the origin of an inertial frame of reference.” To weaken theimpact
of this result, Redhead proposes either to abandon the requirement that
simultaneity be an equivalence relation or to argue that a convention is
still involved in a choice between standard simultaneities defined in all
possible inertial frames (that is, the relativity of standard simultaneity).
The last alternative has also been pointed out by Janis (1983).

In sharp contrast to these philosophers, the response from physicists,
when they have had occasion to discuss the result, has been generally
skeptical (Janis 1983; Anderson, Vetharaniam, and Stedman 1998).
Havas (1987, 444) suggests that: “What Malament has shown, in fact,
is that in Minkowski space-time . . . one can always introduce time-
orthogonal coordinates . . ., an obvious and well-known result which
implies [standard simultaneity].”

Surprisingly, Finstein’s alternative convention (discussed above),
which we shall call the backward null cone convention, though obvi-
ously invoking only an inertial world line and causal relations, has not
received any attention in the discussion of Malament’s result.2 We shall

2. Similarly we will also refer to the “forward” null cone convention. We will use
“backward (forward)” to refer to one or the other of them.
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show just which of Malament’s assumptions rules out this alternative
and then argue against the physical plausibility of this assumption. In
Section 2 we introduce Malament’s framework and outline his proof.
In Section 3 we analyze this framework and show that it does not
foreclose the adoption of some non-standard simultaneity definitions.?
Our demonstration of this result involves a construction that distin-
guishes between forward and backward null cones using only causal
relations. The assumptions made in Malament’s proof include a crucial
one that is physically unwarranted: any simultaneity relation must be
invariant under temporal reflections. Dropping that assumption, we
prove an alternative result that captures what Einstein saw as truly
unique about the Poincaré-Einstein convention (our Theorem 1). We
then show that the adoption of an alternative “seemingly innocuous”
condition leads to a proof of the uniqueness of the backward (forward)
null cone simultaneity convention (Theorem 2). Thus the alternatives,
as we see it, are a convention that is: either (i) independent of the
position of an observer within an inertial reference frame, leading to
the uniqueness of the Poincaré-Einstein convention; or (ii) independent
of the state of motion of an observer at each point of an inertial world
line, leading to the backward (forward) null cone convention. In Sec-
tion 4 we discuss our results and compare our conclusions with those
of some of the other commentators mentioned above.

2. Malament’s Result. According to Malament, a version of the causal
theory of time asserts that temporal relations are non-conventional if
and only if they are uniquely definable in terms of the relation of causal
connectibility, x (293). While he is generally skeptical of the causal
theory of time, his analysis only explicitly addresses the question
whether standard simultaneity is the sole simultaneity relation defin-
able from «.* The relation x is interpreted as follows: two points, p and
g are causally connectible (pxq is true) if ““it is possible for a photon or
particle with non-zero rest mass to travel between them” (294), that is,
if a signal can pass from p to g or ¢ to p. Malament observes that the
three causal relations, “timelike relatedness (7),” “lightlike relatedness
(4),” and x are explicitly (first-order) definable in terms of one another.

3. When we speak of the “non-conventionality of simultaneity” in this paper, we use it
only as shorthand for the ““‘uniqueness of a simultaneity convention.” (Of course, any
convention can be made unique by imposing a sufficient number of auxiliary conditions.
We exploit this fact in our proof of Theorem 2.) In order to keep our discussion focused,
we also do not distinguish between convention, definition, and stipulation.

4, We do not explicitly take any position on the causal theory of time in this paper. We
are concerned with Malament’s precise result and, like him, only directly address the
question of uniqueness.
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Therefore, one may work with any of them in proving the relevant
results.

Malament first motivates and partly proves the straightforward and
well-known result that, in Minkowski spacetime, the Poincaré-Einstein
convention is equivalent to a choice of the family of hyperplanes or-
thogonal to the inertial world line O as hypersurfaces of simultaneity
(his Proposition 1; 295-297). In other words, the Poincaré-Finstein
stipulation amounts to a choice of the foliation of spacetime by a family
of spacelike hypersurfaces orthogonal to 0.3

Malament requires that any simultaneity relation be implicitly defin-
able from x and O. He then imposes three other conditions on any such
putative simultaneity relation: (i) that it be an equivalence relation;
(i1) that at least one event on O be simultaneous with at least one event
not on O; and (iii) that not all events in spacetime be simultaneous with
each other.¢ If the second or third requirement is not met, a simultaneity
relation is “vacuous’ (297). While, as noted above, requirement (i) has
been questioned, we accept it here (though the very fact that it can be
questioned suggests that a conventional element enters into definitions
of simultaneity). There is something attractive about this set of condi-
tions: they effectively ensure that there exists a family of hypersurfaces
of simultaneity constituting a foliation of spacetime.

Malament then explicates the notion of ““causally definable” in terms
of “causal automorphisms™ (297). A bijective map f : R* — R#* (with
the Minkowski inner product) is a “causal automorphism” if and only
if, for all points p and ¢ in R?, prq < f(p)xf(g) (p. 297); fis an “O
causal automorphism” if it also satisfies the requirement that if p € O,
f(p) € 0 (297). As Malament notes, the class of O causal automorph-
isms includes ““all rotations, translations, . . . scalar expansions [and]
... all reflections of R* with respect to hypersurfaces orthogonal to O
which map O onto itself”” (298). The inclusion of such temporal reflec-
tions, which we shall call “O-temporal reflections,” will be discussed
critically in the next section. Finally, a relation is “causally definable
from x and O” if and only if it is preserved under o/l O causal auto-
morphisms (297).

In this framework, Malament’s proof of the uniqueness of standard
simultaneity (which he denotes as “Sim,,”) is straightforward (his Prop-

5. Malament notes that this result is at least implicit in Robb 1914.

6. Malament (297--298) lists the requirement of implicit definability as his condition (i).
His condition (ii) corresponds to our (i). His condition (iii) corresponds to our (ii). He
then proves that a simultaneity relation that satisfies his three conditions is either stan-
dard simultaneity or the universal relation. He later implicitly rejects the latter in order
to argue for the uniqueness of standard simultaneity. We impose non-universality at
this stage as requirement (iii) of non-triviality.
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osition 2; 297-299). If a putative simultaneity relation is Sim,, the si-
multaneity hypersurfaces consist of the hyperplanes orthogonal to O.
If it is not, such simultaneity hypersurfaces form (full) cones (“‘double
cones” in Malament’s terminology) with a vertex at some point on 0.7
Given such a family of (full) conical simultaneity hypersurfaces, it is
relatively trivial to show that all events in spacetime are simultaneous
with each other.

3. Critical Analysis and Alternative Results, As we noted in Section 1,
the backward (forward) null cone convention for defining simultaneity
is based on the possibility of using the family of backward (forward)
null cones with vertices on an inertial world line, O. The full null cone
is trivially causally definable: if A is the relation of null relatedness, then
A(e), the full null cone at an event e, is defined as the set of all events
p such that ple. If the distinction between the backward and forward
half null cones of A(e) can be made using causal definability alone,
then we have a seeming contradiction with Malament’s result.

We now show that A can be used to distinguish each of the two
separate (backward [4_(e)] or forward [4,(e)]) half cones of A(e).
(Note that, at this point, one of them is called “backward [4_(e)]”” and
the other “forward [4,(e)]” merely to distinguish them.?) The (space-
like) “elsewhere” E(e) of e is defined as the set of all events p such that
— pre. (Remember « is definable in terms of A4.) Two points of A(e) are
on the same half cone if and only if they are not causally connectible
or there exists a signal connecting them which does not pass through
E(e) or e. It follows that there are two such half null cones, with only
e in common, thatis, 4_(e) U 4,(e) = A(e) and 4_(e) N 4, (e) =
{e}. Note that this distinction, once made on the null cone at any point
of spacetime, can be consistently carried by parallel transport to the
null cone at any other point of spacetime.

Thus A can be used to define two additional simultaneity relations,
Back,, and Forw,,, relative to a time-like world line O: two events are
simultaneous relative to an event e on O if and only if they lie on 4_(e)
[4.(e)]. Clearly neither relation is “vacuous” in Malament’s (297)
sense: e is simuitaneous to events not on O and not all events are si-
multaneous. Each is also trivially an equivalence relation. Most im-

7. Note that these are not necessarily null cones.

8. This distinction is preserved under all causal automorphisms. The ability to make
this distinction does not imply a time orientation but only a time orientability of space-
time. Choosing one of them in a definition of simultaneity (see below) does introduce
a time orientation. But even this is not a choice of a direction of time: the “arrow of
time” could just as well point to the past as to the future.
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portantly, each of these relations can be defined from A alone, since
A_(e) [4.(e)] can be so defined. (Note, that since they are definable
from A, they are also definable from x).

Clearly something is amiss with Malament’s theorem. A correct
mathematical result seems to be contradicted by patently good coun-
terexamples. The trouble lies in the interpretation of one of the con-
ditions that Malament imposes on simultaneity relations. Malament
requires that a relation be “causally definable from x and O” if and
only if it is preserved under al/l O causal automorphisms. As noted in
Section 2, these include O-temporal reflections which preclude our
counterexamples. Our result shows that Forw,, and Back,, are caus-
ally definable from x and O. This suggests that we exclude O-temporal
reflections from the group of admissible O causal automorphisms. Is
this physically reasonable?

It is perfectly reasonable to demand that any relation between events
be preserved under symmetry transformations of Minkowski spacetime
that can be physically implemented as active transformations, that is,
as transformations that take the related events from one spatio-
temporal configuration to another. The group of proper, orthochron-
ous Poincaré transformations (consisting of spatial rotations, boosts,
and spatial and temporal translations with respect to a particular in-
ertial reference frame) can clearly be implemented actively. Scale trans-
formations and temporal and spatial reflections, which are also in-
cluded in Malament’s group of O causal automorphisms, require
separate analysis.

All proper orthochronous Poincaré transformations are continu-
ously connected with the identity. Scale transformations are also con-
tinuously connected with the identity but they do not preserve all in-
variants of the Poincaré group, in particular, the length of any non-null
vector. Therefore, they are not physically implementable as active
transformations on any relation depending on non-null separation be-
tween events.® Therefore, we shall not use invariance under scale trans-
formations in the proofs of Theorems 1 and 2 below.

Temporal and spatial reflections are discontinuous transformations,
that is, they are not continuously connected with the identity. The iden-
tification of two physical configurations, one of which is generated
from the other by a transformation continuously connected to the iden-
tity, is unproblematic. However, what is meant by “‘the identical physi-
cal configuration™ after a discontinuous transformation is problematic,
and must be suitably explicated before invariance can even be inves-

9. This means they are not physically implementable as active transformations in any
theory that contains massive particles or fields.
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tigated. Whether any explication is possible that extends invariance to
discontinuous transformations depends on the dynamical theory being
considered. An extensive discussion, starting in the late 1950s with the
discovery of parity violation in weak interactions, indicated the limited
applicability of (active) spatial- and then, later, time-reversalinvariance
to quantum field theories of the weak interactions.! If we confine our-
selves to local special-relativistic quantum field theories, the PCT the-
orem implies that the time-reversed mirror image of a system of par-
ticles with given velocities is a system of anti-particles with reversed
velocities. Thus the event corresponding to an electron at a point in an
inertial reference frame will be a positron at the spatially reflected point
with equal and opposite velocity. Since reflections are not physically
implementable as active transformations, it is not physically reasonable
to demand that all relations between events be universally preserved
under them.

Hence, there is no physical warrant for requiring that Minkowski
spacetime be non-oriented and non-temporally oriented. As is well
known (see, e.g., Hermann 1966) the spacetime on which a group of
symmetry transformations acts can be constructed from the group.
Given the full Poincaré group, Minkowski spacetime may be identified
with the quotient of the Poincaré group by its Lorentz subgroup. But,
restriction to the proper, orthochronous Poincaré group (and its Lor-
entz subgroup), as physically warranted, yields oriented, temporally
oriented Minkowski spacetime.

We are thus led to broaden the class of relations causally definable
from x and O in the following way (and designate the new relation as
causally’ definable):

Definition: A relation is causally’ definable from x and O if and only
if it is preserved under the group of all O causal automorphisms
continuously connected to the identity.

The O causal automorphisms continuously connected to identity,
which we will call O causal’ automorphisms, include the rotations and
translations; they exclude all reflections.!! The following trivial Lemma
will be useful later:

Lemma: Standard simultaneity is causally’ definable from x and O.

10. For a discussion of the problem of time reversal invariance, see Sachs 1987.

11. Malament’s proof uses scale transformations, which are included in the group of
causal automorphisms in addition to the Poincaré transformations. As noted in the
text, the proofs of our theorems are independent of a requirement of invariance under
scale transformations. We retain them in the definition of causally’ definable to keep
our discussion as close as possible to that of Malament.
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The validity of this lemma is a consequence of Malament’s Propo-
sition 1.22 Since our definition of “causally’ definable from x and O”
only requires invariance under a sub-group of Malament’s group of
transformations, all relations, including standard simultaneity, that are
definable in his framework are ipso facto definable in ours.

However, what does not follow from the new relation is the unique-
ness of the Poincaré-Einstein convention. Malament’s proof fails be-
cause of its dependence on time reflection-invariance, and the way in
which it fails shows—in yet another way—why the backward (forward)
null cone definition of simultaneity (Back,, . [Forw, ]) is a relation caus-
ally’ definable from x and O. Malament shows (as part of his proof of
Proposition 2) that, besides the Sim, hypersurfaces induced by the
Poincaré-Einstein convention, the other potential simultaneity hyper-
surfaces (by his definition of causal definability from x and O) are full
(not necessarily null) cones (298). He rejects such full cones—as do we
the full null cone—because they lead to the unpalatable conclusion that
all points in Minkowski spacetime are simultaneous with each other.
The reason Malament generates only full cones, rather than also half
cones, is that he requires a simultaneity relation to be invariant under
O-temporal reflections. Once the demand of O-temporal reflection in-
variance is dropped, one half cone cannot be transformed into the
other, and either half null cone meets all our criteria.!?

Nevertheless, even after dropping invariance under O-temporal re-
flections, there is something unique about standard simultaneity, as
Stein (1991, 153n) has noted. Drawing once again on the insight of
Einstein discussed in Section 1, we characterize it in Theorem 1.

Let O(e) be an inertial world line through the event e and O(e’) be
the parallel inertial world line through an event e'. Let Sim,,, [Sim ]
be the standard simultaneity defined for O(e) [O(e")].

Theorem 1: Standard simultaneity is the only non-vacuous simulta-
neity relation causally’ definable from x and O that depends only
on an inertial frame, and not on the particular world line O initially
chosen to define that inertial frame. In other words, Sim,
= Simg,, for all e and ¢’.

Proof Sketch: The inertial frame is characterized by the fibration of

12. The important part of this proposition, as Malament notes, goes back to Robb
1914,

13. That the introduction of a temporal orientation of spacetime blocks Malament’s
proof was first noted by Spirtes (1981, 171-186). However, he interprets this result as
showing only that non-standard simultaneity relations are “‘conventional” in his sense.
Stein (1991, 153n) has also noted this weakness of Malament’s proof.
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spacetime consisting of all inertial world lines parallel to O. So we
must show that (i) Standard simultaneity is independent of which
of these lines we start from; and (ii) that it is the only simultaneity
relation causally’ definable from x and O that has this property.

(i) is trivial. Consider the hypersurface defined by all events stan-
dardly simultaneous with an event p on O. As Malament shows
(296-297), this hypersurface is orthogonal to every fiber in the
fibration consisting of all straight lines parallel to O. Since stan-
dard simultaneity is an equivalence relation, it does not matter
which line we start from: the same simultaneity relation will hold
for all events in spacetime;

(ii) is only slightly less trivial. According to our definition, any si-
multaneity relation causally’ definable from x and O must be in-
variant under any transformation belonging to the group of O
causal’ automorphisms. This implies that it must take the family
of hypersurfaces of simultaneity onto itself under any such auto-
morphism. Now, these O causal’ automorphisms consist of rota-
tions about O, translations along O, and scale transformations. If
the simultaneity relation is also to be independent of the particular
world line in the fibration from which we start, then the family of
hypersurfaces of simultaneity must also be invariant under trans-
lations that rigidly displace the fibers into each other. Any such
translation can be decomposed into a translation along the fibers
and a translation orthogonal to the fibers. Translations along the
fibers are already included in our O causal’ automorphisms, So,
the only additional translations that we need to consider are those
orthogonal to the fibers. If they are not to affect the simultaneity
relation (which amounts to our assumption that the simultaneity
relation is independent of the initially-chosen world line O), these
translations must take each simultaneity hypersurface onto itself.
So, take any point p on O, and consider the orbit of p under the
action of the group of orthogonal translations (i.e., the set of
points onto which p is translated by the members of this group).
It is clearly the hyperplane orthogonal to O that includes p. Thus,
by construction, we have shown that this hyperplane which, as we
have seen, corresponds to the standard simultaneity relation, is the
only such invariant hypersurface.

Now assume causal’ definability for simultaneity relations, but not
including invariance under scale transformations, and conditions (i),
(ii), and (iii) of Section 2. We have seen what is then unique about the
Poincaré-Finstein convention is its independence of the choice of a
point in an inertial frame or, we may say, of the choice of an observer
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at rest in an inertial frame. It is obviously not invariant under boosts
from one inertial frame to another at any point.

What is unique about the backward (forward) null cone convention?
It is the only simultaneity relation relative to O at an event e that is
independent of the state of motion of an observer at a point ¢ on O
such that no event is simultaneous with another in its causal future
(past). This observation is formalized in the following theorem:

Theorem 2: Back,, (Forw,, ) is the only simultaneity relation caus-
ally’ definable from x and O satisfying the following conditions:
() given an event e on an inertial world line O, the relation shall
be independent of all boosts at ¢; and (ii) no event is simultaneous
with one in its causal future (past). If O'(e) represents another
inertial world line through e, this result can be written as Back,,
= Back, ,(Forw,, = Forw, ) for all O(e) and O’'(e).

Proof Sketch: Let p be any event not on O that is simultaneous with e.
Consider the vector ep. By condition (i) of the theorem, under
boosts at e, the length of this vector must remain invariant. Thus,
the locus of p under all such boosts is either the forward or back-
ward null cone or a time-like hyperboloid within the null cone.
Now, e does not belong to any such hyperboloid. Therefore, if
such a hyperboloid were used to define the simultaneity relation,
e would not be simultaneous with itself violating the reflexivity
condition of an equivalence relation. Thus, only the two half null
cones remain as potential hypersurfaces of simultaneity. Condition
(ii) restricts us to one of the two.

Now, we can compare the Poincaré-Einstein and the backward (for-
ward) null cone conventions. Pre-relativistic kinematics leads to two
compatible expectations of the simultaneity relation: (i) it should be
independent of the position of an observer; and (ii) it should be inde-
pendent of the state of motion of an observer. In special relativistic
kinematics, these two expectations are no longer compatible, Theorem
1 shows that the Poincaré-Einstein convention meets the first expec-
tation; Theorem 2 shows that the backward (forward) null cone meets
the second. In that sense, each convention is natural. Within special
relativity there is a trade-off between the two conventions. However,
the backward (forward) null cone convention has the advantage that
it is generalizable to arbitrary time-like world lines in Minkowski space-
time as well as to many spacetimes with curvature.

4. Final Remarks. Returning to the assessments of Malament’s result
mentioned in Section 1, we generally agree with Havas’s assessment,
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though not with the details of his criticism. There is more to the result
than he indicates. Beyond showing that time-orthogonal coordinates
can always be defined, Malament has shown that they can be causally
defined. Of course, as Malament notes, this result was implicit in Robb
1914, and Torretti (1983, 229) points out that it was explicitly proven
by Mehlberg (1935, 1937).

Turning to the philosophical literature, Redhead surrendered pre-
maturely when he accepted Malament’s proof as showing that on/y the
Poincaré-Einstein convention is causally definable. If our assessment
of Malament’s result is correct, then Friedman’s and Torretti’s are not.
Even aside from the question of uniqueness of a simultaneity definition,
we find most puzzling Friedman’s contention that standard simulta-
neity cannot be varied ‘“without abandoning the basic structure” of the
special theory of relativity. As noted earlier, Einstein (1905) mentions
the possibility of using the backward null cone convention to define
simultaneity. We have shown here how that possibility can be incor-
porated into a causal definition of a non-standard simultaneity relation
within the standard structure of the special theory of relativity. Of
course, the best way to demonstrate the conventionality of simultaneity
is to formulate the basic structure of the special theory of relativity
without the use of any simultaneity convention. Elsewhere, we will
show how this can be done using radar ranging coordinates (i.e., ad-
vanced and retarded times) to coordinatize events with respect to an
inertial world line, and Bondi’s (1980) K-calculus (i.e., the radial Dopp-
ler shift) to perform coordinate transformations between one inertial
world line and another.

Turning to Norton, we only hope that our theorems—together with
Havas’s critical comments—Iead to at least a minor reversal in debates
in the philosophy of space and time. After describing Spirtes’ (1981)
result about temporally oriented spacetimes (see fn. 13), Norton (1992,
226) adds: “However, before modifying the construal of causal defin-
ability by adding or subtracting from the list [of Malament’s criteria],
we would need to find very good reasons for doing so.” We believe
that we have supplied the needed reasons.
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