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Abstract?

1 Introduction

Up to the present, all fundamental® physical theories have involved space-time
structures. That is, such theories have involved certain concepts of space
and time, related to each other by the concept of change of something® in
space through time. Traditionally, geometry was a metrical description of
three-dimensional spatial intervals®; similarly, a metrical description of tem-
poral intervals is called chronometry; together, they constitute the chrono-
geometrical structure of space-time. The concept of change may either refer
to motion, that is changes of place of some limited region of space over time,
as in the motion of a point particle; or to quantitative changes of some quality
(or qualities) attached to each place in a region of space over time, as in field
theories?.

The analysis of motion generally presupposes a class of natural (or force-
free) motions; any deviation from such motions is attributed to the action of
a force. Mathematically, the class of natural motions is described mathemat-
ically with the help of an inertial connection over space-time. As discussed in
more detail below, the deeper meaning of the equivalence principle is that the
effects of gravitation may be considered not as due to a “gravitational force”,

*MY TITLE IS GIVEN, OF COURSE, IN HUMOROUS HOMAGE TO STEVEN
HAWKING’S BRIEF HISTORY OF TIME. THOSE LOOKING FOR AN ACTUAL
BRIEF HISTORY OF THE CONCEPT ARE REFERRED TO STACHEL 1999BCITE.
T add “fundamental” to exclude phenomenological theories such as thermodynamics, which
do not involve space-time structures.
bDescribing just what that something is, is the task of each physical theory.
¢Currently any mathematical description of a space of any number of dimensions is called
a geometry. See the following section.
dFor example, in a perfect fluid theory, the qualities attached to each point of the fluid
field would be the density and pressure of the fluid. In electromagnetic field theory in
the (34+1)-dimensional formulation, the qualities would be the electric and magnetic fields,
described by two three-vectors, at each point of the electromagnetic field.

stachel: submitted to World Scientific on August 6, 2002 1




as Newton originally suggested; but as part of a class of natural motions
described by an inertio-gravitational connection®.

Taken together, the chrono-geometrical and inertio-gravitational struc-
tures of any physical theory constitute what I call its space-time structures.
I shall present a brief historical-critical/ survey of the space-time structures
that characterize the development of theoretical physics from Newton to Ein-
stein, i.e., the role in these theories of the chrono-geometrical and inertio-
gravitational structures and of the compatibility conditions between them. I
shall then emphasize the ways in which the space-time structure of the gen-
eral theory of relativity, by virtue of its dynamization of the chrono-geometry,
differs radically from that of all previous physical theories. I shall stress two
fundamental differences:

1. the basically local nature of the theory implies the absence of a preas-
signed global manifold; the local spatio-temporal structures of particular
solutions to the field equations determine the global manifold;

2. the role of diffeomorphism invariance in precluding the existence of any
pre-assigned (kinematical) spatio-temporal properties of the points of the
manifold (even locally) that are independent of the choice of a solution to
the field equations (no kinematics before dynamics). The physical points
of space-time thus play a secondary, derivative role in the theory, and
cannot be used in the formulation of physical questions within the theory
(they are part of the answer, not part of the question).

Finally, I shall discuss the extent to which these features can be gener-
alized, and (assuming that the generalized features are characteristic of the
problem) the challenge that they present to any theory of quantum gravity.
But before I go into these matters, I shall discuss some needed mathematical
preliminaries.

2 Geometry and Algebra: Points and Coordinates

We may define a geometry as the study of a set S of elements p, denominated
points without prejudice as to their nature, together with a set R of basic

€A connection (inertial or inertio-gravitational) is also needed in field theories: it allows us
to compare the quantitative changes of some quality at neighboring points of space-time.
f1 use this term in homage to Ernst Mach, who so characterized his surveys of the history
of mechanics, optics and thermodynamics. It also serves to emphasize that I am not at-
tempting a true historical survey, but rather a retrospective account based on our current
understanding of these theories.
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relations between these points. The points are homogenous in nature, at least
insofar as concerns the geometrical relations between them?. This means that
there exists a group g of automorphisms (one-one mappings of the set of points
onto itself p < p’) that leaves all the basic relations undisturbed (see Weyl
194624, Weyl 1949%%): if R(z,y, z...) holds, where z,y, z are free variables
that may take any (distinct) points as their values and z — 2/, y — ¢/, etc.,
under the automorphism, then R(z’,y’,z’...) also holds. And such g acts
transitively: if p and ¢ are any two points of the set, there exists at least one
automorphism taking p into g. Alternatively (Klein 1872'%), one may define
a geometry by the set of elements and an abstract group G, which has a
faithful realization in the group g of automorphisms that acts transitively on
S. Relations between the points are geometrical iff they are invariant under
all automorphisms”.

Basic to progress in both the mathematical treatment of geometries and
their applications in physics is the process of coordinatization (Weyl 194624,
Shafarevich 19927); that is, the assignment of a frame, consisting of a set of
“objectively individualized reproducible” coordinates, quantities in the most
general sense, which are put into one-one correspondence with the homoge-
neous elements (points) of the geometry?’. The use of the term “quantity” by
no means implies that the coordinates making up the frame must be ordi-
nary numbers. While they must share with the latter the property of being
inherently distinguishable from each other, they may be any sort of quan-
tities (ordinary Cartesian coordinates, non-commuting coordinates, quater-
nions, vectors, matrices, etc.) that are adapted to the description of the re-
lations constituting a particular geometry. Indeed, the construction of these
quantities and the study of their properties has been said to constitute the

9“There is no distinguishing objective property by which one could tell apart one point
from all the others; fixation of a point is possible only by a demonstrative act as indicated
by terms like ‘this’, ‘here’.” (Weyl 194624, p. 14).

h“The mathematician unwilling to draw on any external truth will be inclined to take
the view that any group whatsoever can be appointed as the group of automorphisms; he
declares by this appointment or convention that he is going to study only such relations
among points as are not destroyed by mappings of his group” (Weyl 194624, p. 15).
““The meaning of coordinatisation is to specify objects forming a homogeneous set X by
assigning individually distinguishable quantities to them. Of course, such a specification
is in principle impossible: considering the inverse map would then make the objects of X
themselves individually distinguishable. The resolution of this contradiction is that, in the
process of coordinatisation, apart from the objects and quantities, there is in fact always a
third ingredient, the coordinate system (in one or another sense of the word), which is like
a kind of physical measuring instrument. Only after fixing a coordinate system S can one
assign to a given object x€X a definite quantity, its ‘generalised coordinate’.” (Shafarevich
19927, p. 160).
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domain of algebra’.

The introduction of a frame and coordinates introduces a “fundamental
problem ... how to distinguish the properties of the quantities that reflect
properties of the objects themselves from those introduced by the choice of a
coordinate system? This is the problem of invariance of the various relations
arising in theories of this kind. In spirit, it is entirely analogous to the problem
of the observer in theoretical physics” (Shafarevich 1992°, p. 160). The
answer to this problem is that there must be a realization of the automorphism
group that acts on the frames, transforming one frame into another. “If the set
of quantities forms a vector space, then this action defines a representation of
G [the automorphism group|” (ibid.) The realization (resp. representation)
must be frame-independent, assuring the objectivity of the entire class of
frames and corresponding coordinate systems (Weyl 194624, 1949%5).

3 Space-Time Structures

Traditionally, space-time structures have been associated with the behavior
of ideal measuring rods (geometry) and clocks (chronometry) and “free” test-
particles (inertial structure)®. With the inclusion of gravitation in the picture,
it has been found possible to place it on the inertial side of the equation of
motion of a “free” particle, both at the Newtonian and Einsteinian levels,
so that we shall then speak of the inertio-gravitational structure, represented
mathematically by a symmetric affine connection. The special theory of rel-
ativity showed the need to combine the 1-dimensional chronometrical and 3-
dimensional geometrical structures into one 4-dimensional chrono-geometrical
structure, represented mathematically by a pseudo-metrical tensor field; but
we can and shall adopt the 4-dimensional point of view even for the pre-
relativistic Galilei-Newtonian theories, in which the geometry is represented
by a degenerate contravariant metric field of rank three!, and the chronometry

J“[W]hen we meet a new type of object, we are forced to construct (or to discover) new
types of ‘quantities’ to coordinatise them. The construction and the study of the quantities
arising in this way is what characterises the place of algebra in mathematics (of course,
very approximately). From this point of view, the development of any branch of algebra
consists of two stages. The first of these is the birth of the new type of algebraic objects
out of some problem of coordinatisation. The second is their subsequent career, that is, the
systematic development of the theory of this class of objects...” (Shafarevich 19927, p. 8)
kEOur point of view is that the use of such ideal elements ( measuring rods, clocks and free
test particles) does not amount to an “operational definition” of the quantities they measure;
rather it amounts to an assertion of the existence (relative to the theory in question) of the
structures (geometrical, chronometrical and inertial, respectively) being measured.

"While this is how it is usually introduced, it is actually more intuitive to introduce a triad
of mutually orthogonal unit vector fields, representing a frame of reference that allows us
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by a scalar field (the absolute time), whose gradient has a vanishing transvec-
tion with the metric field. Compatibility conditions between the chronogeo-
metrical and the inertial or inertio-gravitational structures essentially require
that freely falling clocks and measuring rods still remain good instruments;
and that the proper time of a clock travelling along such an inertial path
also measures the affine time along that path. Mathematically these amount
to the conditions that the metric field and the gradient of the absolute time
have vanishing covariant derivatives with respect to the inertio-gravitational
connection.

To sum up the previous section, by its very definition, a geometry con-
sists of elements (points) that are homogeneous under some group of auto-
morphisms; in order to develop any sort of calculus for the treatment of a
geometry, a frame of reference must be adopted that allows us to individuate
the points by a coordinatization. So much is common to all geometries. But
when we wish to discuss space-time geometries another important distinction
arises between those space-time geometries that allow a kinematical coordi-
natization and those that do not, but require a dynamical coordinatization. 1
shall discuss particular space-times in the next section; but shall preface this
discussion with some general remarks that will hopefully make the distinction
clear(er). We may imagine a physical theory to consist of two distinct sets
of relations: one set is fixed and given; while the second set of relations is
widely variable but subject to certain restrictions, which we shall call dynam-
ical. If the fixed set of relations determines the group of automorphisms of the
space-time associated with the theory, we shall call the relations kinematical;
and the class of frames and coordinates singled out by these automorphisms
kinematical frames and coordinates™. If, on the other hand, the theory has no
fixed set of relations, so that any physical frame and coordinatization must be
associated with a set of dynamically determined relations, we shall call them
dynamical frames and coordinates.

4 Historical-Critical Survey

We shall eschew discussion of pre-Newtonian theories and confine ourselves
to discussion of the space-time structures associated with four theoretical

to coordinatize the Euclidean hyperplanes on which the absolute time is constant.

"™We must also allow for the possibility that, although the kinematical frames and coor-
dinates could be defined independently of dynamical relations, in point of fact they are
actually defined with the help of dynamical relations; so long as the resulting coordinati-
zation is independent of the particular dynamical relations chosen, it is still kinematical in
nature.
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Figure 1. Caption?

frameworks:
1. Galilei-Newtonian space-time;
2. Minkowskian space-time;
3. general non-relativistic space-times;
4. general-relativistic space-times.

Note that 1) and 2) refer to individual space-times; while 3) and 4), which
include gravitation at the Newtonian and Einsteinian levels, respectively, refer
to classes of space-times picked out by dynamical equations for the inertio-
gravitational field.

Before going into more detail, let me situate these theories with respect
to a cube that is even more fascinating — at least for a physicist — than the
Rubik cube. I shall call it the “”Bronstein cube” since it is based on an idea
introduced by the Soviet physicist Matvey Petrovich Bronstein (see Bronstein
19337; Einstein 1999a’). The axes of this cube (see Figure 1) are formed
by the three fundamental constants ¢, G, and h. We start at the origin
with Galilei-Newtonian space-time and the corresponding non-gravitational
physics (classical mechanics). If we move in the G-direction, we reach general
non-relativistic space-times (the name is due to Ehlers 1973a°, b%), in which
Newtonian gravitational theory is interpreted as a transformation of the fixed
inertial structure of Galilei-Newtonian space-time into a dynamical inertio-
gravitational structure. If we move in the c-direction, we reach Minkowski
space-time, with its modification of the Galilei-Newtonian chronogeomery, and
special-relativistic physics (relativistic mechanics, Maxwell’s electrodynamices,
etc). If we move simultaneously in the c-and G-directions, i.e., in the ¢ —
G-plane, we reach general-relativistic space-times, with their modifications
of both the chrono-geometrical and inertio-gravitational structures. If we
move from the origin in the h-direction, we reach non-relativistic quantum
mechanics; while if we move simultaneously in the c-and h-directions, i.e., in
the ¢ — h-plane, we reach (special-relativistic) quantum field theories. If we
move simultaneously in the G-and h-directions, i.e., in the G — h-plane, we
reach the quantized version of Newtonian gravitational theory. And of course,
if we move simultaneously in all three directions, i.e., into the cube, we reach
the promised land: quantum gravity.
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Figure 2. Caption?

It is not clear to what extent the operations of moving in a plane and then
adding the third dimension, commute: in particular if we start from quantum
field theory (¢— h-plane) and try to reach the promised land by adding G, it is
not at all obvious that we shall reach the same place that we reach if we start
from general relativity (c—G-plane) and add h. Indeed, we might characterize
string theory as the result of an attempt of the first type, and loop quantum
gravity as the result of an attempt of the second type”. I shall proceed on the
assumption that general relativity contains some important lessons about the
structure of space-time that should not be ignored in the search for a future
quantum theory of gravity, and discuss the “Bronstein (¢ — G) plane”, and
the lessons that can be drawn from it about how to move in the h-direction.

Now let us consider the four classes of space-times in the Bronstein plane
(see Figure 2) in a little more detail:

1. Galilei-Newtonian space-time has the inhomogeneous Galilei group as
its group of automorphisms; it consists of three spacelike and one time-
like translation, three spatial rotations and three Galilei boosts. The
chronometrical, the geometrical and the inertial structures are all non-
dynamical.

2. Minkowski space-time has the Poincaré (inhomogeneous Lorentz) group
as its group of automorphisms. While the translations and rotations are
similar, the boost are now Lorentz boosts. Chronometry and geometry
are fused into a single chrono-geometrical structure; but it and the inertial
structure remain non-dynamical.

3. General non-relativistic space-times have an automorphism group that
has been called the Newtonian group (see Ehlers 1973a’ b®); in addition
to the translations and rotations, it includes transformations between
all rigid, non-rotating frames of reference. So it is no longer a finite-
parameter Lie group but, in addition to the spatial translations and ro-
tations and time translations, involves “boosts” (now including arbitrary
rigid linear accelerations) that depend on three functions of one variable

"Lee Smolin pointed out that in fact loop quantum gravity actually originated from consid-
eration of loop quantizations of special-relativistic quantum field theories. But the current
diffeomorphism-invariant loop quantization procedure in quantum gravity is logically inde-
pendent of its historical origins. See, e.g., Rovelli 199811, section IIB.
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— the absolute time. Even though its definition involves the dynamical
inertio-gravitational structure, the resultant structure is independent of
the particular dynamical field chosen; so that choice of a frame and as-
sociated coordinatization is still kinematical in nature. Thus, while the
inertio-gravitational structure is dynamical, the chronometry and geom-
etry remain non-dynamical.

4. general relativistic space-times have the diffeomorphism group as
their automorphism group. Both the chrono-geometrical and inertio-
gravitational structures are dynamical.

While they differ in a number of ways, the first two of the above classes
of space-times have several features in common, by which they differ from
the last two. Most important for our purposes, their automorphism group
are both finite-parameter Lie groups. In both cases, this implies that we can
single out physically a class of inertial frames, each of which can serve as the
physical basis of one of the coordinate frames discussed earlier. An inertial
frame can be physically realized by singling out (“pointing to” in Weyl’s ter-
minology) some body in rigid inertial (force-free) motion. (I emphasize that,
within the two theoretical frameworks we are discussing, this is a kinematical
concept, involving only the geometry, chronometry, and inertial structures of
space-time.) All we need to add is a choice of original on the body selected,
a set of three mutually perpendicular directions, and a unit of length (i.e,
another point on the body besides the origin). The usual Cartesian spatial
coordinatization can thus be physically realized. For Galileian space-time,
the coordinatization of the absolute time can now be fixed by a choice of
temporal origin and a unit of time. For Minkowski space-time, the relativ-
ity of simultaneity presents an additional complication; but, as I have shown
elsewhere (see Stachel 1983!%), we do not even need to introduce clocks as
separate entities: they may be constructed from families of bodies in inertial
motion relative to each other, and the Poincaré-Finstein simultaneity conven-
tion can also be defined in terms of these bodies. In both cases, we now have
a kinematical coordinatization of the space-times.

By way of pointing out the sharpest contrast, let us jump to case 4), gen-
eral relativistic space-times. Here, no physical significance can be attached
to a coordinatization that is independent of the dynamical fields, and in par-
ticular of the pseudo-metric tensor field which is always present®. For let
us assume the contrary, i.e, suppose that such a kinematical coordinatization

°We can always formally introduce a coordinatization via a fibration and foliation of the
manifold; but unless these can be associated in some way with some dynamical fields, such
a mathematical coordinatization has no physical significance.
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were possible. Then, as the well-known hole argument shows, the theory could
not have a well-posed Cauchy problem?. Indeed, more generally, given any
solution to the field equations on the manifold, we could always construct
another solution that differs from it only within some open set H (the hole).
To see this, introduce any diffeomorphism that is equal to the identity on the
complement of the open set, M-H; but differs from the identity on H. Then, by
the nature of generally-covariant field equations, the carry-along of the origi-
nal solution by this diffeomorphism is also a solution to these field equations;
and indeed a solution that differs from the original one only on the open set.
Taking H to be the future of any space-like Cauchy surface, we see that we
can apparently construct two (and by extension a four-fold functional infinity)
of solutions with the same initial data by choice of the diffeomorphism on H.
If the points of the manifold were physically distinguished kinematically (i.e.,
independently of the solutions to the field equations), we should have to re-
gard these solutions as physically distinct. The only ways out of this dilemma
(one, by the way that both Einstein and Hilbert originally confronted) are to
break general covariance by attaching physical significance to four additional
non-covariant equations (cf. Fock, Luganov, etc.); or to accept that only a
dynamical physical coordinatization is possible in a generally covariant theory.

By way of contrast, let me highlight the difference by explaining why the
hole argument fails for space-time theories such as cases 1) and 2) In both
of these cases, if the group of automorphisms is such that, if an element of
it reduces to the identity on the complement of an open set, then it reduces
to the identity everywhere; so the hole argument is clearly blocked?. That is
certainly the case if the automorphism group is a finite-parameter Lie group,
which is just the case for the inhomogeneous Galilei (case 1) and Lorentz
groups (case 2). Case 3), the Newtonian group, is a little more complicated.
If the hole H is finite in size, then indeed an element of the automorphism
group is fixed by its values on M-H, since its value is thereby fixed for all

PFor the hole argument, see Stachel 198916, pp. 71-81, Einstein 1993a’. By way of contrast
with the space-time manifold, consider the space of perceived colors. This is a three-
dimensional manifold, the points of which are coordinatized perceptually by three coordi-
nates, for example: hue, brightness and saturation, quite independently of any metric that
may be imposed on the space. See Stachel 198916, p. 76; and for a recent discussion of the
geometry of color space Ashtekar, Corichi and Pierri 19991,

9An attempt has been made to extend the hole argument to all space-time theories (see
Earman and Norton 1978”) by rewriting them in generally covariant form. But of course this
does not change the automorphism group of the space-time theory. If the theory is written
in generally covariant form, geometrical object fields have to be explicitly introduced to
describe the dynamically-independent chronometrical, geometrical (or chrono-geometrical)
and inertial structures of space time. The automorphisms of the space-time geometry are
then defined as the subclass of diffeomorphisms that are symmetries of these fields.
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times. But if H is the future of any (spacelike) hypersurface ¢(0)=const, then
we can change the value of the inertio-gravitational field by an automorphism
of the Newtonian group that reduces to the identity before ¢0), and is a
linear acceleration transformation after ¢(0). But this is just what we expect
physically, since the equivalence principle asserts the inability to distinguish
between accelerations of frames and (a certain class of) changes of the inertio-
gravitational field; and mathematically, since the inertio-gravitational field is
not a tensor field but a connection field, the components of which need not
disappear in all frames of reference just because they do in one.

Is it a bad thing that kinematical coordinatizations are impossible in
general relativity? Einstein certainly did not think so.

You consider the transition to special relativity as the most essen-
tial thought of relativity, not the transition to general relativity. I
consider the reverse to be correct. I see the most essential thing in
the overcoming of the inertial system, a thing that acts upon all pro-
cesses but undergoes no reaction. This concept is, in principle, no
better than that of the center of the universe in Aristotelian physics.
...Contemporary physicists do not see that it is hopeless to take a the-
ory that is based on an independent rigid space (Lorentz-invariance)
and later hope to make it general relativistic (in some natural way)".

The dynamizing of the inertio-gravitational structure enables the elimination
of (global) inertial frames, those unmoved movers that influence the rest of
physics without themselves being affected by any physical processes. What
about the chronogeometry? If one were to try to preserve its special relativis-
tic form, one would have to give up the compatibility conditions, and regard
the inertio-gravitational field as exerting a distorting influence on the behavior
of (ideal) measuring rods and clocks, so that the “measurable but distorted”
chrono-geometry, would differ from the “true but hidden” one. This is how
many quantum field theorists in effect interpret general relativity. But I in-
sist this is actually a different interpretation of the same field equations, not
equivalent to general relativity — and ultimately untenable, not least because
of the hole argument®.

"Einstein to George Jaffe, 19 January 1954. Cited from Stachel 19875, p. 201.

STo add just a few salient comments on this point: The global topology of a solution to the
general relativistic field equations may not be the same as that of the Minkowski space-time
manifold. Assuming that it is, there is no unique mapping of the points of the two manifolds
onto each other. Indeed, due to the diffeomorphism group, there is a four-fold functional
ambiguity in any such mapping. At the level of attempts at perturbative quantization
starting from Minkowski space-time, this ambiguity manifests itself in the fact that the
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5 Lessons for the Future?

The hole argument may be generalized in several directions’. In particu-

lar, one can apply a forgetful functor to the differentiable manifold with its
diffeomorphism group of mappings between points, getting a set with its per-
mutation group of mappings between elements. The geometrical object fields
can then be replaced by functions of (or relations between) the elements of
the set. If we require that:

1. any theory that picks out a class of functions of (or relations between)
the elements of the set be generally permutable; and

2. it must be possible to specify a model of the theory without giving the
values of the functions at (or the applicability of the relations to) every
element of the set;

then it follows from this generalized version of the hole argument that the
elements of the set can have no individuating properties that they do not
inherit from a chosen model of the theory. This result will apply to all discrete
structures, such as causal sets, that may be introduced to model or replace
space-time*.

One can also generalize in other directions, in which the coordinates in-
troduced to represent the salient features of the geometry are not ordinary
numbers, such as non-commuting geometries. As long as the automorphism
group of the geometry is a function group rich enough to include elements
not uniquely fixed by their action on the points of M-H, the hole argument
will go through, and if we want a theory such that a model does not have to
be specified by giving the values of the relevant functions or relations at each
and every point of the manifold (or what have you), then all distinguishing
or individuating features of the points must depend on the model chosen.

first order “gauge transformations” can also be interpreted as first order diffeomorphisms:
when we write g(puv) = nuv) + hpv), it is customary to consider huv) + & v) + s )
as a gauge-transfomed version of the same h field on the given background Minkowski
space-time. But it is just as valid to associate the Killing form with the Minkowski metric:
n(;ux) + & v) + s w); and regard it as a diffeomorphism of the Minkowksi space-time.
As a solution to the Einstein equations, Minkowski space-time is just as diffeomorphism-
invariant as any other solution. Within Einstein’s theory, diffeomorphism invariance is
inescapable; and if one insists on escaping it and maintaing only Poincare-invariance, one
is no longer within Einstein’s theory, even if the field equations are formally the same.
tFor more details, see Stachel 2002a2!, 2002b?2.

“Although up to now all fundamental theories have involved space-time structures, it by
no means follows that this will continue to be so in the future. Space-time may turn out
to be a derived concept in some future fundamental theory. Indeed, Einstein had already
considered such a possibility: see Einstein 1993a’ for details.
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The common feature of all these cases is that they result in relational
theories, in the sense that there are no features of the underlying points that
do not result from the ensemble of relations imposed on them by the partic-
ular model of the theory in question: aside from the underlying set and its
permutation group, there are no universal, model-free structures. Is physics
likely to proceed in the direction of such relational theories?

No one can say for sure, of course. But for some of us, the lesson of
general relativity is very persuasive. Once one has given up the idea of the
existence of a space-time structure that is independent of dynamics, and that
consequently can be coordinatized in a dynamics-independent way; once one
has realized that we are not forced to introduce such kinematical structures
into our physical theories (such as inertial frames of reference) that affect all
the rest of physics (i.e., all dynamical theories) but are themselves unaffected
by the nature of these theories in general or in particular by the solution to
the dynamical field equations that is adopted, it is hard to believe that the
development of physics will force us back to the use of such unmoved movers.
However we may be led to generalize the nature of the points that make up
our space-time — or whatever takes its place; however we may generalize the
algebra of the coordinates used to describe these points, as long as the points
are only individuated dynamically, i.e., by means of the solutions to some
dynamical equations limiting the coordinates — even if we replace the space-
time structures by some structures we come to regard as more fundamental,
we may hope that we shall only be advancing further along the road charted
by general relativity.

Quantum mechanics is based on the paradigmatic use of the concept of a
probability amplitude < a,z(1),t(1)|b,x(2),t2) >. This may be interpreted
physically in form of the answer to a question: If something (a) is prepared
(and registered) here-and-now (x1,t1), what is the probability of something
else (b) being detected (and registered)” there-and-then (x2,t2)7 (The answer
of course is the amplitude squared.) It depends on our being able to know
just what here-and-now and there-and-then signify, so that we can place our
preparation and detection apparatus at the right places and activate them at
the right times (with respect to some inertial frame of reference) in order to

YAs Bohr emphasized, a quantum mechanical phenomenon always includes the acts of
preparation and detection, which each involve some irreversible change (which I call a

very similar to Bohr’s concept of a complete phenomenon.) In the laboratory, the physical
systems in question form part of the apparatus used to set up an experiment; but of course
unobserved irreversible processes occurring in nature can serve just as well. In quantum
mechanics as in classical, human intervention is needed to read the results that have been
registered; but is not necessary for such natural quantum-mechanical phenomenon to occur.
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perform the ensemble of experiments designed to test whether our answer is
valid”. But, as we have seen, in general relativity here-and-now and there-
and-then cannot be part of the question; they must be part of the answer.
So the nature of the questions in a quantum theory that includes general
relativity must be of a radically different nature. Again, it is hard to believe
that this feature will be lost if we move from general relativity to even more
abstract structures, so long as some version or generalization of the dynamic
individuation principle is retained.

Now let me finally return to point 1) of my introduction: the basically
local nature of general relativity. In all previous physical theories — and in

preassigned global manifold, on which we impose our fields, dynamical and
non-dynamical alike. A singularity of the electromagnetic field does not im-
pose any change in the topology of Minkowski space-time for example. Al-
though the textbooks say that is what we do in general relativity, any working
relativist knows that is not what we do when we set out to solve the field equa-
tions. We start with a generic coordinate patch, find a solution to the field
equations on that patch, and then try to find the maximal extension of that
solution patch into a global manifold subject to certain (still much discussed)
criteria (such as, for example, geodesic completeness). So what we would ac-
tually do is something analogous to the analytic continuation of a complex
function. In that case, starting with a function element, or germ, of a holo-
morphic function, which we may think of as a local solution w = f(z) to the
Cauchy-Riemann equations, one can always construct a Riemann surface on
which w = f(z) is a single-valued function®.

I pointed out this discrepancy between theory and practice some time
ago¥. Since the set of all germs of a holomorphic function has the natural
structure of a sheaf, the analogy with analytic continuation suggests that sheaf
theory might be the appropriate mathematical tool to handle the problem in
general relativity. As far as I know, no one has followed up on this suggestion,
and my own recent efforts have been stymied by the circumstance that all
treatments of sheaf theory that I know assume an underlying manifold; so,
even if one starts with a germ, it is assumed that the manifold that results is
known/footnoteOf course, one might start with the large category of sheaves
and look for the sheaf that has the global manifold appropriate for the local

wOf course, in practice, and in quantum field theory even in principle, we need regions of
space-time rather than points. But this does not affect the argument.

ZSee, for example, the articles “Analytic Functions” and “Riemann Surfaces” in Iyanaga
and Kawada 1980°.

YStachel 198715 pp. 205-207.
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metric we are investigating; but I guess I am enough of a constructivist in
mathematics to feel uneasy about such an approach. See Stachel 2002b22,
Section le, for some further comments on this problem..

At any rate, there seems to be something inherently local about general
relativity’s method of approach to problems; while quantum theory seems to
have an inherently global approach to its problems: one needs the sum over all
paths, for example (NOTA: Although, of course, under certain circumstances,
only a few near the classical path make a significant contribution to the total
probability amplitude.); and specifying a wave function on just a patch of
a manifold is not very helpful. If I am right, this fundamental difference in
approach may be one of the deepest reasons for the difficulty of bringing both
theories under a common roof. At any rate, one of the problems (NOTA: See
the next section for another problem.) I see with all canonical approaches to
quantum gravity is that they start from a given global three-dimensional man-
ifold. While this does not fix the four-dimensional global topology, it certainly
goes far beyond a patch spatially while demanding much less temporally.

6 The Generalized Permutation Principle

Returning now to the second problem mentioned in the Introduction: as we
have seen, in general-relativistic theories, while the points of the manifold
are characterized as points of space-time independently of the particular re-
lations in which they stand to each other, they are individuated entirely by
the relational structure specified by some solution to the generally-covariant
field equations. Remarkably enough, the elementary particles are similarly
individuated by their position in a relational structure (NOTA: See Stachel
2002a2! for further discussion of this point.). Each particular kind of elemen-
tary particle (e.g., electrons, protons, K-mesons, etc.) may be characterized in
a way that is independent of the relational structure in which its exemplars are
imbricated: by their mass, spin, charge, half-life, etc.; but a particular elemen-
tary particle can only be individuated (to the extent that it can be) by its role
in such a structure. (The electrons in an atom, for example, are individuated
by the quantum numbers characterizing their place in the electronic structure
of that atom.) The reason for this is, of course, the requirement that all rela-
tions between N of these particles be invariant under the permutation group
acting on these particles (NOTA: This requirement is often referred to as the
requirement that elementary particles be either bosons (obey Bose-Einstein
statistics) or fermions (obey Fermi-Dirac statistics). While this argument only
applies to the treatment of elementary particles in non-relativistic quantum
mechanics, it can be generalized to their treatment in (special-)relativistic

stachel: submitted to World Scientific on August 6, 2002 14




quantum field theory, by consideration of the appropriate Fock spaces for
example.).

But the elementary particles and the points of space-time are the basic
building blocks of our current model of the universe. Since they are individu-
ated entirely in terms of the relational structures in which they are embedded,
only “higher-level” entities constructed from them can be individuated inde-
pendently of such relational structures (NOTA: I have discussed the question
of the emergence of individuality in somewhat more detail in Stachel 2002¢%3.).
If individuality has been lost at the level of depth to which we have currently
penetrated in our physical theories, it is hard to believe that it will re-emerge
if we succeed in penetrating to a deeper level in our understanding of nature.
This suggests that we impose the following generalized permutation principle
as a requirement on any candidate for a future (more) fundamental theory:

Whatever the nature of the basic elements out of which it is constructed,
the theory should be invariant under all permutations of these basic elements.

It is by no mean certain that the space-time manifold itself will form a
basic element of such deeper structure(s). It may turn out that space-time
itself is built out of quantized elements as the loop quantum gravity program
suggests. At an even deeper level, it may turn out that space-time itself is
a construct, built out of some radically different units. Again, it is hard to
believe that these units, whatever their nature, will regain an individuality
already lost at the classical space-time level. If my argument is correct, then
the generalized permutation principle should be applicable to them.

How do current candidates for a theory of quantum gravity fare when
examined in the light of this principle? The quantum gravity community splits
rather clearly into two sub-communities: those who approach the problem
with a background (primarily) in general relativity, and those who approach
the problem with a background (primarily) in quantum field theory. The
approach most used by the first group (at least until very recently) has been
canonical quantization; the approach favored by the second community (at
least until recently) has been string theory. I shall look briefly at these two
approaches.

Canonical quantization, in all its variants, is based on the imposition of
additional geometrical structures on the four-dimensional space-time man-
ifold: a foliation and a fibration that break up space-time into a three-
dimensional space and a one-dimensional time. Restricting the diffeomor-
phism group to the subgroup that preserves these structures clearly violates
the generalized covariance principle. I believe that this violation is responsible
for many of the problems that confront this approach, notably the notorious
“problem of time”. I think most general relativists would agree that in princi-
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ple it would be better to have an approach that does not violate the principle,
and much recent work in the field of loop quantum gravity and spin networks
has been devoted to attempts to find a four-dimensional formulation.

Turning to string theory, perturbative string theory fails the test, since the
background space-time (of no matter how many dimensions) is only invariant
under a finite-parameter Lie subgroup of the group of all possible diffeomor-
phisms of its elements. Since many string theorists, coming to the field with a
special-relativistic quantum field theory background, intially found it difficult
to accept this criticism, I find it encouraging that this point now seems to be
widely acknowledged in the string community. I quote from two recent review
articles. Speaking of the original string theory Michael Green notes:

This description of string theory is wedded to a semiclassical per-
turbative formulation in which the string is viewed as a particle
moving through a fixed background geometry. ... Although the se-
ries of superstring diagrams has an elegant description in terms of
two-dimensional surfaces embedded in spacetime, this is only the
perturbative approximation to some underlying structure that must
include a description of the quantum geometry of the target space
as well as the strings propagating through it (Green 1999%, p. A78).

A conceptually complete theory of quantum gravity cannot be
based on a background dependent perturbation theory. ... In ... a
complete formulation the notion of string-like particles would arise
only as an approximation, as would the whole notion of classical
spacetime (ibid., p. A 86).

Speaking of the more recent development of M theory, Green says:

An even worse problem with the present formulation of the ma-
trix model is that the formalism is manifestly background depen-
dent. This may be adequate for understanding M theory in specific
backgrounds but is obviously not the fundamental way of describing
quantum gravity (ibid., p. A 96).

And in a review of matrix theory, Thomas Banks comments (Banks 19982):

String theorists have long fantasized about a beautiful new physical
principle which will replace Einstein’s marriage of Riemannian ge-
ometry and gravitation. Matrix theory most emphatically does not
provide us with such a principle. Gravity and geometry emerge in a
rather awkward fashion, if at all. Surely this is the major defect of
the current formulation, and we need to make a further conceptual
step in order to overcome it (pp. 181-182).
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It is my hope that emphasis on the importance of the principle of dynamic
individuation of the fundamental entities, with its corollary requirement of
invariance of the theory under the entire permutation group acting on these
entities, constitutes a small contribution to taking that further conceptual

step.
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