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1. 1. INTRODUCTION

In this paper I will argue for the following three theses:

1. The concepts of parallel displacement in Riemannian geometry and of a non-met-
rical affine connection were developed postmaturely (see Section 2): By the latter
third of the nineteenth century, all of the mathematical prerequisites for their
introduction were available, and it is a historical accident that they were not
developed before the second decade of the twentieth century (see Section 3).

2. The appropriate mathematical context for implementing the equivalence principle
is the theory of affine connections on the category of frame bundles, with the bun-
dle morphisms induced by diffeomorphisms on the base manifold (see the Appen-
dix).
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 This theory allows a mathematically precise formulation of Einstein’s
insight that gravitation and inertia are “essentially the same [

 

wesensgleich

 

]” as he
put it (see Section 5). The absence of this context constituted a serious obstacle to
the development of the general theory of relativity—indeed an insurmountable
one to its development by the mathematically most direct route. Consequently,
Einstein was forced to take a detour through a long and indirect route from the
initial formulation of the equivalence principle in 1907 to the final formulation of
the field equations in 1915 (see Section 10). The detour involved focusing atten-
tion almost exclusively on the chrono-geometrical structure of space-time, and to
this day, many discussions of the interpretation of the general theory, and of the
problem of quantum gravity, still reflect the negative consequences of this detour.

3. Had the concept of an affine connection been developed in a timely manner, the
affine formulation of Newtonian gravitation theory, which was actually developed
only 

 

after

 

 the formulation of 

 

general 

 

relativity,

 

2

 

 could have been developed

 

before

 

 the formulation of 

 

special

 

 relativity. From the outset, such a formulation
would have placed appropriate emphasis on the inertio-gravitational structure of
space-time and posed the question of its relation to the chronometry and geometry

 

1 Insofar as needed for this paper, these concepts are briefly explained in the Appendix. A particularly
useful reference for a more extended discussion of most of these concepts is (Crampin and Pirani 1986).

2 See (Cartan 1923; Friedrichs 1927). Excerpts from Cartan can be found in this volume.
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of space-time (see Sections 6 and 7). When special relativity, with its new chrono-
geometry, was developed, this context for gravitation theory would have made the
transition from the special to the general theory of relativity rather transparent,
thereby avoiding the negative consequences of the actual transition mentioned
above.
In order to vivify these rather abstract theses, I have created Isaac Albert Newstein

(= Newton + Einstein), a mythical physicist who combines Newton’s approach to the
kinematical structure of space and time (chronometry and geometry) with Einstein’s
insight into the implications of the equivalence principle for (Newtonian) gravitation
theory (see Section 7). He did this shortly after Hermann Weylmann (= Weyl+ Grass-
mann), an equally mythical mathematician, formulated the concept of affine connec-
tion around 1880. Of course, Newstein had to adopt a four-dimensional treatment of
space and time in order to carry out his reformulation of Newtonian gravitation the-
ory; but, long before that, the concept of time as a fourth dimension had been intro-
duced in analytical mechanics by d’Alembert and Langrange.

 

3

 

Continuing my mythical account, when in 1907 Einstein turned to the problem of
extending his original (later called special) theory of relativity to include gravitation,
Newstein had already shown how to describe the inertio-gravitational field by a non-
flat affine connection. Einstein’s problem was to combine this insight about the
nature of gravitation with the new chrono-geometrical structure of space-time that he
had introduced in 1905. Once the problem is posed in this way, the step from New-
stein’s formulation of the gravitational field equations to the corresponding equations
of Einstein’s general relativity is a short one (see Section 8).

Of course, all of this is pure fable; but I believe that—in addition to their entertain-
ment value—such scientific fables are of real value for the history and philosophy of
science. First of all, they help us to combat the impression of inevitability often
attached to the actual course of historical development, the idea that the “discovery” of
a theory is just that: the bringing to light by the intellect of some pre-existing structure,
previously hidden but predestined to emerge sooner or later and enter into the scien-
tific corpus in just the form in which it actually did. Secondly, they help us to question
the thesis that the formulation of a theory is more-or-less independent of its mode of
discovery, including the peculiarities of the individual(s) who happened to “discover”
it and the process of negotiation that led to its assimilation into the body of accepted
knowledge by the scientific community. Such questions can lead to a more critical re-
examination of the current formulation(s) of the theory. We are bound to look more
critically at what actually happened, and at the accepted formulation(s) of a theory, if
we can produce one or more credible scenarios showing how things might have hap-
pened quite differently.

 

4

 

3 This is no myth. See my article on “Space-Time,” in (Stachel Forthcoming).
4 See (Stachel 1994a) and, for other examples from the history of relativity, (Stachel 1995). For some

further comments on alternative histories, see the final section, “Acknowledgements and a Critical
Comment.”



 

T

 

HE

 

 S

 

TORY

 

 

 

OF

 

 N

 

EWSTEIN

 

423

2. POSTMATURE CONCEPTS AND THE ROLE OF ABSENCE IN HISTORY

Zuckerman and Lederberg have suggested that, just as there are premature discover-
ies, “there are postmature discoveries, those which are judged retrospectively to have
been ‘delayed’” (Zuckerman and Lederberg 1986, 629).

 

5

 

 I wish to apply the concept
of postmaturity to theoretical entities; but since, as noted above, the word “discovery”
might suggest a Platonist attitude to mathematical and physical concepts, I shall use
more epistemologically neutral phrases: “postmature development,” “postmature
concept,” “postmature theory,” etc. 

As the work of Zuckerman and Lederberg suggests, in retrospect one can see
that—like other forms of absence—the absence of a postmature concept can play a
crucial role in the dialectical interplay that shapes the actual course of historical
development. My use of word “dialectical” here is purposeful. The second chapter of
Roy Bhaskar’s book on dialectics (Bhaskar 1993)
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 is entitled: “Dialectic: The Logic
of Absences.” He equates 

 

absence

 

 with what he calls 

 

real negation

 

, whose “primary
meaning is real determinate absence or non-being (i.e., including non-existence”
(Bhaskar 1993, 5). He describes real negation as: 

 

the central category of dialectic, whether conceived as argument, change or the augmen-
tation of (or aspiration to) freedom, which depends upon the identification and elimina-
tion of mistakes, states of affairs and constraints, or more generally ills—argued to be
absences alike (Bhaskar 1993, 393). 

 

Elsewhere I shall argue for this viewpoint with examples drawn from the history
of music as well as the history of science. But to return to the central concern of this
paper, my claim is that “affine connection” is a postmature concept, the absence of
which during the course of development of the general theory of relativity had a cru-
cial negative influence on its development and subsequent interpretation. Conversely,
the filling of that absence opened the way to a deeper understanding of the nature of
gravitation and of its relation to other gauge field theories of physics.

3. A LITTLE HISTORY

Gauss first developed the theory of curved surfaces embedded in Euclidean three-
space, including the concepts of intrinsic (or Gaussian) and extrinsic curvature. But
he defined these concepts in a way that did not depend on the concept of parallelism.

 

7

 

5 I am indebted to Gerald Holton for drawing my attention to this paper, which fills a gap in my earlier
presentations of Newstein’s story.

6 I regard Bhaskar’s work on critical realism as the most significant attempt at a modern Marxist
approach to the philosophy of science (see Stachel 2003a). For a critical introduction to Bhaskar’s
work, see (Collier 1994).

7 Essentially, he defined the intrinsic curvature at a point of a surface in a way that seemed to depend on
the embedding of the surface—in terms of the radius of curvature of the sphere that best fits the sur-
face at the point in question—and then proved that the result really does not depend on the embed-
ding. See (Gauss 1902), and for a modern discussion (Coolidge 1940, Book III, chap. III, 355–387).



 

424 J

 

OHN

 

 S

 

TACHEL

 

The development of differential geometry had proceeded quite far by the time Rie-
mann introduced the concept of a locally Euclidean manifold with curvature varying
from point to point in 1854, first published in (Riemann 1868).

 

8

 

 So the idea of start-
ing with a geometrical structure defined in the infinitesimal neighborhood of a point
of a manifold and proceeding from the local to the global structure was quite familiar
by the last third of the nineteenth century. 

Similarly, discussions of the concept of parallelism had played a central role in
the development of non-Euclidean geometry in the first half of the nineteenth cen-
tury.

 

9

 

 Grassmann’s work on affine geometry had abstracted the concepts of parallel
lines, plane elements, etc., from their original three-dimensional, Euclidean con-
texts.

 

10

 

 Few were aware of the first (1844) edition of the 

 

Ausdehnungslehre

 

, or even
of the second version in 1862; but after the publication of the second edition of the
1844 version in 1878, knowledge of his work began to spread among mathemati-
cians, so that it was widely available to them by the last two decades of the century.

 

11

 

By this time, there was already a rich literature on the geometrical interpretation of
the principles of mechanics for systems with degrees of freedom based on

 

dimensional Riemannian geometry

 

.
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In all this time no one applied Riemann’s approach to intervals to the concept of
parallelism. Karin Reich has drawn attention to the problem of the delay in the exten-
sion of the local approach in geometry to the concept of parallelism:

 

Parallelism was and is thus a central theme for the foundations of geometry. Yet it is
missing in Bernhard Riemann’s Habilitation Lecture “On the Foundational Hypotheses
of Geometry,” indeed the word parallel does not occur here. Also in the succeeding
period of rapidly occurring development of Riemannian geometry parallelism was not a
theme. Perhaps this is one of the reasons why Riemannian geometry was not uncondi-
tionally accepted by pure geometers (Reich 1992, 78–79).
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8 For the history of differential geometry, see (Struik 1933; Coolidge 1940; Laptev and Rozenfel’d
1996, sec. 1: “Analytic and Differential Geometry,” 3–26).

9 For the standard older historical-critical account of non-Euclidean geometry, see (Bonola 1955).
10 See (Grassman 1844; 1862; 1878), and for an English translation, (Grassmann 1995). For a survey of

publications using Grassmann’s approach, demonstrating that their number increased considerably
after 1880, see (Crowe 1994, chap. 4); by the end of the century, interest in Grassmann’s work was
comparable to that in Hamilton’s. Weyl was well aware of Grassmann’s work. Speaking of affine
geometry, he says: “For the systematic treatment of affine geometry with abstraction from the special
3-dimensional case, Grassmann’s “Lineale Ausdehnungslehre” (Grassmann 1844)... is the ground-
breaking work” (Weyl 1923, 325). In a recent discussion of Grassmann’s role as a forerunner of cate-
gory theory, Lawvere (Lawvere 1996) speaks of “the category A of affine-linear spaces and maps” as
“a monument to Grassmann” (p. 255). 

11 For a study of Grassmann and his influence, see (Schubring 1996).
12 See (Lützen 1995a; 1995b) for surveys of some of this work.
13 Readers of this work will realize the extent of my indebtedness to Karen Reich’s work. I also grate-

fully acknowledge several helpful discussions with Dr. Reich.
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Her retrospective critical judgement a century later is borne out by the contemporary
evaluations of those who filled that gap in 1916–1917: Hessenberg, Levi-Civita, Weyl
and Schouten.

Hessenberg’s paper (Hessenberg 1917) was actually the first such paper, dated
June 1916. It starts with a reference to relativity: “Because of the significance that the
theory of quadratic differential forms has recently attained for the theory of relativity,
the question of whether and how the elaborate and difficult formal apparatus of this
theory can be simplified, if not bypassed, gains new significance (p. 187).” Speaking
of “Christoffel’s well-known transformational calculus,” Hessenberg states that his
aim is to “replace [it] with a geometrical argument (p. 187).” He criticizes the “formal
methods of formation” of various quantities that occur because they do not bring out
“the essentially 

 

intuitive

 

 [

 

anschaulich

 

] 

 

meaning

 

 of the invariants and covariants
needed for the geometrical and physical applications” (p. 191). He stresses the role of
Grassmann. “Access [to their geometrical significance] is opened in a way that, to
me, seems surprisingly simple by means of Grassmann’s ideas” (p. 192).

Levi Civita’s paper (Levi Civita 1916), which is dated November 1916, also starts
with a reference to Einstein’s work: 

 

Einstein’s theory of gravitation ... regards the geometrical structure of space ... as
depending on the physical phenomena that take place in it ... The mathematical develop-
ment of Einstein’s magnificent conception ... involves as an essential element the curva-
ture of a certain four-dimensional manifold and the related Riemann symbols [i.e., the
curvature tensor] ... Working with these symbols in questions of such great general inter-
est has led me to investigate if it is not possible to simplify somewhat the formal appara-
tus that is usually used to introduce them and to establish their covariant behavior. Such
an improvement is indeed possible  ... [This work] started with that sole objective, which
little by little grew in order to make room for the geometrical interpretation [of the Rie-
mannian curvature]. At the beginning I thought to have found it in the original work of
Riemann ... ; but it is there only in embryo.  ... [O]ne gets the impression that Riemann
really had in mind that intrinsic and invariant characterization of the curvature, which
will be made precise here. On the other hand, however, there is not a trace, either in Rie-
mann or in Weber’s commentary, of those specifications (the concept of parallel direc-
tions in an arbitrary manifold and consideration of an infinitesimal geodesic quadrilateral
with two parallel sides) that we recognize to be indispensable from the geometrical point
of view (pp. 173–174).

 

Reich comments:

 

With this word “indispensible” Levi-Cività recalled Luigi Bianchi’s characterization of
Ricci’s absolute differential calculus. Bianchi had characterized this in 1901 as “useful
but not indispensable” (Reich 1992, 79–80).

 

Weyl (1918b) states:

 

The later work of Levi-Cività [1916], Hessenberg [1917], and the author [Weyl 1918a]

 

14

 

shows quite plainly that the fundamental conception on which the development of Rie-
mann’s geometry must be based if it is to be in agreement with nature, is that of the infin-
itesimal parallel displacement of a vector.

 

15

 

14 For a discussion of this and the succeeding editions of Weyl’s book, see the next section.
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After the introduction of Riemannian parallelism by Hessenberg and Levi-Civita
(and, again independently in (Schouten 1918)), it was but a brief and natural step to
its generalization. Since the abstraction (in the large) of affine parallelism from paral-
lelism in Euclidean geometry had already been made, the abstraction (in the small) of
affine parallelism from parallelism in a Riemannian manifold is immediately sug-
gested by the analogy. Indeed, Weyl took that step just a year later: In (Weyl 1918a)
he defines an affinely connected manifold.

 

16

 

 
The evidence thus indicates that both the Riemannian concept of parallelism and

its affine generalization were introduced 

 

postmaturely

 

. The absent concept of Rie-
mannian parallelism could have been filled at any time during the last third of the
nineteenth century, and followed quickly by the introduction of the concept of an
affinely connected manifold, since it is a natural generalization of the Grassmannian
“

 

lineale

 

 

 

Ausdehnungslehre

 

.” 
Indeed, Grassmann himself might have accomplished these tasks. Towards the

end of his life he learned about the work of Riemann and Helmholtz, and one of his
last publications (Grassmann 1877) discusses the relation of their work to his 

 

Aus-
dehnungslehre

 

. He discusses a method of introducing such non-linear geometries that
amounts essentially to defining them as subspaces of linear spaces of higher dimen-
sions. The path that Levi-Civita initially took to the definition of Riemannian paral-
lelism was based on embedding a Riemannian space in a Euclidean space of
sufficiently high dimension. Had Grassmann lived longer, it is conceivable that he
might have introduced the concept of affine parallelism by a similar method (see the
discussion in the Appendix). But he died in the same year that he wrote this paper; so
I have been forced to invent Weylmann, the mathematician who introduces the con-
cept of an affinely connected manifold around 1880, neither prematurely nor postma-
turely.

4. EQUIVALENCE PRINCIPLE AND AFFINE CONNECTION

It was Albert Einstein who first realized the profound significance of the equality of
inertial and gravitational mass. He soon began to speak of inertia and gravitation as
“

 

wesensgleich

 

”: essentially the same in nature. By an acceleration of the frame of ref-
erence, the division between inertial and gravitational “forces” can be altered, and
indeed by a suitably chosen acceleration the combination of both can even be made to
vanish at any point of space-time. 

Einstein’s problem was to find the way to incorporate this physical insight into the
mathematical structure of gravitation theory. After the development of the concept of
affine connection, the way became clear: there is an inertio-gravitational field, repre-

 

15 Translated from (Weyl 1923, 202).
16 For references and discussion of the work of Levi-Civita, Hessenberg, Schouten and Weyl, see the

indispensible (Reich 1992). For the background to Weyl’s “Purely Infinitesimal Geometry,” see
(Scholz 1995). I am indebted to Dr. Erhard Scholz for a discussion of this work.
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sented mathematically by a symmetric connection in space-time, which incorporates
this essential unity in its very nature. We can see the development of this insight by
looking at the various editions of Weyl’s 

 

Raum-Zeit-Materie

 

. In (Weyl 1918b), Levi-
Civita’s concept of parallel transport, based upon the embedding of a Riemann space
in a flat Euclidean space of higher dimension, is freed from this dependence by giv-
ing it an intrinsic definition. Weyl further states that the Christoffel symbols represent
the gravitational field. In (Weyl 1919)—which follows the argument of Weyl
(1918a)—the concept of parallel transport is freed from its dependence on the metric
field by the introduction of the concept of affine connection. Weyl (1921) refers to
this connection as the “guiding field” (

 

Führungsfeld

 

), incorporating the effects of
both gravitation and inertia on the motion of bodies.

Soon afterwards, Cartan (1923) drew the obvious conclusion: By incorporating
the equivalence of gravitation and inertia into Newton’s gravitation theory, it can be
formulated in terms of a Newtonian affine connection. Since then, starting with
(Friedrichs 1927) and culminating—but certainly not ending—in (Ehlers 1981), a
series of refinements of Cartan’s approach have brought the affine version of New-
ton’s theory to a state of considerable mathematical perfection. 

However, I shall not give the most, abstract, coordinate-free characterization of
the Newtonian affine connection based on the simplest set of axioms. For our pur-
poses, it will be more useful to show how, starting from the usual form of the Newto-
nian theory of gravitation, the components of the connection with respect to a
physically chosen basis may be defined, thus suggesting how Newstein could have
proceeded—had he only existed!

 

17

 

5. NEWSTEIN’S WORLD

We shall start from the usual formulation of Newtonian gravitation theory in some
inertial frame of reference (ifr, for short). Events in this frame are individuated with
the help of the Newtonian absolute time  (chronometry), and three Cartesian coordi-
nates (i.e, assuming Euclidean geometry), fixed relative to some choice of origin 
and of three mutually perpendicular axes.

 

18

 

 Since inertial and gravitational mass are
equal, if  represents the force/unit gravitational mass, the equation of motion of a
(structureless) particle will be

 (1)

where  is the acceleration of the particle with respect to the chosen ifr.

 

17 See (Stachel 1994b) for a somewhat more abstract discussion of space-time structures in Newton-
Galilean and special-relativistic space-times (i.e., in the absence of gravity), and in Newtonian and
Einsteinian gravitational theories.

18 We assume units of time and distance fixed initially and used in all frames of reference, and shall use
vector notation, so that, for example, the displacement vector from the origin  the
velocity  the acceleration  etc, all with respect to the ifr, are denoted by
boldface symbols.

t
O

r x1 x2 x3, ,( ) ,=
v dr dt ,⁄= a dv dt ,⁄=

g

a g,=

a
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Now consider transformations to another frame of reference, moving linearly
with respect to the first: 

(2)

If the velocity vector  is 

 

constant

 

, then the transformation is to another
inertial frame of reference, and the equation of motion, eq. (1), is invariant under such
a transformation. That is, both  and  are invariant under such 

 

Galilei transforma-
tions

 

 from one inertial frame to another.
However, if  is 

 

not

 

 constant, then the transformation is to some linearly acceler-
ated (rigid) frame of reference, and differentiation of eq. (2) twice with respect to the
time gives

 (3)

In Newtonian mechanics, “true” forces, such as  are assumed to be the same in all
frames of reference. To compensate for the use of a non-inertial frame of reference,
so-called “inertial forces” appear in the equations of motion (such forces might better
be called “non-inertial”). Indeed, when we substitute eq. (3) in eq. (1), we get:

(4)

and  appears as such an “inertial force” in the equation of motion of a particle
with respect to a linearly accelerating frame.

But, one may ask, if we carry out measurements in some frame of reference, and
get an acceleration, let us say  for a test particle, how do we separate it into its
components, the “true force”  and the “inertial force”  Newton would not have
hesitated a moment in answering: Look for the sources of the gravitational force, and
use the inverse square law to compute the total  at the point where the test particle is
located. Alternatively, he might have proposed: Look at the center of mass of the
“system of the world” (i.e., the solar system) and see whether you are accelerating
relative to it to find 

But by the end of the nineteenth century, under the influence of Maxwell’s elec-
tromagnetic theory, the field point of view towards forces was beginning to prevail;
according to this viewpoint, one should look upon the gravitational field as the con-
veyor of all gravitational interactions between massive bodies. Accordingly, the local
gravitational field at a point in space (and an instant of time) should always be ascer-
tainable by means of local measurements in the neighborhood of that point. Now, in
the case of any other force but the gravitational, there would be no obstacle to sepa-
rating out the inertial from the non-gravitational effects. For electrically charged par-
ticles, for example, one would merely vary the ratio of electric charge to inertial
mass: The electric force would vary with this ratio, the inertial force would not. But
the ratio of gravitational charge (= gravitational mass) to inertial mass is just what

 

cannot

 

 be varied—the invariance of that ratio is the primary empirical basis of the
equivalence principle. 

So the answer to our question is: Once we adopt the field point of view about
gravitation, there is no way (locally) to distinguish inertial from gravitational effects.

r′ r R t( ),   t′– t .= =

V dR dt⁄=

a g

V

a′ a A t( ),   –= A t( ) d2R t( ) dt2⁄ .=

g,

a′ A+ g, or a′ g A,–= =

A t( )–

a′,
g A?–

g

A.
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We have to recognize that there is an inertio-gravitational field, and that how this field
divides up into inertial and gravitational terms is not absolute (i.e., frame-indepen-
dent), but depends on the state of motion (in particular the acceleration) of the frame
of reference being used. Indeed, we see that, by choosing the value of  to coincide
numerically with the value of  at some point, we can make the total inertio-gravita-
tional field vanish at that point. Indeed, this is why we did not call it an inertio-gravi-
tational force: Although the values of their components with respect to some frame of
reference can change depending on the state of motion of that frame, non-vanishing
force fields at a point, such as the electric and magnetic fields making up the electro-
magnetic field, cannot be made to all vanish by any change of reference frame.

Another consequence of our new, equivalence-principle viewpoint is that a basic
distinction between inertial and linearly accelerated frames of reference is no longer
tenable. Any rigid non-rotating frame of reference is just as good as any other. 

Let us now inventory what is left after we adopt this new viewpoint:

1. the absolute time, assumed to be measurable by ideal clocks; its measurement is
unaffected by the presence of an inertio-gravitational field (compatibility of chro-
nometry with the inertio-gravitational field);

2. Euclidean geometry, which holds within each frame in the class of three-dimen-
sional, non-rotating frames of reference; it is assumed to be measurable with ideal
measuring rods; its measurement is unaffected by the presence of the inertio-grav-
itational field (compatibility of geometry with the inertio-gravitational field).

3. Since gravitation and inertia are no longer (absolutely) distinguished (i.e., gravity
is no longer regarded as a force), the set of “force-free” inertial motions is
replaced by a set of “force-free” inertio-gravitational motions. One of these is
determined by specifying a velocity vector at a point of space and an instant of
time. The vector is then the tangent to the “freely falling motion” through the point
at this instant.

4. While the inertio-gravitational field  is not absolute (i.e., it depends on the
frame of reference used, and only behaves like a vector with respect to transfor-
mations within a given frame of reference), its spatial derivatives  are
independent of the (non-rotating) reference frame. Physically, these differential
gravitational forces are usually designated as the tidal forces, since they are
responsible for the tides, among other effects. The matrix of these quantities
determines the relative acceleration of two freely falling test particles, i.e., the
acceleration of one particle with respect to the other. The components of the tidal
forces therefore may be evaluated by measurement of the components of this rel-
ative acceleration.

A
g

g r t,( )

∂mgn r t,( )
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6. THE NEWTONIAN CONNECTION

Now we are ready to make the transition to the four-dimensional point of view, in
which a point of space-time is specified by the four coordinates  or

 for short, where  are the Cartesian coordinates of the point with
respect to some non-rotating frame of reference and  is the absolute time.19 We shall
refer to these as adapted coordinates for this frame of reference. The absolute time
gives a foliation of space-time, i.e., a family of non-intersecting hypersurface that fills
the space-time. In the adapted coordinate system the foliation consists of the hyper-
surfaces  A vector is said to be space-like if it is tangent to a hypersurface
of the foliation; a vector is time-like if it is not space-like. Any curve, the tangent vec-
tor to which is always time-like, is a time-like curve, with a similar definition for
spacelike curves. In adapted coordinates a vector is time-like if it has a non-vanishing
time component, space-like if it does not. 

We can use any (three-)velocity field  to rig the hypersurfaces of constant
time: Define a time-like four-velocity field  with component = 1 and spatial
components equal to those of  in adapted coordinates. Thus,  defines a con-
gruence of time-like curves that fills space-time. Indeed, we need merely select one
such time-like curve  and then parallel propagate it along each hypersurface

 to get this congruence. In particular, the paths of the points
 parametrized by the absolute time  constitute such a congru-

ence; Euclidean geometry holds for these spatial coordinates at all times. Thus we
have specified the chronometry and the geometry of the initial frame of reference
using the adapted coordinates. 
Any  field provides a rigging of each hypersurface (see the discussion of rigged
hypersurfaces in the Appendix). Just as a rigging was needed to go from the flat affine
connection of the enveloping space to the non-flat affine connection of a hypersurface
embedded in it, a rigging is needed here to relate the flat (Levi-Civita) connection on
each Euclidean hypersurface to the four-dimensional non-flat connection that we
want to define for space-time as the mathematical representation of the inertio-gravi-
tational field.

Indeed, we can define a unique symmetric, four-dimensional affine connection on
the space-time by requiring that it satisfy the following conditions:

1. The absolute time is the affine parameter for all time-like geodesic paths. A geo-
desic path that is time-like at any of its points is time-like at all its points.

2. There is a flat, Euclidean connection on each (three-dimensional) hypersurface of
the foliation. Hence, the Euclidean distance is the affine parameter for each space-
like geodesic path. A geodesic path that is space-like at any of its points is space-
like at all its points.

19 We shall designate a time component by a sub- or superscript “ ” and spatial components by sub- or
superscript “ ” or other lower-case Latin letters.

t x1 x2 x3, , ,( )
t r,( ) x1 x2 x3, ,

t

t ,
i j k…, ,

t const.=

v t( )
V t( ), t-

v t( ) V t( )

V t( )
t const=
x1 x2 x3, , const,= t ,

V t( )
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3. The three-dimensional and the four-dimensional treatments of the spatial geome-
try on each hypersurface are consonant with each other: The Euclidean (flat)
three-dimensional affine connection on each hypersurface of some frame of refer-
ence coincides with the connection induced on that hypersurface by the four-
dimensional connection when that hypersurface is rigged with any time-like 
field.20

4. Parallel transport of any space-like vector is path-independent. By picking an
orthonormal triad  of such vectors at some point on an initial hypersurface of
the foliation, and parallel transporting the triad along any time-like curve with
tangent vector  a frame of reference is generated: Once it is parallel trans-
ported to a point on another hypersurface of the foliation, the triad can be propa-
gated to any other point of the hypersurface by (path-independent) parallel
transport.

5. If we add any  to the triad field  now interpreted as four-vectors, we get a
four- dimensional frame of reference.21 In any such frame of reference, any path
that obeys the Newtonian gravitational equation of motion of a structureless test
particle shall be a time-like geodesic of the four-dimensional connection parame-
trized by the absolute time. The spatial projection of its four-dimensional tangent
vector onto any hypersurface of the foliation will coincide with the three-velocity
of the test particle on that hypersurface.

As indicated earlier, we have not attempted to give a minimal list of assumptions,
each of which is independent of the others; but rather, a physically intuitively plausi-
ble list. We now proceed to derive the components of the connection in some given
non-rotating frame of reference, i.e., using coordinates adapted to the tetrad of basis
vectors  that characterize this frame of reference. 

The equation of a geodesic in these coordinates is (see the Appendix):

(5)

where  is an affine parameter, i.e., the (four-dimensional) tangent vector to the
curve  is equal to  and the components of the connection are with
respect to the chosen four-dimensional frame of reference. If we consider time-like
geodesics, condition 1) requires that  be an affine parameter for all of them. The
four-velocity  will thus have components  in the adapted coordinate
system, where  is the three-velocity of the particle. Considering only the compo-
nent of eq. (5) for the moment, in adapted coordinates it takes the form:

20 If the requirement is fulfilled for one such field it is fulfilled for any such field, since two such fields
can only differ by a space-like acceleration vector field. So the transition from one non-rotating frame
of reference to another, which corresponds mathematically to a change of  field, does not affect
the result.

21 Note that any such  field commutes with the three  fields, which commute with each other, so
that they form a holonomic basis; so coordinates adapted to this basis will always exist.
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(5a)

and since the first term vanishes, the only way that eq. (5a) can hold for all values of
 is if  and  all vanish in the adapted coordinate system. In other words,

these are the mathematical conditions that assure the compatibility of the chronome-
try and the inertio-gravitational field. Physically, this means that an ideal clock mov-
ing around in the inertio-gravitational field will always measure the absolute time.

Conditions 2, 3, and 4 now demand that the three space-like vectors  which lie
along the coordinate axes and thus have components  in adapted coordinates, have
vanishing covariant derivates with respect to both the Euclidean (flat) three-dimen-
sional connection on each hypersurface, and the non-flat inertio-gravitational four-
dimensional connection. By a similar argument to that above, these conditions result
in the vanishing of  and  in the adapted coordinate system. In other words,
these are mathematical conditions that assure the compatibility of the geometry and
the inertio-gravitational field. Physically, this means that an ideal measuring rod
moving around in the inertio-gravitational field will always measure the Euclidean
distance.

Condition 5 now fixes the values of the only remaining non-vanishing compo-
nents of the affine connection,  in the adapted coordinate system. Returning to
eq. (5), its spatial components in the adapted coordinate system now take the form:

(5b)

all other terms in the equation vanishing because of the previously-established van-
ishing of the other components of the connection. We see that we need merely set:

(6)

in the adapted coordinates in order to have the geodesic equation coincide with the
equation of motion of a particle in the gravitational field 

We have now fixed all the components of the symmetric affine connection in the
adapted coordinate system. We need merely apply the general transformation law for
the components of the connection under a coordinate transformation 

(7)

to the equations for a linearly accelerated transformation (see eq. (2) of Section 5):

(8)

in order to see that the components of the connection transform correctly; i.e, that all
the components but  continue to vanish, and the  transform just like the com-
ponents of  under such a transformation (see Section 5, eq. (4)). If we carry out a
transformation to a rotating system of coordinates, the transformation of the compo-
nents of the connection introduces terms that correspond to the Coriolis and centripe-
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tal “inertial forces” that must be introduced in a rotating coordinate system. To get the
form of the components of the connection in an arbitrary coordinate system, one need
merely apply eq. (7) to an arbitrary coordinate transformation.

What about the tidal forces, which as mentioned above are absolute? They are
represented by the appropriate components of the Riemann tensor, which can be
computed from the Newtonian inertio-gravitational connection. Since they are com-
ponents of a tensor, they indeed possess an absolute character, in the sense that if the
components do not all vanish at a point, no change in frame of reference at that point
can make them all vanish. These components of the Riemann tensor enter into the
equation of geodesic deviation, which describes in four-dimensional tensorial form
the relative acceleration of two particles falling freely in the inertio-gravitational
field; but I shall not enter into details here.

Rather, I turn to the question of the field equations for the inertio-gravitational
field. The Newtonian field  obeys the field equation:

(9)

where  is the Newtonian gravitational constant,  is the mass density of the mate-
rial sources of the gravitational field, and  is the trace of the tidal force matrix.
If one works out the components of  the contracted Riemann or Ricci tensor, in
the adapted coordinates, it turns out that only  is non vanishing, and it equals

 So  and all other components =0 in the adapted coordinates.
The only remaining problem is to write this result as a tensorial equation, indepen-
dent of coordinate system; but this is easily solved by introducing a covariant vector
field  such that in adapted coordinates  The gravitational field
equations now take the tensorial form:

(10)

which is clearly of the same form in all coordinate systems.
In a more complete treatment,22 one would have to go a step further: the Newto-

nian gravitational field  can be derived from a gravitational potential function
 and this condition can be expressed intrinsically in terms of the prop-

erties of the corresponding Riemann tensor (the tidal force matrix introduced in Sec-
tion 5, which is closely related to certain components of the Riemann tensor,
becomes symmetric). Now  plays an important role in taking the Newtonian limit
of general relativity, but since we shall not discuss this issue, I can forego entering
into further consideration of details.

The non-dynamical Newtonian chrono-geometrical structures, consisting of the
absolute time and the relative spaces of the family of non-rotating frames of refer-
ence, are unmodified by the presence of gravitation. Mathematically, they are repre-
sented by a closed temporal one-form (the  introduced above) and a trivector field

22 See (Stachel 2003b) for such a treatment.
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whose transvection with the one-form vanishes (the  introduced above), from
which a degenerate (rank 3) spatial “metric” may be constructed 

However, the compatible flat inertial structure of Newton’s theory is modified. It
becomes a dynamical structure, the Newtonian inertio-gravitational field, which
remains compatible with the chrono-geometrical structures. Mathematically, it is rep-
resented by a symmetric affine connection (the Newtonian connection  discussed
above), which can be derived from a “connection potential” (the  discussed above).
Its contracted Riemann tensor obeys field equations that relate it to the masses acting
as its source (eq. (10) above). The compatibility of this connection with the chrono-
geometrical structure means, as noted earlier, that clocks and measuring rods freely
falling in the inertio-gravitational field still measure absolute temporal and spatial
intervals, respectively. Mathematically, this is expressed by the vanishing of the cova-
riant derivatives of the temporal one-form and degenerate spatial “metric” with
respect to the Newtonian connection.

7. SOME MYTHICAL HISTORY: NEWSTEIN MEETS WEYLMANN 

Once the concept of affine connection has been developed and the Riemann tensor
geometrically interpreted in terms of parallel transport around closed curves, this ver-
sion of Newton’s theory—which converts gravitation from a force that pulls bodies
off their (non-dynamical) inertial paths, into a (dynamical) modification of the (iner-
tial) affine connection—is almost immediately suggested by the equality of gravita-
tional and inertial mass. Indeed, shortly after the mythical mathematician Weylmann
formulated the concept of affine parallelism, his equally mythical physicist colleague
Newstein developed this reinterpretation of Newtonian gravitational theory. Brooding
on the equality of gravitational and inertial mass, he became convinced of the essen-
tial unity of gravitation and inertia. Originally, he expressed this insight in the usual
three-plus-one language of physics, treating space and time separately (see Section 5).
He considered uniformly accelerated frames of reference in the absence of gravitation
(the Newstein elevator!), and decided it was impossible to distinguish such a frame of
reference from a non-accelerated frame with a constant gravitational field. This led
him to consider transformations between linearly accelerated frames of reference. 

He was puzzled by the strange transformation law that he had to introduce for the
gravitational “force,” which no longer behaves like a vector under such transforma-
tions. At some point he turned to Weylmann, who soon realized that the gravitational
“force” transforms like the  components of a four-dimensional affine connection,
and that Poisson’s law for the gravitational potential could be written as an equation
linking the Ricci tensor of the connection with its material sources (see Section 6). In
the now-famous Newstein-Weylmann paper, the two developed a four-dimensional
geometrized formulation of Newtonian gravitation theory, which generalized Newto-
nian chrono-geometry to include linearly accelerated frames and a dynamized inertio-
gravitational connection field, but still included the concept of absolute time.
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In so far as they took any notice of this work, their contemporaries regarded it as an
ingenious mathematical tour-de-force. But, since it had no new physical conse-
quences, it did not much impress Newstein’s positivistically-inclined physics col-
leagues. 

Weylmann analyzed the invariance group of the new theory, which is much wider
than that of the older Newtonian kinematics. The privileged role of the inertial frames
of reference in Newton’s theory, just beginning to be realized thanks to the work of
Lange and Neumann, was lost in the new interpretation of gravitation.While rotation
remained absolute (in the sense that all components of the connection representing
centrifugal and Coriolis forces could be made to vanish globally by a coordinate trans-
formation), all linearly accelerated frames of reference were now equal, and the signif-
icance of this occasioned a discussion among a few philosophers of science who
concerned themselves with the foundations of mechanics. Ernst Mach added a few
lines about Newstein to the latest edition of his Mechanik.

8. MORE MYTH: EINSTEIN CONFRONTS NEWSTEIN

Perhaps this is where Albert Einstein first read about Newstein’s work. At any rate, in
1907, pursuant to his commission to write a review article on the physical conse-
quences of his 1905 work on the relativity principle (now becoming known as the
theory of relativity),23 he turned his attention to gravitation, and (like Newstein) was
struck by the equality of gravitational and inertial mass. He realized that, as a conse-
quence, in Newtonian mechanics there is a complete equivalence between an acceler-
ated frame of reference without a gravitational field and a non-accelerated frame of
reference, in which there is a constant gravitational field. He soon generalized this to
what he later called the principle of equivalence: There is no physical difference
(mechanical or otherwise) between the two frames of reference.24 

Recalling what he had read about Newstein, Einstein realized that he had redis-
covered the loss of the privileged role of inertial frames once gravitation is taken into
account. Like Newstein, he became convinced that inertia-cum-gravitation must be
represented mathematically by an affine connection; but now this representation
somehow must be made compatible with the new chronogeometry he had developed
in his 1905 theory.25 He first tried to preserve the non-dynamical nature of this
chrono-geometrical structure—which Minkowski soon expressed in terms of a four-
dimensional pseudo-Euclidean geometry—by developing various special-relativistic
gravitational theories that incorporated the unity of gravitation and inertia by the very
fact that they were based upon an affine connection. But the Riemann tensor of the
inertio-gravitational connection in each of these theories was non-vanishing, while

23 For a translation of this paper, see (Stachel 1998).
24 Aside from the first sentence, this paragraph is a summary of the actual historical circumstances of

Einstein’s first work on gravitation, see (Einstein 1907). The fantasy begins in the next paragraph.
25 In the frame bundle language, the physically preferred subgroup of the general linear group had to be

changed from the Newtonian group to the Lorentz group.
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the metric-affine structure of Minkowski space-time is flat. Physically, this meant that
the inertio-gravitational and chrono-geometrical structures were not compatible:
Good clocks and measuring rods, as defined by the chrono-geometrical structure, did
not keep the proper time or measure the proper length when moved about in the grav-
itational field. 

While this could be “explained away” as due to a universal distorting effect of
gravitation on all measuring rods and clocks, something about such an explanation
disturbed him. Since the effect was universal, the “true” Minkowski chronogeometry
could be shown to have no physically observable consequences.

Finally, he realized what was bothering him: This type of explanation was all too
similar to Lorentz’s interpretation of the Lorentz transformations: Galilean chrono-
geometry is the “true” one; but the universal effect of motion through the absolute
(aether) frame of reference exerts a universal effect on all physical processes that pre-
vents any physically observable consequences of this motion. What was the way out
of this new unobservability dilemma? 

Suddenly the answer struck him: If he required compatibility between the inertio-
gravitational and chrono-geometrical structures, the problem would disappear, just as
it had in Newstein’s reinterpretation of Galilean kinematics. Good measuring rods
and clocks, as defined by such a chrono-geometrical structure, would measure the
true proper lengths and times wherever they were placed in the inertio-gravitational
field. But there was a price to pay for this compatibility: The chrono-geometrical field
could no longer be flat. It would have a curvature attached to it in the Gaussian sense,
the one that Riemann originally had generalized from two to an arbitrary number of
dimensions. In this theory, the Riemann tensor would have two distinct (but compati-
ble) interpretations: as the curvature of a connection, associated with parallel trans-
port and the equation of geodesic deviation; and as the curvature of a pseudo-metric,
associated with the Gaussian curvature of each of the two-dimensional sections at
any point of space-time. 

And of course, since metric and connection were now compatible, this implied
that the components of the connection with respect to any basis were numerically
equal to the Christoffel symbols of the metric with respect to that basis. And since the
connection is a dynamical field, the metric would also have to become a dynamical
field. In contrast to the Newsteinian case, where the chrono-geometry remained non-
dynamical, in the Einsteinian case, there are no non-dynamical space-time structures.
The bare manifold remained absolute in a certain sense;26 but then, it had no physical
characteristics other than dimensionality and local topology unless and until the iner-

26 I say this because, in actual fact, the global topology of the manifold is not given before the metric-
cum-connection field, as implied in so many presentations of general relativity. One actually solves
the Einstein field equations on a small patch, and then looks for the maximal extension of that patch
compatible with the given metric. Certain criteria for compatibility must be given before the question
of maximal extension(s) becomes meaningful, of course. For discussion of this topic, see (Stachel
1986; 1987). 
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tio-gravitational cum chronogeometrical field was impressed upon it. Least of all do
the points of the manifold represent physical events before imposition of a metric.27

The new, dynamical theory of space-time structures had a number of novel physi-
cal consequences, and Einstein soon became world-famous—but you know the rest
of the story.

9. SOME REAL HISTORY: EINSTEIN WITHOUT NEWSTEIN

Unfortunately, the last section was a historical fable, and the real Einstein had to
work out the general theory of relativity in the absence of the concept of affine con-
nection—an absence which, as suggested in Section 2, played a fateful role in the
actual development and subsequent history of the theory. It took Einstein without
Newstein seven years to develop the general theory of relativity after he had adopted
the equivalence principle as the key to a relativistic theory of gravitation. Rather than
tell the entire story of the many genial steps and equally numerous missteps on Ein-
stein’s road from special to general relativity,28 I shall here just highlight some of the
most fateful consequences of the absence of the connection.

First of all, it is important to realize that the tensor calculus, as originally devel-
oped by Christoffel, Ricci, Levi Civita and others, was a branch of invariant theory,
with only tenuous ties to geometry.29 Einstein’s introduction of the metric tensor field
as the mathematical representation of both the chrono-geometry of space-time and
the potentials for the gravitational field did not carry with it most of the geometrical
implications that we take for granted today. Insofar as it did carry geometrical impli-
cations, notably in fixing the geodesics of the manifold, this had to do with the inter-
pretation of geodesics as the shortest paths (or rather longest, for time-like paths—the
twin paradox) in space-time. The interpretation of geodesics as the straightest paths
in space-time, more important for the understanding of the gravitational field—in
particular, the interpretation of the Riemann tensor in terms of the equation of geode-
sic deviation—had to await the work of Levi Civita and Weyl on parallelism dis-
cussed in Section 3.30 Curvature, in other words, was given the Gauss-Riemann
interpretation, rather than the interpretation as the tendency of geodesics to coverge
(or diverge), leading to its association with tidal forces.

27 For discussion of the hole argument, which bears on this point, see (Stachel 1993) and references
therein.

28 See the first two volumes of this series on the development of general relativity. For earlier accounts
by this author and others, see (Stachel 1995) and the references therein.

29 “The calculus developed by Gregorio Ricci in the years 1884–1887 had its roots in the theory of
invariants, therefore it naturally lacked a geometrical outlook or interpretation, and was so intended
by Ricci” (Reich 1992, 79). For the history of the tensor calculus, see (Reich 1994).

30 Interestingly, this interpretation was anticipated by Hertz in his geometrical version of mechanics. See
(Hertz 1894) and, for a discussion of the 19th century tradition of geometrical interpretations of
mechanics, (Lützen 1995a; 1995b).
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It is often said that Einstein, with the help of Grossmann, found ready-to-hand the
mathematical tools he needed to develop general relativity: Riemannian geometry
and the tensor calculus. But this statement must be taken with a large grain of salt. It
would be more correct to say that he had to make do with the tools at hand, with
important negative consequences for the development of the theory, and—more
importantly for us now—with negative consequences for the interpretation of the the-
ory that continue to exert their effects to this day.31

To give two concrete examples of this negative influence on Einstein’s work:

1. Until late in 1915, he regarded the derivatives of the metric tensor, rather than the
Christoffel symbols, as the mathematical representative of the gravitational-cum-
inertial field.32 In Einstein 1915, he finally corrected this error:

These conservation laws [the vanishing of the covariant derivative of the stress-energy

tensor] previously misled me into regarding the quantities  as the

natural expression for the components of the gravitational field, although in the light of
the formulas of the absolute differential calculus it seems more obvious to introduce the
Christoffel symbols instead of these quantities. This was a fateful prejudice (Einstein
1915, 782).

The reason why this error was so fateful is that it mislead Einstein in his search
for the gravitational field equations, a search that took over two years after he had
adopted the metric tensor field as the mathematical representation of gravity.33

2. From 1912 onwards, Einstein expected that, in the Newtonian limit of general rel-
ativity, the spatial part of the metric field tensor would remain flat and that the

 component of the metric would reduce to the Newtonian gravitational poten-
tial. Correctly understood, in terms of a formulation of the theory taking the New-
tonian limit of both the connection and the metric, these expectations are fulfilled.
But one cannot properly take the Newtonian limit of general relativity without the
concept of an affine connection, and the corresponding affine reformulation of
Newtonian theory discussed in Section 6. Indeed, the problem of correctly taking
the Newtonian limit of general relativity only began to be solved in (Friedrichs
1927), and the process was not completed in all details until (Ehlers 1981). In the
absence of the affine approach, more-or-less heuristic detours through the weak-
field, fast motion (i.e., special-relativistic) limit followed by a slow motion
approximation basically out of step with the fast-motion approach, had to be used
to “obtain” the desired Newtonian results.34

31 Perhaps the first such negative influence on work done after the final formulation of the general theory
is the ultimate failure of Lorentz’s attempt to give a coordinate-free geometrical interpretation of the
theory. I thank Dr. Michel Janssen for pointing this out to me. For an account of Lorentz’s attempt, see
(Janssen 1992).

32 See (Einstein and Grossmann 1913, 7), and (Einstein 1914, 1058), for examples.
33 For details see volume 1 of this series on the development of general relativity.
34 See (Stachel 2003b) for more details.
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Einstein originally thought that he knew the form of the weak field metric in the
static case. It involved a spatially flat metric tensor field, with only the  compo-
nent of the metric depending on the coordinates. He used this form of the static met-
ric as a criterion for choosing the gravitational field equations: This form of the
metric had to satisfy the field equations, which led to a disastrous result: No field
equation based on the Ricci tensor had this form of the static metric as a solution, and
Einstein abandoned the Ricci tensor for over two years!35 Had he known about the
connection representation of the inertio-gravitational field, he would have been able
to see that the spatial metric can go to a flat Newtonian limit, while the Newtonian
connection remains non-flat without violating the compatibility conditions between
metric and connection. As it was, using the makeshift technique described above to
get the Newtonian result, he was amazed to find that the spatial metric is non-flat.
Even today, almost all treatments of the Newtonian limit of general relativity are still
based on this makeshift approach that employs only the metric tensor.

10. CONCLUSION

The moral of this story is that general relativity is primarily a theory of an affine con-
nection on a four-dimensional manifold, which represents the inertio-gravitational
field. The other important space-time structure is the metric field that represents the
chrono-geometry; and the peculiarity of general relativity is that the compatibility
conditions between metric and connection—or in physical terms, between inertio-
gravitational field and chrono-geometry—uniquely determine the connection in
terms of the metric. In teaching the subject, emphasis should be put on the connection
from the beginning. This can be done easily by presenting the affine version of New-
tonian gravitation theory before discussing general relativity. But most textbooks still
start from the metric and introduce the connection later via the Christoffel symbols in
a way that does not stress the basic role of the connection.36 Now that gauge fields
have come to dominate quantum field theory, it is more important than ever to
emphasize from the beginning how general relativity resembles these Yang-Mills
type theories, as well as how it differs.37

35 For details, see (Stachel 1989; Norton 1984) and volume 1 of this series.
36 It is indicative of current interests that (Darling 1994), the only elementary mathematical textbook I

know that introduces the connection first, does not even mention the application to gravitation theory,
but concludes with a chapter on “Applications to Gauge Field Theory” (pp. 223–250). 

37 The basic difference is that the affine connection lives in the frame bundle (see Section h of the
Appendix), which is soldered to the space-time manifold. The symmetries of the fibres are thus
induced by space-time diffeomorphisms. On the other hand, the Yang-Mills connections live in fibre
bundles, the fibres of which have symmetry groups that are independent of the space-time symmetries
(internal symmetries). For further discussion, see (Stachel 2005).
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ACKNOWLEDGEMENTS AND A CRITICAL COMMENT

I thank Dr. Jürgen Renn for a thoughtful reading of this paper, and many helpful sug-
gestions for its improvement. I thank Dr. Erhard Scholz for his careful critique of the
paper. While agreeing with its basic viewpoint, he made some critical comments on
my treatment of Grassmann and the mythical Weylmann. With his kind permission I
quote them:

The (historical) lineale Ausdehnungslehre was so much oriented towards the investiga-
tions of linear geometric structures and their algebraic generalization that there was a
deep conceptual gulf between Grassmann’s approach and Riemann’s differential geome-
try of manifolds, which could only be bridged after a tremendous amount of deep and
hard work. I do not see in Grassmann’s late attempt to understand the algebraic geometry
of curves and surfaces in terms of his Ausdehnungslehre a step that might have led him
even somewhat near to a generalization of parallel transport in the sense of differential
geometry. In “real history” there was no natural candidate for “Weylmann.”

..... So, in short, your Newstein paper is an interesting thought experiment discussing the
question of what would have happened if history had gone other than it did. In doing so,
and following your line of investigation, we might find more precise answers as to why
there was, e.g., still a long way to go from Grassmann to a potential “Weylmann.” This is
contrary to your intentions, I fear, but I cannot help reading your paper that way.

Rather than going contrary to my intentions, his remarks raise a most important ques-
tion that supplements my approach to alternate histories: Given that we can invent
various alternatives to the actual course of events, can one attach a sort of intrinsic
probability to these various alternatives? I mean probability in the sense of a qualita-
tive ranking of the probability of the alternatives rather than attaching a numerical
value to the probability of each. In a truly “postmature” case, the ranking of the actual
course of events would be lower than that of at least one of the alternatives. For
example, the probability of a direct mathematical route from Riemann’s local metric
to Levi-Civita’s local metrical parallelism would rank higher than the probability of
the actual route via physics through Einstein’s development of general relativity. Dr.
Scholz makes a strong case for ranking the probability of the actual course of events
from Grassmann’s affine spaces to Weyl’s affine connection higher than the probabil-
ity of the step from Grassmann to Weylmann in my myth. I shall not pursue this issue
further here, but again thank Dr. Scholz for comments that raise it in the context of
my paper.
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APPENDIX: RIEMANNIAN PARALLELISM
AND AFFINELY CONNECTED SPACES

I shall review the concepts of parallelism in Euclidean and affine spaces, and their
generalization to non-flat Riemannian and affinely connected spaces, respectively. I
shall emphasize material needed to understand the historical and mathematical dis-
cussion in the Sections 3–6 and Newstein’s mythical history in Section 7. Those
familiar with the mathematical concepts may refer to the Appendix as needed when
reading Sections 4–7.38 

a. affine and Euclidean spaces. The familiar concept of parallelism in Euclidean
space can easily be extended from lines to vectors: two vectors at different points in
that space are parallel if they are tangent to parallel lines. We say that two Euclidean
vectors are equal if they are parallel and have the same length as defined by the met-
ric of Euclidean space. But, as we shall soon see, the concepts of parallelism and
equality of parallel vectors retain their significance when we abstract from the metric
properties of Euclidean space to get an affine space. 

Figure 1: Any pair of non-parallel vectors  and  can be transformed into any other 
pair  and  by an (active) affine transformation.

The properties of Euclidean geometry may be defined as those that remain invari-
ant under transformations of the Euclidean group, consisting of translations

39 and of rotations  about any point in space.40 A translation is a
point transformation that takes the point  into the point  where  is any vec-
tor. A rotation is a point transformation with a fixed point  that takes the point

38 However, in contrast to more familiar treatments, I shall define connections in terms of frame bundles,
a concept that I shall introduce informally, following (Crampin and Pirani 1986, chaps. 13–15), which
may be consulted for more details.

39 I shall use the notation  to denote a group acting on a real dimensional space.
40 I shall give the active interpretation of all geometrical transformations: The transformations act on the

points of the space in question, taking each point into another one. The idea of defining a geometry by
the group of transformations that leave invariant all geometric relations goes back to (Klein 1872).
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 into the point  where  is an orthogonal transformation.
The translations are clearly metric-independent; but the orthogonal transformations,
being the linear transformations that preserve the distance between any pair of points,
clearly do depend on the metric.

 If we relax the condition that a linear transformation  preserve distances, and
merely demand that it have a non-vanishing determinant), then  the
group of general linear or affine transformations. Together with the translations, they
form the affine group that defines an affine geometry.41 Parallelism of lines and vec-
tors and the ratio of the lengths of parallel vectors (and hence the equality of two such
vectors) being invariant under the affine group, are meaningful affine concepts. The
(Euclidean) length of any vector is changed by an affine transformation with non-unit
determinant, so it is not a meaningful affine concept. 

Figure 2: Any pair of parallel vectors  and  can be transformed into any other pair 
of parallel vectors  and  with the same ratio by an (active) affine transformation.

In order to determine the action of an affine transformation  on any vector  at
some point of an dimensional affine space, we need merely define its action on a
basis or linear frame  at that point, consisting of  linearly-independent vectors:

(11)

where  is the new basis produced by the action of  on  and  is the matrix
representing the action of  on some basis. (Here and throughout, we have adopted
the summation convention for repeated indices, which range over the appropriate
number of dimensions—here )

 If we want to restrict ourselves to Euclidean geometry and the orthogonal group,
we may restrict ourselves to orthonormal bases or frames:

41 For a discussion of affine and metric spaces, with a view to the generalizations needed below, see
(Crampin and Pirani 1986, chaps. 1 and 7). For these generalizations, see chaps. 9 and 11.
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(12)

where the dot symbolizes the Euclidean scalar product of two vectors, and to orthog-
onal changes of bases:

 (13)

Figure 3: A (homogenous) affine transformation is defined by its action 
on a basis (or linear frame)  of the affine space.

Once we have chosen a basis at one point of an affine (or Euclidean) space, we can
take as the basis at any other point of space the set of basis vectors equal and parallel
to the original basis, thereby setting up a field of bases or linear frames over the entire
space. 

b. frame bundles. On the other hand, we can consider the set of all possible bases or
linear frames at a given point of space. As is clear from eq. (11), in an affine space
these frames are related to each other by the transformations of  The set of
all frames, together with the structure that the dimensional affine group imposes
on them, is said to form a fibre over the point in question. Similarly, in Euclidean
space, the set of all possible orthonormal frames at a point has a structure imposed on
it by  the dimensional orthogonal group (see eq. (13)).

The set of all possible frames at every point of a space together with the space
itself form a manifold that is called the bundle of linear frames or, more simply, the
frame bundle. This is a special case of the more general concept of a fibre bundle.42

The original space, which is affine or Euclidean in our examples but capable of gen-
eralization to any manifold, is called the base space of the fibre bundle; each fibre
also need not be composed of linear frames, but may have a more general structure
(below we shall consider fibres composed of tangent spaces). But there is always a
projection operation that takes us from any fibre of the bundle to the point of the base

42 For fibre bundles in general and the frame bundle in particular, see (Crampin and Pirani 1986,
chaps. 13 and 14).
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space at which the fibre is located. A fibre bundle is called trivial if it is equivalent to
the Cartesian product of a base manifold times a single fibre with a structure on it.
The frame bundles we have been considering are trivial, since they are equivalent to
the product of an affine (or Euclidean) space times a frame fibre with the structure
imposed on it by the affine (or orthogonal) group.

Figure 4: The set of all possible frames  
at a point of the space forms a “fibre” over the point.

A cross-section of the frame bundle is a specification of a particular frame on
each fibre of the bundle, i.e., at each point of the base space (see Fig. 6). (The frames
must vary in a smooth way as we pass from point to point, but we shall not bother
here with such mathematical details.) In an affine (or Euclidean) space, the specifica-
tion of a linear (or orthonormal) frame on one fibre allows us to pick out a unique par-
allel cross section of the entire bundle. (The last sentence just repeats, in the language
of fibre bundles, something said earlier.) A change of frame on one fibre produces a
change of the entire parallel cross section that is induced by an affine (orthogonal)
transformation on the original fibre.

Figure 5: The fibres of a fibre bundle.

eA e′A e″A …, , ,
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Figure 6: A “cross-section” of a frame bundle is a choice 
of a particular frame on each fibre of the bundle.

c. parallelism in non-flat Riemannian spaces. Now consider three-dimensional
Euclidean space and some two-dimensional (generally curved) surface  in it. All
vectors that are tangent to  at one of its points  form a vector space  called
the tangent space to  at  The collection of all such tangent spaces for all points

 form a fibre bundle  called the tangent bundle. All vectors in  are
intrinsically related to 43 and we want to define the concept of parallelism for such
vectors in such a way that it will also be intrinsic to  We cannot simply take the vec-
tor at another point  of  that is parallel to a vector of  in the three-dimen-
sional Euclidean sense: in general, that vector will not even be in  see Fig. 7).

We can get an idea of how to proceed by considering the case when  is a plane.
The concept of parallel vectors at different points of the plane is clearly intrinsic to
the plane. Consequently, the tangent spaces at each point of the plane can be identi-
fied with each other in a natural way, as can pairs of orthonormal vectors

 that form a basis at each point of the plane considered as a two-dimen-
sional Euclidean space. Taken together with the unit normal vector  to the plane,
the  form a basis for the tangent space of the three-dimensional Euclidean space. 

43 These vectors can, for example, be defined as the tangent vectors to curves  lying entirely
in  We follow the usual terminology in distinguishing curves from paths, which are curves without
a parametrization 
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Figure 7: To define an intrinsic notion of parallelism within a surface  we cannot 
use vectors that are parallel to each other in the three-dimensional sense. While  lies 
in the tangent plane at  the three-dimensionally parallel vector  does not even lie 

in the tangent plane at 

Figure 8: If  and  are parallel vectors in the plane  and if parallelism is
intrinsic to  then they remain parallel even when  is bent (without distortion).

S,
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Figure 9: In an affine space, choice of a frame on one
fibre picks out a unique parallel cross-section.

Figure 10: The tangent space  to a surface  at point  of the surface in 
Euclidean space is composed of all vectors tangent to the surface at that point. The 

unit normal to the tangent plane is designated by 

Now suppose we bend the plane without distorting its metric properties (i.e., the met-
rical relations between its points as measured on the surface), resulting in what is
called a developable surface.44 If we want the concepts of parallelism and straight
line to be intrinsic to a such a surface, they must remain the same for any surface
developed from the plane as they were for the plane itself. Thus, the basis vectors 

44 Such a process of bending leaves the intrinsic geometry of the surface unchanged, but changes its
extrinsic geometry. The intrinsic properties of any surface are those that remain unchanged by all such
bendings; its extrinsic properties are precisely those that depend on how the surface is embedded in
the enveloping Euclidean space.
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at different points of the surface must still be considered parallel to each other from
the intrinsic, surface viewpoint, even though they are not from the three-dimensional
Euclidean point of view. Consider two neighboring points on the surface  and

 In order to get from the tangent plane  at  to the tangent plane
 at  one must rotate the former through the angle  that takes  into 45

Thus, there must be an orthogonal transformation  differing from the identity 
only by an amount that depends on   and  or equivalently on  and

(14)

and depends linearly on 

Figure 11: In order to get from the tangent plane  at  to a neighboring tangent 
plane  at  we must carry out an orthogonal transformation 

 that depends on  and 

Due to the linearity of vector spaces, the effect of this orthogonal transformation
on any vector in the tangent plane to the surface can be computed once its effect on a
set of basis vectors  in the tangent plane is known.46 The change in each basis vec-
tor is given by:

(15)

45 The concept of parallelism in the Euclidean space allows us to draw the vector at  that is equal and
parallel to  at  and so define the angle  between  and 

46 Note that we need the normals  and  to define the orthogonal transformation between parallel
vectors lying in the tangent planes at  and  but since we are only interested in the change in vec-
tors lying in the surface we may omit  from explicit mention in eq. (5), since it is determined by the

 and the orthonormality conditions.
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where  are the elements of a matrix that determines the effect of the
infinitesimal rotation on the orthonormal basis vectors. 

Figure 12: The effect of  on any vector in  is determined by its effect on a set 
of basis vectors  of the space.

It is this connection between parallel vectors in neighboring tangent planes, given
by eqs. (14) and (15), that we shall preserve for all surfaces, in particular for those
that are not intrinsically plane. Since it was introduced by Levi-Civita (see Section 4),
it is often called the Levi-Civita connection. If two points  and  are not neighbor-
ing, we must choose some path  on the surface connecting  and  and break it
up into small straight line segments  If we move from  to 
along straight-line segment  we must rotate  at  through some small
angle  about the normal  at  in order to get the tangent plane  at 
For the next segment  we have to rotate the tangent plane  through an
angle  about the normal  at  in order to get the tangent plane  at 
We keep doing this until we reach the endpoint  Now we increase the number of
intermediate points indefinitely, and take the limit of this process so that the broken
straight line segments approach the curve. This defines the vector in  that is
parallel to one in  with respect to the path 

Note that we must add the last qualification because, unless  is a developable
surface, the resulting parallelism in general will be path dependent. We can see this
by looking at a small parallelogram with sides  and  Since

 and  are not in general parallel to each other, the correspondence
between vectors in the tangent planes  and  that is set up by going via

 is not in general the same as the one we get by going via 
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Figure 13: In general the vector  at  that is parallel to  at  depends on 
the path taken between  and 

Figure 14: We can see this by looking at the parallel transport of a vector  along the 
sides  and  of a small parallelogram.

d. the Riemann tensor. By carrying out the analysis of this parallelogram quantita-
tively, we can define the Riemann tensor of the surface.47 Take a vector  in 
and let the corresponding (i.e. intrinsically parallel) vector in  be  Then

 results from  by a rotation operation that acts on  we shall symbolize it by
the operator  (see eq. (14)), so that:

47 In the case of a two-dimensional surface, it reduces to a scalar  i.e., all non-vanishing components
of the Riemann tensor reduce to  But we prefer to keep the tensorial designation in view of the
impending generalization to higher dimensions.
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Here,  represents a first order infinitesimal rotation operator that depends linearly
on  Similarly, if  represents the displacement  then the change  in 
when we go from  to  is given by:

Then the change in  at  when we go via  first, then  (i.e., via  is
given by:

while, if we proceed in the reverse order (i.e., via  the change is given by:

Since  and  are vectors at the same point, their difference is a (second order
infinitesimal) vector  It indicates by how much the two vectors in  that are
parallel to  in  depending on which of the two paths is taken, differ from each
other:

Note the operator in parentheses is the same for all vectors in  since they are all
rotated by the same amount. And since  and  are linear in  respec-
tively, this operator is proportional to  Such an antisymmetric tenso-
rial product of two vectors is abbreviated as  and called a simple bivector; it
represents the (signed) area of the infinitesimal parallelogram with sides 
This second order infinitesimal term is also same for all vectors taken from  to 
along the sides of the parallelogram.48 So there must be a finite tensorial operator 
such that, when it operates on an area bivector  and a vector  it produces
the change in  when it is parallel transported around the area  Note that, to
the second differential order we are considering, it makes no difference whether we
parallel transport a vector from  to  in two different ways, and compare the
results in  or take it around the parallelogram and compare the result with the
original vector in  Further, the result is independent of the shape of the infini-
tesimal plane figure we carry it around so long as this has the same area as, and lies in
the plane defined by,  The tensorial operator  which operates on a bivec-
tor and a vector to produce another vector, is called the Riemann tensor; when it oper-
ates on an infinitesimal area element, it measures how much Riemannian parallelism

48 One should actually distinguish between  at  and  at  which is the result of parallel trans-
porting  at  along  But to the order we are considering, the difference may be neglected.
The more serious problem of whether the parallelogram resulting from these displacements actually
“closes” will be discussed later.
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on that surface element differs from flat, path-independent, parallelism, for which the
Riemann tensor would vanish.

Figure 15: The operator  operating on the area  and the vector  pro-
duces the change  in  when it is parallel transported around that area.

e. non-flat affine spaces. Our discussions of parallelism on a surface and of the Rie-
mann tensor made essential use of the metric of the enveloping Euclidean space. First
of all, this metric induced a notion of distance on the surface; but this is intrinsic to
the surface, and can be defined without using the fact that the surface is embedded in
a Euclidean space. More serious is the fact that we used the normals to the surface at
each point in order to develop the relation between tangent spaces at neighboring
points in terms of an orthogonal transformation (rotation through some angle). The
notions of orthogonality and angle are intrinsically metrical. 

Suppose we abstract from these metric concepts and consider an affine space, as
discussed above. Using only affine concepts, can we still define concepts of parallel-
ism and straight line on a surface in an affine space? The answer is yes, but we must
introduce a substitute for the unit normal field given naturally in a Euclidean space.

First of all, the concept of surface is independent of a metric, as are those of the
tangent space at each point of a surface, and (hence) of the tangent bundle. But now
we have no natural way of relating the tangent spaces at different point of the surface
by means of a general linear transformation. At each point of the surface, a basis in its
tangent space must be supplemented by a vector that does not lie in the tangent space;
i.e., a vector that takes the place of the normal vector to the surface in a Euclidean
space. Together with the chosen basis in the tangent space, this vector constitutes a
basis for the enveloping affine space. This vector field is said to rig the surface, and
the process is called rigging. Once the surface is rigged, one can carry out in an affine
space a procedure to relate neighboring tangent spaces that is entirely analogous to
the procedure used in the Euclidean case. The only difference is that, instead of the
infinitesimal orthogonal transformation  that carries the orthonormal basis at 
into the orthonormal basis at  one considers the infinitesimal general linear trans-
formation  that takes a basis for the enveloping affine space at  into the corre-
sponding basis at  Due to the linearity of vector spaces, carrying out the
transformation  on any vector in  yields the corresponding parallel vector in

 Such a connection between tangent spaces, which generalizes to surfaces in
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an affine space the Levi-Civita connection for surfaces in a Euclidean space, is called
a general linear connection. Once the connection is defined, everything proceeds in a
way that is entirely analogous to that for Euclidean spaces (see the previous subsec-
tion), up to and including the definition of the Riemann tensor operator.

Instead of eq. (15), giving the effect of an infinitesimal orthogonal transformation
(rotation) matrix on an orthonormal basis, we can now specify the effect on the vec-
tors in a tangent plane of an infinitesimal general linear transformation, by specifying
the infinitesimal general linear transformation matrix  that gives the effect of
this transformation on an arbitrary basis: 

(16)

f. covariant differentiation, geodesics. Once we have the concept of parallelism
along a path, we can define a derivative operation for a vector field on a surface. The
essence of the usual derivative operation for a vector field in Euclidean space consists
in comparing the value of the vector field  at some point with its values at some
neighboring points. But we can only compare vectors in the same tangent space: what
we actually do to compare vectors at two points  and  is to compare  with
the vector at  that is parallel to  We shall proceed in the same way on a sur-
face and compare values at two neighboring points  and 

since

where  represents the ordinary-derivative gradient operation; operating on a scalar
field  it gives the gradient vector field  but operating on a vector (or tensor)
field it does not produce another vector (or tensor) field. It must be supplemented by
the second term  for a vector (and similar terms for higher-order tensors). Since

 we can write the invariant combination as

Since  is also linear in  we can abbreviate the right hand side as: 

The expression  represents an invariant directional derivative in the  direc-
tion. Since the result is linear in  there must be a tensorial operator  called the
covariant derivative operator, that operates on a vector to produce a mixed tensor 
with one covariant and one contravariant (i.e.,vectorial) place.

On a surface, we may generalize the concept of a straight line in an affine space to
that of a geodesic by requiring that the parallel transport of its tangent vector along a
geodesic remain the tangent vector. If  represents the tangent vector to the curve

 this means that a geodesic must satisfy the equation:
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g. generalizations, intrinsic characterizations. Nothing in the discussion above
depends essentially on the number of dimensions being three, and it can be immedi-
ately generalized to dimensional metric and affine spaces, defined by the transla-
tion groups  and  and  and  respectively; and to their

dimensional sub-spaces. If  is less than  then there are  normals, and
 rigging vectors must be defined; but otherwise the discussion proceeds quite

analogously. Since any dimensional Riemannian or affinely-connected space can
be embedded in an dimensional Euclidean or affine space of sufficiently high
dimension (locally, if not globally), such embedding arguments can handle the
generic case. 

Of course, once the basic geometrical concepts have been grasped, an intrinsic
method of characterizing curved spaces, independently of any embedding in flat
spaces of higher dimension, is preferable. It is clear from the previous discussion how
to proceed. One must specify a connection between vectors in  and  that
defines when a vector in one is parallel to a vector in the other. In contrast to the order
in the previous embedding considerations, I shall first give the definition for a general
affine linear connection, and then indicate how to specialize it to a Riemannian or
Levi-Civita connection.

As indicated earlier (see discussion around eqs. (15) and (16) above), in order to
connect arbitrary vectors in the two tangent spaces, it suffices to indicate how sets of
basis vectors in the two tangent spaces are connected. Let  be a set of basis vec-
tors in  The changes in these basis vectors when we move to

 will be given by (generalizing eq. (6) above):

Our connection is linear in  so it suffices to know the change in  for a small
change in each of the basis directions,  where  is an infinitesimal of first
order. 

On the other hand  itself must be a linear combination of the basis vectors, so we
may decompose it into the infinitesimal changes in each of these directions:

Thus, specification of the set of quantities  at all points of the manifold fixes
the affine connection intrinsically.49 We call the  the components of the connec-
tion with respect to the basis 50 

If we now want to construct the parallelogram as described above in the definition
of the Riemann tensor, we must make sure that it “closes,” that is, that we reach the
same point if we parallel transport  along  as we do if we parallel transport 
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along  It is relatively simple to show that this will be the case if  is symmetric
in its two lower indices; we shall consider only such symmetric affine connections.51

The Riemann tensor operator  can now be defined in terms of its effect on the
basis vectors. If we transport  around an area defined by  then its change in
the  direction is given by  These are the components of the Riemann tensor
with respect to the basis  which can easily be related to the derivatives of the 
but we omit the details. For future reference, we note that  is antisymmetric in its
last pair of indices, and that if we contract its upper index with either of the last two
indices, say the second, we get (plus or minus) the Ricci tensor 

The covariant derivative operator will have components:

the components of the covariant derivative of a vector  for example, are:

The components of the geodesic equation in an adapted coordinate system are:

The components of the Riemann tensor with respect to a basis can be similarly calcu-
lated. 

Turning to Riemannian spaces, it is natural to demand that parallel transport along
any path preserve the length of all vectors. If we impose this condition on a symmet-
ric affine connection, we are led uniquely to the Levi-Civita connection discussed
above; but again we omit the details. 

For future reference, we also note that, just as in the case of a surface in a linear
(flat) affine space discussed above, a connection is induced on a hypersurface in a
non-flat affinely connected space if that hypersurface is rigged with an arbitrary vec-
tor field.52 

49 Note that these quantities transform as scalars under a coordinate transformation, but as tensors under
a change of basis. If we use the natural basis associated with a coordinate system (see the following
note) and carry out a simultaneous coordinate transformation and change of natural basis, they trans-
form under a more complicated, non-tensorial transformation law (see Section 6, eq. (7)).

50 Note that a basis need not be holonomic, i.e., coordinate forming. It will be if and only if the Lie
bracket of any pair of basis vectors vanishes. We shall only need holonomic bases, for which an asso-
ciated coordinate system exists, such that in this coordinate system  the coordinate components
of  are equal to  the Kronecker delta. Conversely, a basis is associated with any coordinate sys-
tem by the same relations.

51 If the parallelogram does not close, the antisymmetric part of  defines the so-called torsion tensor.
52 It is customary, when discussing spaces of more than three dimensions, to refer to subspaces of one

less dimension than that of the space as hypersurfaces. Thus, when the discussion is generalized to
more than three dimensions, “surfaces” become “hypersurfaces.”
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h. frame bundles and connections. We introduced the concept of affine connection
in the currently-habitual way, in terms of its local action on vector or frame fields in
some manifold. But a connection is more naturally introduced globally in terms of
the frame bundle over that base manifold (see Section b). A curve  in the base man-
ifold together with a frame field defined along the curve corresponds to a curve  in
the frame bundle; and conversely  projects down to  in the base manifold,
together with a frame field along the curve. Now a connection provides a rule for
defining such curves in the frame bundle: given a curve  in the base manifold
together with an initial frame at some point on the curve, parallel transport of the ini-
tial frame along the curve thus defines a unique curve  in the frame bundle. The
only thing we have to worry about is what happens if we change the initial frame by
the action of some element of the general linear group (see eq. (11)).The curve in
the frame bundle is then transformed into another curve that differs from the first only
by the same action of  on the frame at each point of the curve in the base manifold. 

We can use this idea to define a connection globally as a collection of curves in
the frame bundle, each passing only once through any fibre of the bundle, that satisfy
the following condition: if two such curves  and  project into the same curve 
in the base manifold, and hence have all of their fibres in common, then on each fibre
the frames on the two curves are related by the global application of the same 

 If we want to restrict the structure group of the frame fibres to some subgroup of
 then we must assure that the connection introduced is compatible with the

structure of this subgroup. For example, if we required compatibility with any of the
orthogonal or pseudo-orthogonal subgroups, the Levi-Civita connection would
result.53
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