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Noether’s Theorem
Electric Charge

Charge-current density jμ = j0 + ~j.

Total charge Q =
∫︀
j0d3x.

Noether Theorem: ∂μjμ = 0.
d
dtQ = 0.
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Color Charge
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Noether’s Theorem
Color Charge

Current for color charge?

conservation of red
conservation of blue
conservation of green
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Currents

• Electric Charge ∂μjμ = 0

• Color Charge ∂μjaμ = 0

Question: How does Jaμ relate to red, blue,
and green?
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Claims

• Noether’s theorem does not show conservation
of red, blue, and green.

• Noether’s theorem does show conservation of
a relational quantity of combinations of color
and anti-color.
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Outline

1. Scalar Electrodynamics

2. Scalar Chromodynamics

3. Group Representations

4. What is Charge?

10/51



Outline

1. Scalar Electrodynamics

2. Scalar Chromodynamics

3. Group Representations

4. What is Charge?

11/51



Scalar Electrodynamics
charged scalar field

LE = Dμϕ(Dμϕ)∗ − mϕϕ∗

• ϕ is a matter field

• Dμ = ∂μ + iqAμ
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Scalar Electrodynamics
Interactions

LE = Dμϕ(Dμϕ)∗ − mϕϕ∗

Dμϕ(Dμϕ)∗ = −iqAμ(ϕ∗∂μϕ+ ϕ∂μϕ∗)

− q2AμϕAμϕ∗ + ∂μϕ∂
μϕ∗.
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Scalar Electrodynamics
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Color Charge
charged scalar field

LC = Dμϕi(Dμϕi)∗ − mϕiϕ
∗
i

• ϕi matter field
– i is for red, blue, or green
– first fundamental representation of SU(3)

• Dμ = ∂μ + igAa
μ

– a is for Lie algebra
– adjoint representation of SU(3)
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Color Charge
charged scalar field

LC = Dμϕi(Dμϕi)∗ − mϕiϕ
∗
i

Jμa = ig(ϕ∗i D
μϕi − ϕi(Dμϕi)∗)

= ig(ϕ∗i (∂μ + igAa
μ
)ϕi − ϕi(∂μ − igAa

μ
)ϕ∗i )
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Group Representations

• Group representations hardwired into
the expressions for the current

• Current transforms according to the
adjoint representation
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Groups
Representations

• Abstractly: (G, ·).
• Lie groups have lie algebras.

• Concretely: representations.

• A representation ρ : G→ GL(V).

• The dimension of ρ is the dimension of V.
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Representations of SU(N)

For SU(N), there are N− 1 many fundamental
representations.

For SU(3) two fundamental representations: color
and anti-color
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Representations of SU(3)
The Fundamental Reps

r =

⎛⎜⎝1
0
0

⎞⎟⎠, b =

⎛⎜⎝0
1
0

⎞⎟⎠, g =

⎛⎜⎝0
0
1

⎞⎟⎠.

These define a basis for C3.
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Representations of SU(3)

A basis for the Lie algebra:

λ1 =

⎛⎜⎝0 1 0
1 0 0
0 0 0

⎞⎟⎠ , λ2 =

⎛⎜⎝0 −i 0
i 0 0
0 0 0

⎞⎟⎠ , λ3 =

⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠
⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠
⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠,

λ4 =

⎛⎜⎝0 0 1
0 0 0
1 0 0

⎞⎟⎠ , λ5 =

⎛⎜⎝0 0 −i
0 0 0
i 0 0

⎞⎟⎠ ,

λ6 =

⎛⎜⎝0 0 0
0 0 1
0 1 0

⎞⎟⎠ , λ7 =

⎛⎜⎝0 0 0
0 0 −i
0 i 0

⎞⎟⎠ , λ8 = 1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠
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Cartan Subalgebra

λ3 =

⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠
⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠
⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠, λ8 = 1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠

Distinguish representations of SU(3) by the subalgebra’s
eigenvalues, called weights.
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Representations of SU(3)
The Fundamental Reps

λ3(b) =

⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠
⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠
⎛⎜⎝1 0 0
0 -1 0
0 0 0

⎞⎟⎠
⎛⎜⎝0
1
0

⎞⎟⎠ = -1

⎛⎜⎝0
1
0

⎞⎟⎠

λ8(b) = 1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠1p
3

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠
⎛⎜⎝0
1
0

⎞⎟⎠ = 1p
3

⎛⎜⎝0
1
0

⎞⎟⎠

We say that the weight of b is (−1, 1p
3).
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Representations of SU(3)
The Fundamental Reps
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Representations of SU(3)
The Fundamental Reps

For anti-colors we set:

r̄ =

⎛⎜⎝0
0
1

⎞⎟⎠, b̄ = −

⎛⎜⎝0
1
0

⎞⎟⎠, ḡ =

⎛⎜⎝1
0
0

⎞⎟⎠.

The representation on this space is ρ̄(g) = −ρ(g)tr
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Representations of SU(3)
The Fundamental Reps
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Representations of SU(3)
The Fundamental Reps
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We distinguish between inequivalent
representations using this weight space.
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Representations of SU(3)

LC = Dμϕi(Dμϕi)∗ − mϕiϕ
∗
i

• i = r, b, g fundamental representation

• a = 1, 2, . . .8 adjoint representation
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Representations of SU(3)

• A representation ρ : G→ GL(V)

• We call V the “carrier space.”

The adjoint representation: V is the Lie algebra.

The action ρadj is conjugation: ρadj(g)(v) = gvg−1.
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Adjoint Representation
SU(3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . .

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The Adjoint Representation
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Representations of SU(3)
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The Adjoint Representation

• The weights correspond to basis vectors of V

• The carrier space V is the Lie algebra

• So: any element of Lie algebra can be written in
this basis
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Interpretation

Lie algebra valued quantities are combinations of
color and anti-color.
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Color Charge
charged scalar field

LC = Dμϕi(Dμϕi)∗ − mϕiϕ
∗
i

Jμa = ig(ϕ∗i D
μϕi − ϕi(Dμϕi)∗)

= ig(ϕ∗i (∂μ + igAa
μ
)ϕi − ϕi(∂μ − igAa

μ
)ϕ∗i )
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Noether’s Theorem
Color Charge

Given SU(3) gauge symmetry, Noether’s thoerem
give us

∂μJμa = 0.

The conserved quantity is a combination of color
and anti-color.
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Outline

1. Scalar Electrodynamics

2. Scalar Chromodynamics

3. Group Representations

4. What is Charge?
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Color Charge and Electric Charge

LE = Dμϕ(Dμϕ)∗ − mϕϕ∗

LC = Dμϕi(Dμϕi)∗ − mϕiϕ
∗
i
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U(1)
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Representations of U(1)

ρn(eiθ) = einθ.

• Each ρn has C as its carrier space.

• The adjoint representation is ρ0.

• ρ0 = ρ−1+1.

• The Lie algebra is R.
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Charge exchange

r g

gr̄
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Electric charge

-1 -1

0
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Conclusions

• Red, blue, and green are not individually
conserved.

• The conserved quantity is a combination of
charge and anti-charge.

• Conservation of charge is relational.
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Thank you!
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SU(3) Adjoint

Three pairs of raising and lowering operators:

E±1,0 = (1/2)(λ1 ± iλ2) red states� blue states.
E±1/2,±p3/2 = (1/2)(λ4 ± iλ5) red states� green states.
E∓1/2,±p3/2 = (1/2)(λ6 ± iλ7) blue states� green states.
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SU(3) Adjoint
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Yang-Mills Theory

LYM = −
1

4
FaμνFaμν

Jaμ =
1

g2
DμFaμν
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Charged Gauge Field

LC = Dμϕi(Dμϕi)∗ − mϕiϕ
∗
i −

1

4
FaμνFaμν
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Covariant Derivative
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