UNCLASSIFIED

Proposed CSM Project

ARL

The Problem

Suboptimal material properties are preventing
realization of low cost, high performance InAs/InAsSb
Type 2 SL based LWIR devices

U.S. ARMY RDECOM®

Poor vertical transport and short diffusion length limit carrier collection and QE in n - InAs/InAsSb Type 2 SL

The Project

Bring together the IR community to develop robust validated models that describe transport of minority carriers in both n- and p- InAs/InAsSb Type 2 SL

Payoffs

- Determine whether current material & device limitations are *fundamental* or *technological*
- > Enable knowledge-based future device development

Expected Project Outcome

- Understand transport mechanisms (drift, hopping, sequential tunneling, etc.) – to identify which design "knobs" control each process
- Obtain quantified transport and optical parameters (minority carrier mobility, lifetimes, optical absorption)
- Explain experimental (materials and devices) data to understand behavior and limitations
- Propose material optimization to obtain better than current performance

Proposed approach

enting e InAs/InAsSb on length limit sSb Type 2 SL elop robust rt of minority ype 2 SL evice <i>gical</i> development	 Use 1D k-p coupled with NEGF to study quantum phenomena in selected local device regions Enhanced representation of the physical processes of a multilayer structure that avoids a priori assumptions of the nature of the transport Explore alternative methods to compute the electronic structure: tight-binding and DFT Use information obtained from different regions to set up a model for the whole device structure: microscopic particle model or drift diffusion depending on device design goals Validate models experimentally Bulk and SL material – bandgap, absorption, mobility Devices (I-V, QE)
ft, hopping, which design parameters ical	 <u>Risks</u> k-p has limitations that may impact model fidelity NEGF is computationally expensive Data doesn't exist or access to data is difficult for model validation

The Nation's Premier Laboratory for Land Forces