

Course Title: Data Science with Python

Course Number: BU MET CS 677 Course Format: On-Line

Instructor Name: Eugene Pinsky

epinsky@bu.edu

Computer Science Department,

Metropolitan College, Boston University

1010 Commonwealth Avenue, Room 327

Boston, MA 02215

Course Times: Tue: 8:00 – 9:30 pm EST

Thu: 8:00 - 9:30 am EST

Office hours: by appointment

Course Description

There is a growing need for specialists with a background in Python who can apply data science methods to practical problems at their workplace. Working in data science requires an understanding of many interdisciplinary concepts, and involves data mining and application of various methods.

The proposed course is designed to fill this need. Students will learn major Python tools and techniques for data science and machine learning. There are weekly assignments and projects on topics covered in class. These assignments will help build necessary statistical, visualization, and other data science skills for effective use of data science in various applications, including finance, text processing, time series analysis, and

Boston University Metropolitan College

recommendation systems. In addition, students will choose a topic in data science for a final project.

Students can take the proposed course with not exclusively computer science backgrounds who have basic knowledge of Python.

Books

Required:

"Python for Data Analysis", by W. McKinney, O'Reilly Publishing, 2017 (2-nd edition), ISBN-13: 978-1491957660, purchased from Barnes & Noble

Recommended:

"Python Data Analysis" by Armando Fandango, Packt Publishing, ISBN-13: 978-1787127487

"Python Data Science Handbook" by Jake VanderPlas, O'Reilly Publishing, ISBN-13: 978-1491912058

Courseware: Blackboard, Course Notes

Class Policies

1. Assignment Completion & Late Work

Weekly programming assignments and quizzes submitted through blackboard on-line. Late homework is accepted with 50% penalty. Final projects are submitted through blackboard on-line. Both quizzes and final are closed-book.

2. Academic Conduct Code

Cheating and plagiarism will not be tolerated in any Metropolitan College course. They will result in no credit for the assignment or examination and may lead to disciplinary actions. Please take the time to review the Student Academic Conduct Code:

Academic conduct code as specified below:

http://www.bu.edu/met/metropolitan college people/student/resources/condu ct/code.html.

Grading Criteria

35% homework, 20% quizzes, 30% final, 15% final project

Class Meetings, Lectures & Assignments

Week	Topic	Readings Due	Assignments
1	Review of Python, Numpy and data	Chapters 1,2	Homework 1
	analysis libraries	Course notes	Quiz 1
2	Pandas, Matplotlib & Seaborn, error	Chapter 4, 5, 8	Homework 2
	metrics, model selection trade-offs	Course notes	Quiz 2
3	Supervised learning and decision	Course notes	Homework 3
	boundaries. Logistic regression and		Quiz 3
	nearest neighbor classifiers. Parameter		
	Estimation with gradient descent		
4	Linear and polynomial models for	Course notes	Homework 4
	prediction. Linear regression and		Quiz 4
	classification. Parameter estimation		

Boston University Metropolitan College

5	Bayes rule and Naïve Bayesian	Course notes	Homework 4
	Classification. Decision trees. Ensemble		Quiz 4
	learning with random forest classifiers		
6	Large-margin classification and kernels.	Course notes	Homework 5
	Support Vector Machines.		Quiz 5
	Unsupervised learning. \$k\$-means		
	clustering		
	_		
7	Course review, project presentations	Course notes	Homework 6
	and final exam		Quiz 6