MET CS664 A1 (Fall 2024) -Artificial Intelligence (Wednesdays, 6 PM)

Instructor

Suresh Kalathur, Ph.D.

Assistant Professor, Computer Science Dept. Boston Univeristy Metropolitan College 1010 Commonwealth Ave, Room 304 Boston, MA 02215
 Email:
 kalathur@bu.edu

 URL:
 http://kalathur.com/bu

 Phone:
 617-358-0006

 Fax:
 617-353-2367

Course Description

Study of the ideas and techniques that enable computers to behave intelligently. Search, constraint propagations, and reasoning. Knowledge representation, natural language, learning, question answering, inference, visual perception, and/or problem solving. Laboratory course.

Course Prerequisites

Python programming experience equivalent to MET CS 521. Or instructor's consent.

Course Grading Policy

The course grade will be based on class participation (10%), in-class assignments (30%), mid term exam (30%), and term project (30%).

Course Web Site

• <u>https://learn.bu.edu</u>

References

Reference Books

- Artificial Intelligence: A Modern Approach, 4th ed., by Stuart Russell and Peter Norvig, Pearson, 2021. ISBN: 9780134610993.(Reference book) https://aima.cs.berkeley.edu
- "Artificial Intelligence, 3rd ed.", by David L. Poole and Alan K. Mackworth, Cambridge University Press, 2023. ISBN: 9781009258197.(Reference book) <u>https://artint.info/3e/html/ArtInt3e.html</u>

Student Conduct Code

Please review the academic conduct code

Tentative Course Schedule

• Module 1 -- Introduction

- Introduction to AI
- Relevant Python Programming Review

• Module 2 -- Search

- Uninformed Search: DFS, BFS, Uniform-Cost
- Informed Search: Heuristics, Greedy techniques, A* Search
- Games as Search
- Adversial Search: Minimax rule, Alpha Beta Pruning
- Module 3 -- Constraint Satisfaction Problems
 - Examples (Sudoku, N-Queens, Golomb Rulers, Map Coloring, etc.)
 - Local Consistency, Arc Consistency
 - Backtracking Search, Forward Checking, Local Search

• Module 4 -- Logical Agents, Knowledge Representation & Planning

- Propositional Logic, First-Order Logic
- Inference, Forward Chaining, Backward Chaining
- Classical Planning, Hierarchical Planning

• Module 5 -- Uncertainty

- Reasoning (Belief networks, Markov models)
- Learning (Bayesian)
- Planning with Uncertainty

• Module 6 -- Deep Learning & Reinforcement Learning

- Neural networks (Feedforward, Convolutional, Recurrent)
- Unsupervised (Generative Adversarial Networks, Autoencoders)
- Reinforcement Learning
- NLP Applications

• Module 7 -- Generative AI

- Topics in Generative AI
- Attention, Transformers
- Mid Term Exam (October 16th)
- Project Presentation (Dec 4th & 11th)