Shorten your SAS Code with Character Functions

Emily K.Q. Sisson, M.A.

Concatenate character strings without removing leading or trailing blanks

Old = X1 || X2 || X3 || X4; New = CAT(OF X1 - X4);

X1	X2	X3	X4	Old	New
This	is	а	sentence	This is a sentence	This is a sentence

Concatenate character strings and remove trailing blanks

Old = TRIM(X1) || TRIM(X2) || TRIM(X3) || TRIM(X4);

New = CATT(OF X1 - X4);

X1	X2	X3	X4	Old	Old				
This	is	а	sentence	This	is	asentence	This	is	asentence

Concatenate character strings and remove leading **and** trailing blanks

X1	X2	X3	X4	Old	New
This	is	а	sentence	Thisisasentence	Thisisasentence

Concatenate character strings, remove leading and trailing blanks, and insert separator

X1	X2	X3	X4	Old	New
This	is	а	sentence	This is a sentence	This is a sentence

Note: default length for variables created using CAT functions is different from the length that is obtained when using the concatenation operator (||)

```
data names;
            input last : $25. first : $15. @@;
            full_old = trim(last) || ', ' || trim(left(first));
            full_new = catx(', ', last, first);
datalines;
Sisson Emily Palmisano Joe Coleman Sharon
;
run;
```


Results:

Obs	last first		full_old	full_new
1	Sisson	Emily	Sisson, Emily	Sisson, Emily
2	Palmisano	Joe	Palmisano, Joe	Palmisano, Joe
3	Coleman	Sharon	Coleman, Sharon	Coleman, Sharon

Alphabetic List of	Variables and Attributes

#	Variable	Туре	Len
2	first	Char	15
4	full_new	Char	200
3	full_old	Char	42
1	last	Char	25

The next few examples will consider a dataset housing answers to a 10-question survey:

id	a1	a2	a3	a4	а5	a6	а7	a8	a9	a10
1234	Y	Y	Y	Y	Y	Y	Y	Y	N	N
2345	Ν	N	Ν	Ν	N	Ν	Ν	Ν	N	N
3456	Ν	N	Ν	Ν	N	Ν	Ν	Ν	N	Y
4567	Ν	N	Ν	Ν	Y	Ν	Ν	Ν	N	Ν
5678	Y	N	Ν	Y	N	Ν	Y	Ν	N	Y

Using the survey dataset, create a new dataset containing observations where at least one answer was 'Y'.

Method 1: Brute Force:

```
data yes;
set survey;
if a1 = 'Y' or a2 = 'Y' or a3 = 'Y' or a4 =
'Y' or a5 = 'Y' or a6 = 'Y' or a7 = 'Y' or
a8 = 'Y' or a9 = 'Y' or a10 = 'Y';
run;
```


Using the survey dataset, create a new dataset containing observations where at least one answer was 'Y'.

Method 2: Conventional Array/Do Loop: data yes; set survey; array a(10); do i = 1 to 10 until (a(i) = 'Y'); end; if i < 11;</pre>

run;


```
CAT and FIND Functions:
```

data yes;

```
set survey;
```

```
if find(cat(of a1-a10), 'Y') > 0;
```

run;

id	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	cat(of a1-a10)
1234	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Ν	YYYYYYYNN
2345	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	NNNNNNNN
3456	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	NNNNNNNY
4567	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	NNNNYNNNN
5678	Y	Ν	N	Y	Ν	Ν	Y	Ν	Ν	Y	YNNYNNYNNY

Using the survey dataset, create a new dataset containing observations where at least TWO answers were 'Y'.

```
Conventional Array/Do Loop:
data yes;
set survey;
    array a(10);
    do i = 1 to 10;
    found_Y = sum(found_Y, (a(i) = 'Y'));
    end;
    if found_Y >= 2;
    drop i found_Y;
```

run;


```
CAT and COUNTC Functions:
```

data yes;

set survey;

```
if countc(cat(of al-al0), 'Y') >= 2;
```

run;

id	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	cat(of a1-a10)
1234	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Ν	YYYYYYYNN
2345	Ν	N	Ν	Ν	Ν	N	N	Ν	Ν	Ν	NNNNNNNN
3456	Ν	N	Ν	Ν	Ν	Ν	Ν	N	Ν	Y	NNNNNNNY
4567	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	NNNNYNNNN
5678	Y	N	Ν	Y	Ν	Ν	Y	Ν	Ν	Y	YNNYNNYNNY

Character functions can also come in handy for numeric data! Consider a dataset housing answers to a 10-question survey:

id	a1	a2	а3	a4	а5	a6	а7	a8	a9	a10
1234	5	5	3	3	2	1	1	1	1	1
2345	0	0	0	0	0	0	0	5	5	5
3456	1	1	2	2	4	0	0	0	0	0
4567	5	5	5	5	5	5	5	5	5	5
5678	1	0	1	0	1	0	5	5	5	3

Task: Using the numeric survey dataset, create a new dataset containing observations where at least one answer was 5.


```
CAT and FIND Functions:
```

data five;

set surveynum;

```
if find(cat(of a:), `5');
```

run;

id	a1	a2	a3	a4	а5	a6	а7	a8	a9	a10	cat(of a:)
1234	5	5	3	3	2	1	1	1	1	1	5533211111
2345	0	0	0	0	0	0	0	5	5	5	000000555
3456	1	1	2	2	4	0	0	0	0	0	1122400000
4567	5	5	5	5	5	5	5	5	5	5	555555555555555555555555555555555555555
5678	1	0	1	0	1	0	5	5	5	3	1010105553

Each hospital admission can have up to five three-character diagnosis codes. Find patients with Diabetes (any DX code of 250).

Patient	DX1	DX2	DX3	DX4	DX5
001	025	022			
002	682	401	244	493	
003	592	401	493		
004	428	493	780	V43	250
005	250				
006	414	V45	401	250	

Why does

```
find(cat(of DX1-DX5), `250')
```

not work in this situation?

Patient	DX1	DX2	DX3	DX4	DX5
001	025	022			
002	682	401	244	493	
003	592	401	493		
004	428	493	780	V43	250
005	250				
006	414	V45	401	250	

Why does

```
find(cat(of DX1-DX5), `250')
```

not work in this situation?

Patient	DX1	DX2	DX3	DX4	DX5	cat(of DX1-DX5)
001	025	022				0 <mark>250</mark> 22
002	682	401	244	493		682401244493
003	592	401	493			592401493
004	428	493	780	V43	250	428493780V43 250
005	250					250
006	414	V45	401	250		414V45401 250

Solution: Use CATX to insert a separator!

find(catx(`*', of DX1 - DX5), `250')

Patient	DX1	DX2	DX3	DX4	DX5	catx('*', of DX1-DX5)
001	025	022				025*022
002	682	401	244	493		682*401*244*493
003	592	401	493			592*401*493
004	428	493	780	V43	250	428*493*780*V43* 250
005	250					250
006	414	V45	401	250		414*V45*401* 250

Of course, ICD codes are usually a little more complicated than all this. The **first** 3 digits indicate a disease, and 0-2 digits may follow for a further-refined diagnosis...

Patient	DX1	DX2	DX3	DX4	DX5
001	25001	V180			
002	5680	78039	3250	49390	53081
003	4270	4111	4019	36250	
004	78659	25000	49320		
005	49392	4660	2449		
006	34839	2765	40493	4280	

Why do these statements not work to find Asthma (starting with 493) or Diabetes (starting with 250)? diabetes = (find(catx('*', of dx1-dx5), '*250') gt 0);

asthma = (find(catx('*', of dx1-dx5), '*493') gt 0);

Patient	DX1	DX2	DX3	DX4	DX5
001	25001	V180			
002	5680	78039	3250	49390	53081
003	4270	4111	4019	36250	
004	78659	25000	49320		
005	49392	4660	2449		
006	34839	2765	40493	4280	

Why do these statements not work to find Asthma (starting with 493) or Diabetes (starting with 250)? diabetes = (find(catx('*', of dx1-dx5), '*250') gt 0);

asthma = (find(catx('*', of dx1-dx5), '*493') gt 0);

Patient	DX1	DX2	DX3	DX4	DX5	catx('*',of dx1-dx5)
001	25001	V180				25001*V180
002	5680	78039	3250	49390	53081	5680*78039*3250*493390*53081
003	4270	4111	4019	36250		4270*4111*4019*36250
004	78659	25000	49320			78659*25000*49320
005	49392	4660	2449			<mark>493</mark> 92*4660*2449
006	34839	2765	40493	4280		34839*2765*40493*4280

Solution:

diabetes = (find(catx('*', '*', of dx1-dx5), '*250') gt 0); asthma = (find(catx('*', '*', of dx1-dx5), '*493') gt 0);

Patient	DX1	DX2	DX3	DX4	DX5	catx('*','*',of dx1-dx5)
001	25001	V180				* 250 01*V180
002	5680	78039	3250	49390	53081	*5680*78039*3250* 493 390*53081
003	4270	4111	4019	36250		*4270*4111*4019*36250
004	78659	25000	49320			*78659* 250 00* 493 20
005	49392	4660	2449			* 493 92*4660*2449
006	34839	2765	40493	4280		*34839*2765*40493*4280

Character Functions Used: Summary

- CAT Operators (CAT, CATT, CATS, CATX)
 - Useful in evaluating multiple character strings simultaneously
- FIND
 - Allows you to identify the first position in a string that contains the specified search term
- COUNTC
 - Counts number of characters in a string that contain the specified search character
- Others:
 - http://support.sas.com/publishing/pubcat/chaps/59343.pdf

Thank you!

Emily K.Q. Sisson Statistical Manager Data Coordinating Center Boston University School of Public Health T: 617.638.5869 eq@bu.edu

Using ODS (Output Delivery System) Layout to Enhance Reporting

Joseph Palmisano, MA, MPH

Output Delivery System

- Create datasets from procedure output
- Generate high quality graphs
- Direct output to non-listing destinations
- Control format and style of output

ODS Destinations

Category	Destinations	Results	
SAS Formatted	DOCUMENT	ODS document	
	LISTING	SAS output listing	
	OUTPUT	SAS data set	
Third-Party Formatted	HTML	HTML file for online viewing	
	MARKUP	Markup language tagsets	
	PRINTER	Printable output in one of three different formats: PCL, PDF, or PS (PostScript)	
	RTF	Output written in Rich Text Format for use with Microsoft Word 2000	

Directing Output with ODS

Syntax

ods <destination> file="<pathname>\<filename>";
<SAS Procedure>;
ods <destination> close;

Examples

ods rtf file="C:\Example.rtf"; <SAS Procedure>; ods rtf close;

• ods pdf file="C:\Example.pdf"; <SAS Procedure>; ods pdf close;

BOSTON UNIVERSITY

Helpful Options for Directing Output

Columns =

- Specify number of columns on page
- HTML, RTF and Printer (PDF) destinations
- Titles and footnotes unaffected, maintain normal positions
- Graphs resize, tables wrap to fit

Startpage =

- Control page breaks
- RTF and Printer (PDF) destinations
- Only one title per page

Helpful Options: Columns =

```
options orientation=landscape nodate nonumber;
ods pdf file="<pathname>\<filename>" columns=2;
Title "New York Shoe Sales";
proc print data = NYShoes noobs label;
    var Product Sales;
run;
proc sgplot data = NYShoes;
    where product ne 'Total';
    yaxis label="Sales per Store";
    vbar product / response=sales_store;
    title;
run;
```

```
ods pdf close;
```


Using ODS (Output Delivery System) Layout to Enhance Reporting

12/6/2012

Helpful Options: Startpage =

```
options orientation=portrait nodate nonumber;
ods pdf file="<pathname>\<filename>" startpage=no;
Title "New York Shoe Sales";
proc print data = NYShoes noobs label;
    var Product Sales;
run;
proc sgplot data = NYShoes;
    where product ne 'Total';
    yaxis label="Sales per Store";
    vbar product / response=sales_store;
    title;
run;
```

ods pdf close;

Using ODS (Output Delivery System) Layout to Enhance Reporting

12/6/2012

ODS Layout

- Absolute Layout
 - Explicitly specify location and dimensions of output regions
 - Printer (PDF) destinations only
 - Restricted to one page per layout
 - Good for static reports or where precise layout is required
- Gridded Layout
 - Specify gridded output dimensions with columns= and rows=
 - HTML and Printer (PDF) destinations
 - Good for reports where dynamic sizing is required

Using ODS (Output Delivery System) Layout to Enhance Reporting

12/6/2012

Absolute Layout: Structure

```
ods pdf file="<pathname>\<filename>.pdf";
/*Layout Container*/
ods layout start x=0.5in y=0.5in width=7.5in height=9in;
/*Top Left Region Container*/
ods region x=0in y=0in width=3.5in height=4.25in;
/*Top Right Region Container*/
ods region x=4in y=0in width=3.5in height=4.25in;
/*Bottom Left Region Container*/
ods region x=0in y=4.0in width=3.25in height=4.25in;
/*Bottom Right Region Container*/
ods region x=3.5in y=4.0in width=3.25in height=4.25in;
ods layout end;
ods pdf close;
```


Absolute Layout: Detail (Top Left)

run;

Absolute Layout: Detail (Top Right)

/*Top Right Region Container*/

ods region x=4in y=0in width=3.5in height=4.25in;

ods pdf text = "This report summarizes shoe sale data for the New York subsidiary for the 2012 calendar year. Men's casual shoes accounted for the highest total sales as well as the highest total sales per store. Sandals accounted for the lowest total sales as well as the lowest total sales per store. Sport shoe sales were among the lowest in terms of total sales per store, though they are also among the most commonly available (sold in 23 stores).";

Absolute Layout: Detail (Bottom Left)

```
/*Bottom Left Region Container*/
ods region x=0in y=4.0in width=3.25in height=4.25in;;
proc sgplot data = NYShoes;
    where product ne 'Total';
    yaxis label="Sales per Store";
    vbar product / response=sales_store;
    title;
```

run;

Absolute Layout: Detail (Bottom Right)

```
/*Bottom Right Region Container*/
ods region x=3.5in y=4.0in width=3.25in height=4.25in;;
proc sgplot data = NYShoes;
    where product ne 'Total';
    yaxis label="Stores";
    vbar product / response=stores;
    title;
run;
ods layout end;
ods pdf close;
```


Using ODS (Output Delivery System) Layout to Enhance Reporting

12/6/2012

Gridded Layout: Structure

```
ods pdf file="<pathname>\<filename>.pdf";
/*Layout Container*/
ods layout start columns=2 rows=2
       /*column widths=(3.5in 3.5in)*/;
/*Top Left Region Container*/
ods region width=3.5in;
/*Top Right Region Container*/
ods region width=3.5in;
/*Bottom Left Region Container*/
ods region width=3.5in;
/*Bottom Right Region Container*/
ods region width=3.5in;
ods layout end;
ods pdf close;
```


Using ODS (Output Delivery System) Layout to Enhance Reporting

12/6/2012

Resources

- SAS(R) 9.2 Output Delivery System: User's Guide
 - http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/view er.htm#a002291014.htm
- SAS(R) 9 ODS Tip Sheet
 - http://support.sas.com/rnd/base/ods/scratch/ods-tips.pdf
- Breaking New Ground with SAS® 9.2 ODS Layout Enhancements
 - http://support.sas.com/resources/papers/proceedings09/043-2009.pdf
- ODS LAYOUT to Create Publication-Quality PDF Reports of STD Surveillance Data
 - http://support.sas.com/resources/papers/proceedings10/216-2010.pdf

Applied Logistic Regression: SAS Coding Tips to Enhance Interpretation of Modeling and Output

Sharon Coleman MS, MPH

Analysis of Categorical or Event Outcomes

- Outcome (dependent variable): dichotomous (yes/no, event)
- Study design: either comparing groups on dichotomous outcome, or association with dichotomous outcome; Cross-sectional or Cohort or Case-Control or RC Trial
- The independent variable(s) can be measurement or categorical

A Little Refresher

The logistic model is based on the odds of an event occurring:

Based on the odds or probability, px/(1-px)

```
\log(odds(x)) = \log(px/1-px) = \beta_0 + \beta x
```

 $logit(P) = \beta_0 + \beta x$

The Odds Ratio (x1 vs x2)= $px_1/(1-px_1)$ $px_2/(1-px_2)$

12/6/2012

The Odds Ratio

	Sharon misses	yoga class	
Cherry Garcia Ice Cream	Yes (1)	No (0)	Total
Yes (1)	7	3	10
No (0)	4	6	10
Total	11	9	20

OR of Cherry Garcia

- The probability of Sharon having Cherry Garcia when she skips yoga is 7/11 or 0.63. The odds from this probability are (p/ 1-p) or 0.63/0.36= 1.75
- The probability of Sharon having CG when she attends class 3/9 or 0.33. The odds from this probability are 0.33/0.66= 0.50
- OR= 1.75/ 0.5 = 3.50

A Simple SAS Example

- Perhaps we want to look at the association between CHD and age
- CHD is coded as 1=yes 0=no
- Age is a measurement Independent variable

The "SIMPLE" option gives summary statistics The (event = '1') is an efficient way of specifying the probability modeled (vs. using the descending option)

proc logistic data=chdage simple; model chd (event='1') = age;run;

Be sure your output is modeling the event of interest

Response Profile					
		T ()			
Ordered		Total			
Value	chd	Frequency			
1	0	57			
2	1	43			

Probability modeled is chd=1.

The SAS Units Statement

 The SAS UNITS statement - When we have a continuous IV often the value of a 1 unit change in x will not be very biologically interesting or clinically meaningful

```
proc logistic data=chdage simple;
model chd (event='1') = age/ clodds =
wald;
units age= sd 5 10;
run;
```


The SAS Units Statement

 The SAS UNITS statement - When we have a continuous IV often the value of a 1 unit change in x will not be very biologically interesting or clinically meaningful

```
proc logistic data=chdage simple;
model chd (event='1') = age/ clodds =
wald;
units age= sd 5 10;
run;
```


Output from the Units Statement

Descriptive Statistics for Continuous Variables								
			Standard					
Variable	chd	Mean	Deviation	Minimum	Maximum			
age	0	39.175439	10.201755	20.000000	64.000000			
	1	51.279070	9.979325	25.000000	69.000000			
	Total	44.380000	11.721327	20.000000	69.000000			

Odds Ratio Estimates and Wald Confidence Intervals								
Effect	Unit	Estimate	95% Confid	lence Limits				
Age (1 SD)	11.7213	3.670	2.112	6.378				
age	1.0000	1.117	1.066	1.171				
age	5.0000	1.741	1.376	2.204				
age	10.0000	3.032	1.892	4.859				

Reference Group Coding

Let us consider data from a study designed to identify risk factors associated with giving birth to a baby weighing less than 2500 grams (LBW)

Race is categorized as White=1 Black=2 and Other=3

We will consider Indicator variables for Race RACE WHITE 0 0 (White=1, Black=2, Other=3 codes in dataset) BLACK 1 0 OTHER 0 1

What are the Odds of having a Low Birth Weight Baby Based on Race?

proc logistic data=work.lbw simple; class race/ param=ref ref=first; model low (event='1')= LWT RACE ; run;

White Coded as 1 Becomes our Reference Group

Class Level Information							
Class	Value	Design V	Variables				
RACE	1=white	0	0				
	2=Black	1	0				
	3=Other	0	1				

Odds Ratio Estimates							
		05%	Wold				
Effect	Point Estimate	Confiden	ce Limits				
LWT	0.985	0.973	0.997				
RACE 2 vs 1	2.948	1.133	7.672				
RACE 3 vs 1	1.617	0.804	3.253				

SAS defaults to Deviation from Means Coding

- If the parameter statements are not used- sas will default to deviation from the means coding
- This expresses effect as the deviation of the group mean from the overall mean.

Class Level Information								
	Design							
Class	Value	Variables						
RACE	1	-1	-1					
	2	1	0					
	3	0	1					

Back to some math

- Due to the S shape of the logistic distribution one must use the natural log (In) to account for the shape
- $\ln(P) = \beta_0 + \beta x$
- The odds ratio is equal to *exp*(*B*)
- So we may need to exponentiate our beta coefficient or slope to get the odds ratio exp(1.08)=2.94 and conversely ln(2.94)=1.08

Example with Proc Genmod

```
proc genmod data=work.lbw
descending;
class race (ref='1')/ param=ref;
model low = lwt race /dist=bin type3
link=logit ;
estimate "Black vs White" race 1 0
/ exp;
```

run;

White=1	0	0	0
Black=2	0	1	0
Other=3	0	0	1

	-	_	Analysis Of	Maximum Lik	elihood Pa	rameter Es	timates	
					Wald 95%		Wald Chi-	
Parameter		DF	Estimate		Confiden	ce Limits	Square	Pr > ChiSq
Intercept		1	0.8058	0.8452	-0.8507 2.4622		0.91	0.3404
LWT		1	-0.0152	0.0064	-0.0278	-0.0026	5.59	0.0181
RACE	2	1	1.0811	0.4881	0.1245	2.0376	4.91	0.0268
RACE	3	1	0.4806	0.3567	-0.2185	1.1797	1.82	0.1778
Scale		0	1.0000	0.0000	1.0000	1.0000		

Contrast Estimate Results										
		Mean					L'Beta			
I ahel	Mean	an Confidence		L'Beta Estimate	Standard Frror	Alnha	Confi	dence	Chi- Square	Pr > ChiSa
Rlack vs White	0 7467	0.5311	0.8847	1 0811	0.4881		0.1245	2 0376	2 Square 1 91	0.0268
Diack vs winte	0.7407	0.5511	0.00-7	1.0011	0.4001	0.05	0.1243	2.0370	т.)1	0.0200
Exp(Black vs White)				2.9478	1.4387	0.05	1.1326	7.6724		

Resources

- Applied Logistic Regression , Hosmer, Lemeshow
- Boston Area SAS Users Group
- www.basug.org
- THANK YOU !

