Biostatistics, Epidemiology & Research Design (BERD)

Howard Cabral, PhD, MPH Christine Chaisson, MPH

Seminar Series: CTSI Presents...

November 20, 2014

Demystifying SAS Macros

BUSPH Data Coordinating Center

Leah Forman, MPH

Clara Chen, MHS

Michael Winter, MPH

November 20, 2014

Macro Basics: an introduction

- Leah Forman
- Statistical Data Analyst
 - Data Coordinating Center

- SAS Macro language:
 - References previously written SAS code and commands it to run

- Why use it?
 - To repeat code, substitute text, pass values . .

Macro Structure – defining the macro

```
%macro examplemacro(one=, two=); /*Defines the Macro*/
    /*This macro is called "examplemacro"*/

data &one; /*Code that defines what happens when the macro is used*/
    set &two;
    if two = 3 then four = 5;

run;

%mend examplemacro; /*Ends the macro*/
```


Macro structure – executing the macro

- *examplemacro(one=dset, two=var2); /*This calls the macro and tells it to execute*/
- When the macro runs, it's as if you are running this code:

```
data dset;
    set var2;
    if two = 3 then four = 5;
run;
```


Keyword parameters

Enter values for keyword parameters in any order

```
%macro keywords (dsname=, varlist=);
    proc freq data=&dsname;
    tables &varlist;

run;
%mend keywords;

%keywords(dsname=one, varlist=studyid gender age)
%keywords(varlist=studyid gender age, dsname=one)
```


Keyword Parameters cont'd

Can assign default values:

Passing values with "callsymputx"

- Assign a calculated variable to a macro variable
- Creates a macro variable in the datastep

```
proc means data=sug.shoe_vendors noprint;
     var Mfg_Suggested_Retail_Price;
     output out = outdat mean=MeanPrice;
run;
```

The output dataset, "outdat":

Obs	_TYPE_	_FREQ_	MeanPrice	
1	0	361	\$155.32	


```
data _null_;
    set outdat;
    call symputx ('MeanPriceMac', MeanPrice);
run;

data lowmean;
    set sug.shoe_vendors;
    where Mfg_Suggested_Retail_Price<&MeanPriceMac;
run;</pre>
```


Debugging: %put

- Lets you see the value of your macro variable.
- Recall this example:

%put mean of Price is &MeanPriceMac

%put mean of Price is &MeanPriceMac; mean of Price is 155.31855956 ← what appears in the log

Debugging: mprint, symbolgen

```
%macro meansy (varname=);
14
      proc means data=microbiology;
15
      var &varname;
16 run;
   %mend meansy;
18
   %meansy(varname=TBSpecNum)
NOTE: Writing HTML Body file: sashtml.htm
NOTE: There were 2745 observations read from the data set
WORK.MICROBIOLOGY.
NOTE: PROCEDURE MEANS used (Total process time):
   real time
                3.48 seconds
```


Debugging: mprint, symbolgen

```
28 options mprint symbolgen;
   %macro meansy (varname=);
30
     proc means data=microbiology;
31
     var &varname;
32 run;
33 %mend meansy;
34%meansy(varname=TBSpecNum)
MPRINT(MEANSY): proc means data=microbiology;
SYMBOLGEN: Macro variable VARNAME resolves to TBSpecNum
MPRINT(MEANSY): var TBSpecNum;
MPRINT(MEANSY): run;
NOTE: There were 2745 observations read from the data set WORK, MICROBIOLOGY.
NOTE: PROCEDURE MEANS used (Total process time):
   real time
                0.01 seconds
   cpu time
            0.01 seconds
```


Global vs. Local Macro Variables

Global:

- Exists for the rest of the SAS session
- %LET statement (outside of a macro definition)
- %GLOBAL statement
- CALL SYMPUTX

Local:

- Exists only during execution of the macro in which it is created
- %LET statement (inside a macro definition)
- %LOCAL statement (inside a macro definition)
- Macro parameters

Global vs. local: exercise

Which Macros are global, and which are local?

%groupexercise(type=reeses hersheys)

Which are local, and which are global?

- To find out, you can use %put and they will print out in the log:
- %put presenter = &presenter type = &type day=&day type2=&type2;

```
Log-(Untitled)

39 % Xput presenter = & presenter type = & type day=&day type2=& type2

SYMBOLGEN: Macro variable PRESENTER resolves to Leah

WARNING: Apparent symbolic reference TYPE not resolved.

WARNING: Apparent symbolic reference DAY not resolved.

SYMBOLGEN: Macro variable TYPE2 resolves to reeses hersheys

presenter = Leah type = & type day=&day type2=reeses hersheys
```


Building a Macro: A Real World Example

- Clara Chen
- Assistant Director of Operations,
 Data Coordinating Center

Constructing a macro: output N(%)

Step 1: Use example and examine ODS tables to identify locations of needed information

```
proc sort data=BWeight;by Married;run;
ods trace on; /*Writes ODS Table Info To Log*/
proc freq data=BWeight;
where ;
by Married;
    tables black /missing;
run;
ods trace off;
```


SAS log

```
ods trace on; /*Writes ODS Table Info To Log*/
     proc freq data=BWeight ;
31
     where ;
32
     by Married ;
33
           tables black /missing;
34
     run;
NOTE: Writing HTML Body file: sashtml.htm
Output Added:
Name:
            OneWayFregs
            One-Way Frequencies
Label:
Template:
            Base .Freq .OneWayFreqs
            Freq.ByGroup1.Table1.OneWayFreqs
Path:
NOTE: The above message was for the following BY group:
      Married=[0]No
Output Added:
            OneWayFreqs
Name:
            One-Way Frequencies
Label:
Template:
            Base.Freg.OneWayFregs
            Freq.ByGroup2.Table1.OneWayFreqs
Path:
NOTE: PROCEDURE FREQ used (Total process time):
      real time
                          3.51 seconds
                          0.20 seconds
      cpu time
NOTE: The above message was for the following BY group:
      Married=[1]Yes
NOTE: There were 50000 observations read from the data set WORK.BWEIGHT.
35
     ods trace off;
```


Save output using ODS OUTPUT

Step 2: Write ods tables to a temporary set for further manipulation via ods output statement

```
proc freq data=BWeight;
where ;
by Married;
  tables black /missing;
  ods output onewayfreqs=blackF;
run;
```


blackF dataset looks like this:

	Married	Table	black	Black Race	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	[0]No	Table black	[0]No	[0]No	9053	63.00	9053	63.00
2	[0]No	Table black	[1]Yes	[1]Yes	5316	37.00	14369	100.00
3	[1]Yes	Table black	[0]No	[0]No	32805	92.07	32805	92.07
4	[1]Yes	Table black	[1]Yes	[1]Yes	2826	7.93	35631	100.00

Create summary variables

Step 3: Create summary variables to use with PROC REPORT

```
data blackMarried ;
  length Stat $100 Variable $32 Label $100 Level $50;
  set blackF;
  Stat = compress(Frequency)|| " (" ||compress(round(Percent, .01 ))|| ")" ;
  Variable = "Black" ;
  Level = F_black ;
  Label = vlabel(black);
  keep Married Level Label variable Stat;
run;
```


blackMarried dataset looks like:

	Stat	Variable	Label	Level	Married
1	9053 (63)	Black	Black Race	[0]No	[0]No
2	5316 (37)	Black	Black Race	[1]Yes	[0]No
3	32805 (92.07)	Black	Black Race	[0]No	[1]Yes
4	2826 (7.93)	Black	Black Race	[1]Yes	[1]Yes

BOSTON

UNIVERSITY

%Mend NPct;

Generalize data steps for a macro

Step 4: Put data steps together in a macro generalizing set, where, by variable and variable

```
%Macro NPct(StatData=, WhereStmnt=, ByVar=, Var=)
proc sort; data=&StatData.; by &ByVar.; run;
proc freq data=&StatData.;
where &WhereStmnt.;
by &ByVar.;
  tables &Var. /missing;
  ods output onewayfregs=&Var.F;
run;
data &Var.&ByVar.;
  length Stat $100 Variable $32 Label $100 Level $50;
  set &Var.F;
  Stat = compress(Frequency)|| " (" ||compress(round(Percent, .01 ))|| ")";
  Variable = "&Var.";
  Level = F &Var.;
  Label = vlabel(&Var.);
  keep &ByVar. Level Label variable Stat;
run;
```

Call macro

```
%NPct(StatData=BWeight, WhereStmnt=, ByVar=Married, Var=black); %NPct(StatData=BWeight, WhereStmnt=, ByVar=Married, Var=boy); %NPct(StatData=BWeight, WhereStmnt=, ByVar=Married, Var=smoke);
```


Create one table with all output

```
data Table1;
set blackMarried boyMarried smokeMarried;
run;
```


Table1 dataset looks like this:

	Stat	Variable	Label	Level	Married
1	9053 (63)	Black	Black Race	[0]No	[0]No
2	5316 (37)	Black	Black Race	[1]Yes	[0]No
3	32805 (92.07)	Black	Black Race	[0]No	[1]Yes
4	2826 (7.93)	Black	Black Race	[1]Yes	[1]Yes
5	7027 (48.9)	boy	Boy	[0]No	[0]No
6	7342 (51.1)	boy	Boy	[1]Yes	[0]No
7	17181 (48.22)	boy	Boy	[0]No	[1]Yes
8	18450 (51.78)	boy	Boy	[1]Yes	[1]Yes
9	11149 (77.59)	smoke	Smoker	[0]No	[0]No
10	3220 (22.41)	smoke	Smoker	[1]Yes	[0]No
11	32318 (90.7)	smoke	Smoker	[0]No	[1]Yes
12	3313 (9.3)	smoke	Smoker	[1]Yes	[1]Yes

Which you can turn into a report like this:

Table 1: Descriptives by Marital Status

		Married	
		[O]No	[1]Yes
Black Race	[0]No	9053 (63)	32805 (92.07)
	[1]Yes	5316 (37)	2826 (7.93)
Воу	[0]No	7027 (48.9)	17181 (48.22)
	[1]Yes	7342 (51.1)	18450 (51.78)
Smoker	[0]No	11149 (77.59)	32318 (90.7)
	[1]Yes	3220 (22.41)	3313 (9.3)

Categorical variables expressed as: N (%)

Macro Libraries

- Michael Winter
- Associate Director of Statistical Programming,
 Data Coordinating Center

Macro Libraries

- Macro libraries are a way to control and manage macros
- Especially useful when a group of programmers work together
- And they aren't very complicated!

Storing Compiled Macros

Need to include a LIBNAME statement identifying where to store the macros, and some options:

```
Libname DCCMac "\\ad.bu.edu\bumcfiles\SPH\DCC\Dept\DCCSUG\DCC
Macros";

Options Mstored SASmStore = DCCMac McompileNote = all;
```

SASmStore: Identifies the libname where macros are stored.

Mstored: Indicates that stored macros are available in the location specified by SASmStore.

McomplileNote = all: Writes a note to the log when compile is successful.

UNIVERSITY

Example – Storing Compiled Macro

Using the macro Clara just defined, we just need to add some code to store it in the macro library:

```
%Macro NPct(StatData=, WhereStmnt=, ByVar=, Var=)/store des = "Create Dataset
Containing N Pct for 'Var'"; ← /store stores the macro, des= adds a description
proc freq data=&StatData.;
where &WhereStmnt.;
by &ByVar.;
   tables &Var. /missing;
   ods output onewayfregs=&Var.F;
run;
data &Var.&ByVar.;
   length Stat $100 Variable $32 Label $100 Level $50;
   set &Var.F;
   Stat = compress(Frequency)|| " (" ||compress(round(Percent, .01 ))|| ")" ;
   Variable = "&Var.";
   Level = F_\&Var.;
    Label = vlabel(&Var.);
   keep &ByVar. Level Label variable Stat;
run;
%Mend NPct;
```

SAS Log

```
Libname DCCMac "\\ad.bu.edu\bumcfiles\SPH\DCC\Dept\DCCSUG\DCC Macros";
NOTE: Libref DCCMAC was successfully assigned as follows:
      Engine:
     Physical Name: \\ad.bu.edu\bumcfiles\SPH\DCC\Dept\DCCSUG\DCC Macros
    Options Mstored SASmStore = DCCMac McompileNote = all Mautolocdisplay;
76
77
     /*MACRO TO CREATE A DATASET WITH THE FOLLOWING VARIABLES:*/
78
    /*"ByVar": Variable named for the variable specified in the proc means by statement.*/
     /*Level: Specifies the level of the variable specified in the tables statement of proc freq.*/
79
    /*Variable: Specifies the variable name for the corresponding Statistic.*/
     /*Stat: The Mean ± SD for the Variable specified in the proc means Var statemen.*/
82
     /* Label: The label for the variable specified*/
     ZMacro NPct(StatData= , WhereStmnt= , ByVar= , Var= )/store des = "Create Dataset Containing N
83 ! Pct for 'Var'":
     /*NZ*/
    proc freq data=&StatData. ;
     where &WhereStmnt. ;
87
     by &ByVar. ;
           tables &Var. /missing;
88
89
           ods output onewayfregs=&Var.F;
90
     run;
91
     data &Var.&ByVar. :
93
           length Stat $100 Variable $32 Label $100 Level $50;
94
           set &Var.F:
95
96
           Stat = compress(Frequency)|| " (" ||compress(round(Percent, .01 ))|| ")";
97
           Variable = "&Var.";
98
           Level = F_&Var.;
            Label = vlabel(&Var.):
99
100
           keep &ByVar. Level Label variable Stat:
101 run;
102
|103 %Mend NPct;
NOTE: The macro NPCT completed compilation without errors.
      15 instructions 780 bytes.
```


Storing Macros

Be sure to save your source code (SAS program) with the macro definition – you cannot re-create it from the compiled macro!

Document the code well!

Viewing Stored Macros

You can view a list of stored macros in a macro catalog using the following code:

```
Libname DCCMac "\\ad.bu.edu\bumcfiles\SPH\DCC\Dept\DCCSUG\DCC Macros";
Options Mstored SASmStore = DCCMac McompileNote = all;

proc catalog catalog=DCCMac.sasmacr;
  contents;
run;
quit;
```


List of Stored Macros

The SAS System

	Contents of Catalog DCCMAC. SASMACR						
#	Name	Туре	Create Date	Modified Date	Description		
1	GENMOD	MACRO	06Aug14:14:21:35	06Aug14:14:21:35			
2	GENMOD2	MACRO	06Aug14:14:44:43	06Aug14:14:44:43			
3	MEANSD	MACRO	01Aug14:16:35:50	01Aug14:16:35:50	Create Dataset Containing Continuous Descriptives for Var'		
4	MEANSD_T	MACRO	07Nov14:13:04:49	07Nov14:13:04:49	Create Dataset Containing Continuous Descriptives for Var'		
5	MEANSD_T2	MACRO	09Sep14:16:58:31	09Sep14:16:58:31	Create Dataset Containing Continuous Descriptives for Var'		
6	NPCT	MACRO	16Nov14:14:11:48	16Nov14:14:11:48	Create Dataset Containing N Pct for 'Var'		
7	NPCT_T	MACRO	07Nov14:13:04:49	07Nov14:13:04:49	Create Dataset Containing N Pct for 'Var'		
8	PHREG	MACRO	06Aug14:16:24:52	06Aug14:16:24:52			
9	PHREGTABLE	MACRO	07Aug14:10:31:33	07Aug14:10:31:33			
10	PHREGTV1	MACRO	06Aug14:16:24:52	06Aug14:16:24:52			
11	PHREGTV2	MACRO	06Aug14:16:24:52	06Aug14:16:24:52			

\\ad.bu.edu\bumcfiles\SPH\DCC\Dept\DCCSUG\Meeting_20140807\Constructing Macros.sas

Calling a Stored Macro

```
Libname DCCMac "\\ad.bu.edu\bumcfiles\SPH\DCC\Dept\DCCSUG\DCC Macros";
Options Mstored SASmStore = DCCMac McompileNote = all;

%NPct(StatData=BWeight , WhereStmnt=, ByVar=Married, Var=black);
%NPct(StatData=BWeight , WhereStmnt=, ByVar=Married, Var=boy);
%NPct(StatData=BWeight , WhereStmnt=, ByVar=Married, Var=smoke);
```

