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A B S T R A C T

Long-term ground LAI measurements from the global networks of sites (e.g. FLUXNET) have emerged as a promising
data source to validate remotely sensed global LAI product time-series. However, the spatial scale-mismatch issue
between site and satellite observations hampers the use of such invaluable ground measurements in validation
practice. Here, we propose an approach (Grading and Upscaling of Ground Measurements, GUGM) that integrates a
spatial representativeness grading criterion and a spatial upscaling strategy to resolve this scale-mismatch issue and
maximize the utility of time-series of site-based LAI measurements. The performance of GUGM was carefully eval-
uated by comparing this method to both benchmark LAI and other widely used conventional approaches. The un-
certainty of three global LAI products (i.e. MODIS, GLASS and GEOV1) was also assessed based on the LAI time-series
validation dataset derived from GUGM. Considering all the evaluation results together, this study suggests that the
proposed GUGM approach can significantly reduce the uncertainty from spatial scale mismatch and increase the size
of the available validation dataset. In particular, the proposed approach outperformed other widely used approaches
in these two respects. Furthermore, GUGM was successfully implemented to validate global LAI products in various
ways with advantaging frequent time-series validation dataset. The validation results of the global LAI products show
that GLASS has the lowest uncertainty, followed by GEOV1 and MODIS for the overall biome types. However, MODIS
provides more consistent uncertainties across different years than GLASS and GEOV1. We believe that GUGM enables
us to better understand the structure of LAI product uncertainties and their evolution across seasonal or annual
contexts. In turn, this method can provide fundamental information for further LAI algorithm improvements and the
broad application of LAI product time-series.

1. Introduction

Leaf Area Index (LAI), which is defined as one half of the total green
leaf area per unit ground surface area (Chen and Black, 1992), has been
widely used to characterize the structure and function of vegetation
(Garrigues et al., 2008). As the leaf is the primary interface for the
exchange of fluxes of energy, mass (e.g. water, nutrients and CO2) and
momentum between the surface and the planetary boundary layer, LAI
is identified as a key parameter in most terrestrial ecosystem models
(Bonan, 1995; Liu et al., 1997; Richardson et al., 2012; Sellers et al.,
1997). Thus, generating accurate, consistent and continuous long-term

global LAI datasets from remote sensing observations has drawn the
attention of scientific communities (Myneni et al., 2002; Zhu et al.,
2013). Several LAI products based on different combinations of sensors
(e.g. MODIS, VEGETATION, MERIS, VIIRS etc.) and algorithms (e.g.
using the look-up table generated from radiative transfer models, ma-
chine learning etc.) have been developed (Baret et al., 2007; Knyazikhin
et al., 1998; Yan et al., 2018) and widely used in a broad range of user
communities (e.g. Bi et al., 2015; Samanta et al., 2012; Zhu et al.,
2016). Assessing the uncertainties associated with these LAI products
through comparisons with independent ground-truth measurements
(i.e. direct validation) is pivotal for their proper use in land surface
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models and other applications (Fang et al., 2012; Morisette et al., 2006;
Yan et al., 2016).

Direct validation is the most common approach to evaluate products
to understand the uncertainties associated with input, pre- or post-
processing and inversion algorithms. Many regional field campaigns
(e.g. VALERI, BigFoot, SAFARI 2000, etc.) have collected and provided
invaluable ground LAI measurements covering a wide range of biome
types and spatial variabilities (Morisette et al., 2006). In the Committee
on Earth Observation Satellites (CEOS) hierarchical four-stage valida-
tion approach, current global medium-resolution LAI products
(250m–1 km) are considered to be validated at Stage 2 (“Product ac-
curacy is estimated over a significant set of locations and time periods
by comparison with reference in situ or other suitable reference data.”)
after a tremendous effort from scientific communities (Camacho et al.,
2013; Yan et al., 2016). However, most previous studies were limited to
evaluate the temporal performance of the LAI products due to limited
resources for collecting time-series of ground LAI via recursive field
campaigns (Claverie et al., 2013). This restriction is critical because
assessing the temporal performance of these products enables us to
better understand the structure of the uncertainties and their evolution
across seasonal or annual contexts (Barr et al., 2004; Weiss et al., 2007)
and consequently reach the upper validation stage (Stage 3). To im-
prove the temporal assessment capability, the global network of sites
(e.g. FLUXNET), which enables to obtain continuous time-series of
ground LAI measurements (hereafter, LAIsite-TS) using onboard instru-
ments or recursive data collection (Baldocchi et al., 2001), emerges as a
promising data source for validation (Xu et al., 2016). However, the
spatial scale mismatch restricts the utilization of LAI measurements
from these networks as the LAI is conventionally measured within an
area of tens of meters around a site. The scale issue usually introduces
undesired errors in the validation of remote sensing products because
the spatially heterogeneous land surface results in incomparability be-
tween observations from sites and satellites (Yang et al., 2006b).
Therefore, using LAIsite-TS to validate time-series of LAI products re-
mains a challenge that should be addressed for broader application of
long-term global LAI products.

Currently, two approaches are available to remedy the scale issue in
utilizing LAIsite-TS: (1) the “bottom-up” method and (2) the spatial re-
presentativeness evaluation method (Fensholt et al., 2004; Morisette
et al., 2006). The “bottom-up” method proposed by the CEOS Land
Product Validation (LPV) subgroup is designed to link the ground
measured LAI to the remotely sensed LAI through a rigorous upscaling
procedure (Tan et al., 2005). This method first employs a two-stage
sampling strategy: (a) capture the variability across the extent of a site
based on multiple elementary sampling units (ESUs), and (b) capture
the variability within pixels of the high spatial resolution image (HSI)
by repeating measurements within each ESU. Then, a transfer function
is established based on the ground LAI and the spectral measurements
from the HSI to generate an LAI reference map (hereafter, LAIHSI). Fi-
nally, the generated LAIHSI map is spatially aggregated to retrieve scale-
matched LAI (hereafter, LAIHSI-AGG) for direct comparison (Morisette
et al., 2006). The “bottom-up” approach is effective for both homo-
geneous and heterogeneous landscapes because it employs a sufficient
number (20−100) of ESUs to represent regions with different spatial
heterogeneities and obtain a robust transfer function between LAI and
spectral characteristics. However, this method is unsuitable for most of
sites where LAI measurements were repeated throughout years (e.g.
FLUXNET sites) because of poor spatial sampling. Note that the
“bottom-up” approach may also be unsuccessful if the HSI is unavail-
able because of unexpected conditions (e.g. the cloud effect and the
temporal mismatch due to the satellite local passing time). The second
approach is based on the evaluation of the spatial representativeness of
LAIsite-TS (Xu et al., 2016). This method determines whether the LAI
measurements are spatially representative for the product pixel by
quantitatively considering the point-to-pixel comparability and within-
pixel heterogeneity. Quantifying the reliability of ground observations

is advantageous because this approach can reduce potential errors from
point-to-pixel inconsistency. In particular, time-series validation prac-
tice can greatly benefit from this approach because it can consider
changing spatial heterogeneity within the product pixel grid over time
due to variation in vegetation growth at different growth stages (Ding
et al., 2014). However, the stand-alone implementation of this ap-
proach yields only a few valid (i.e. high representativeness) LAIsite-TS
dataset from networks that can accurately represent the product pixels.
Consequently, this limit in implementing the stand-alone second ap-
proach hinders the ability to assess the temporal performance of the
product. Therefore, an additional processing (i.e. upscaling) is required
to use less representative measurements to derive the time-series vali-
dation dataset.

Here, we propose an integrated approach, namely, the Grading and
Upscaling of Ground Measurements (GUGM), which reconciles the pros
and cons of the above two approaches. The GUGM is expected to be
more suitable for LAIsite-TS than the current methods, i.e. the “bottom-
up” method and the spatial representativeness evaluation method, in
two respects: (1) reducing the uncertainty of the upscaled LAI dataset,
and (2) increasing the size of the available LAI dataset. This paper aims
to (a) provide a full description of the GUGM, (b) evaluate the perfor-
mance of the GUGM compared to that of conventional approaches, and
(c) implement the proposed approach on three global LAI products:
MODIS, GLASS and GEOV1. The paper is organized as follows. Section 2
describes the framework of the GUGM method. Section 3 introduces the
data and detailed methods in this study. Section 4 provides the results
and discussion for the evaluation of GUGM and the application of
GUGM for the three global LAI products. Finally, Section 5 provides
concluding remarks on this study.

2. Framework of the GUGM method

The proposed GUGM method mainly includes two sequential pro-
cesses, i.e. spatial representativeness grading and spatial upscaling.
GUGM first ingests LAIsite-TS, the reflectance of the HSI and a land cover
map as inputs, and then generates a LAI validation dataset (hereafter,
LAIsite-HSI), which is directly comparable to LAI products with mini-
mizing potential scale effects. Note that LAIsite-HSI is generated by using
the combination of LAIsite-TS and LAIHSI-AGG at a given spatial resolution.
The framework of GUGM is shown in Fig. 1 and a detailed description
of each step is provided below.

2.1. Spatial representativeness grading

The method presented by Xu et al. (2016) uses three indicators to
evaluate the spatial representativeness of LAIsite-TS: Dominant Vegeta-
tion Type Percent (DVTP), Relative Absolute Error (RAE) and Coeffi-
cient of Sill (CS). These indicators are calculated based on the HSI. The
DVTP is defined as the percent of the area covered by the vegetation
type which was observed at the LAI field site. It indicates whether the
site-observed vegetation type is the same as the dominant vegetation
type in the product pixel grid. The RAE quantifies the point-to-pixel
consistency by calculating the absolute difference between the LAIsite-TS
and LAIHSI-AGG, and then dividing by LAIHSI-AGG in the product pixel
grid. The CS, defined as the ratio of the square root of the sill value from
a fitted variogram function to LAIHSI-AGG, describes the spatial hetero-
geneity caused by different vegetation densities within a pixel grid. To
adequately compute a variogram, we secured sufficient pair samples
(e.g. 4160 and 860 for minimum and maximum lag distance within 1-
km area, respectively). To grade the spatial representativeness of the
measurements, the proper selection of the thresholds for DVTP, RAE,
and CS is critical. For the sake of brevity, a detailed description of the
threshold selection for the three indicators is not provided here (see
Section 2 of Xu et al. (2016) for the details). Based on the established
rules, the spatial representativeness of LAIsite-TS in the product pixel
grid is divided into five levels (Levels 0–4), as shown in Table 1. Level 0
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measurements have good representativeness in the targeted pixel grid
and can be used directly to validate products without spatial upscaling.
Level 1, Level 2 and Level 3 measurements in the product pixel grid are
not sufficiently representative due to their low point-to-pixel con-
sistency or high spatial heterogeneity, which may introduce unexpected
errors into the product validation results. Thus, following a rigorous
spatial upscaling process is required for these three levels. Note that the
stratification of those ground measurements through spatial upscaling
into three levels (i.e. Levels 1–3) is beneficial to reduce the uncertainty
occurring during the upscaling process (see an example in Supple-
mentary material, Fig. S1) because mixing measurements with different
degrees of representativeness reduces the quality of the LAI that are
upscaled from more representative measurements. In detail, the un-
certainty of upscaled LAIsite-TS would be increased by the over-corrected
effect for high representativeness level of LAIsite-TS and under-corrected

effect for low representativeness level of LAIsite-TS if we used only one
upscaling coefficient for all the LAIsite-TS without the additional grading
process. Measurements classified as Level 4 cannot be used for product
validation because of the inconsistency between the vegetation type
observed by the site and the product pixel, indicating that LAIsite-TS is
unable to represent the LAI value of the dominant vegetation type
within the product pixel grid.

The grading method inevitably requires HSI that covers each LAIsite-
TS to enable the calculation of the three indicators. However, some LAI
measurements lack the corresponding clear-sky HSI for adjacent dates
because of the long revisit cycles of HSI satellites or other negative
effects (e.g. clouds). For these cases, the proposed GUGM framework
also includes a back-up rule for spatial representativeness grading when
the adjacent HSI is unavailable. First, it should be noted that the ground
sites are designed for long-term observations, thus the vegetation types
are generally consistent on the same observational dates in different
years to preserve the comparability of measurements. Here, we as-
sumed that the relative spatial variability on the surface surrounding a
site does not change among adjacent observational dates (< 4 days) in
consecutive years (Chen et al., 2012; Kim et al., 2006). Then, the level
of spatial representativeness also remains stable if the LAIsite-TS was
measured for the same vegetation type (Xu et al., 2016). Therefore,
even when HSI are unavailable, the LAIsite-TS can be graded based on
similar spatial representativeness on adjacent dates in different years.
For example, suppose a site that has monthly LAIsite-TS from 2005 to
2006. Unfortunately, the HSI for LAIsite-TS on 9 July 2006 is unavailable
due to the cloudy condition. In this case, the back-up rule in GUGM
applies the representativeness level that is extracted from 11 July 2005
(< 4 days in consecutive years) to this LAIsite-TS based on

Fig. 1. The framework of the GUGM method.

Table 1
Grading of spatial representativeness for LAIsite-TS. The number in the bracket indicates
the threshold of each indicator in this study. The threshold determination will be in-
troduced in Section 3.3.

Level Indicators

DVTP > DVTPThreshold
(60%)

RAE < RAEThreshold
(7%)

CS < CSThreshold
(6%)

0 √ √ √
1 √ √ ×
2 √ × √
3 √ × ×
4 × – –
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aforementioned our presumption. Note that potential effect of irregular
crop rotation on the back-up rule is minimal in our case because 94.7%
of observations based on the back-up rule across cropland sites was
assured as regular cropping practices during our observation period.
For the spatial representativeness level of LAIsite-TS from the back-up
rule, Section 2.2 shows the details regarding the use of the spatial up-
scaling process in this case.

2.2. Spatial upscaling

The strategy to spatially upscale LAIsite-TS from networks was pro-
posed by Qin et al. (2013). The theoretical formulation is shown as Eq.
(1)

= =− −LAI d W LAI d LAI d LAI d( ) ( ) and ( ) [1, ( )]HSI
T

m m site TS
T

site (1)

where LAIsite−TS(d) and LAIsite−HSI(d) represent the time-series LAI
ground measurement and the upscaled LAI in the product pixel grid on
date d, respectively. W is the vector of combination coefficients, which
determines the upscaling results of the LAI measurements
(LAIsite−HSI(d)) on all the dates. To calculate W, a cost function is es-
tablished in Eq. (2) by combining all the dates (M) at one site.
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Then, W can be derived by minimizing the cost function using the
ordinary least-squares (OLS) algorithm. By setting the derivative of J
with respect to W equal to zero, W is calculated using Eq. (3).
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where LAIsite−HSI(d) is the solution of the upscaling method that cannot
be directly obtained. To solve for W, the representative LAI value
(LAIHSI‐AGG(d)) is estimated from LAIHSI in the product pixel grid to
replace LAIsite−HSI(d), as shown in Eq. (4).
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where LAIHSIi(d) denotes the LAI value of the ith vegetated pixel in the
HSI, N is the total number of high-resolution pixels in the product pixel
grid, and n is the number of vegetated pixels in the high-resolution land
cover map. According to Eq. (2) and (3), if LAIHSI‐AGG(d) is correct or
includes only random errors and no biases, the value of W can be cal-
culated accurately. However, some noises, such as errors from atmo-
spheric correction or LAI retrieval algorithms, are hard to avoid in the
LAI estimation for HSI. Thus, the value of W calculated using Eq. (2)
and the OLS method will easily be overfitted due to those noise-influ-
enced LAI. To reduce these overfitting effects, a regularization term is
added to the cost function (Qin et al., 2013; Tarantola, 2005). Then, the
cost function can be re-written as follows:
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where α and σ are the regularization parameter and the standard de-
viation of LAIHSI‐AGG(d), respectively, and both are correlated with W
and LAIm(t). Then, the optimal value of W can be determined by setting
the derivative of J equal to zero:

=
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where I is the identity matrix. If α is close or equal to zero, W in Eq. (6)
reduces to the OLS result given by Eq. (3). Therefore, the derived value
of W in this study also considers the errors from the LAI retrievals. A

Bayesian linear regression approach was implemented to compute α
and σ in Eq. (6) based on the iteration strategy proposed by Chen and
Martin (2009) and Qin et al. (2013). Finally, the upscaling coefficient
W calculated from Eq. (6) for each level at each site was applied to Eq.
(1) to upscale the corresponding LAIsite-TS. The spatial upscaling method
in this study is advantageous because its upscaling coefficient W for
each level at each site was already derived based on LAIsite-TS and
LAIHSI-AGG, which can also be used to upscale LAIsite-TS at this site
without the corresponding HSI at this level to increase the size of the
available validation dataset (LAIsite-HSI).

3. Data and methods

3.1. Global site-based LAI measurements

FLUXNET (http://fluxnet.ornl.gov/, July 2014) and CERN (Chinese
Ecosystem Research Network, http://www.cerndata.ac.cn/, September
2014) are the main observation networks of LAIsite-TS. FLUXNET in-
cludes seven regional networks maintaining>500 observation sites
worldwide, and CERN has collected biophysical variables from 40 sites
across inland China. Since these networks are not particularly designed
for collecting LAI, most sites have only a single or few LAI measure-
ments, which is not sufficient to validate the time-series of products.
Only the 38 sites collecting LAI time-series measurements over multiple
years were further selected for the analysis in this study. The selected
sites marked by green dots in Fig. 2 are mainly located in the USA,
Canada and China, among which are 17 forest sites, 18 cropland sites,
and 3 grassland sites (Supplementary material, Table S1). A total of
1693 ground measurements from 2001 to 2011 were acquired across all
the sites, and the number of measurements during a year ranged from
90 to 235, which suggests that the temporal trajectory of products can
be adequately evaluated with these observation networks.

At each network-site, a tens of meters quadrat was first selected, and
each quadrat was divided into sub-quadrats based on the network
protocol (Barr et al., 2004; Fu et al., 2010; Gonsamo and Chen, 2014).
Then, several randomly selected sub-quadrats were used to obtain LAI.
There are two conventional ways to measure ground LAI quantity at
network sites: direct (or semi-direct) and indirect methods. The direct
method involves the harvesting or collection of sampled foliar elements
and scales to quantify the true LAI of a given area. The indirect method
infers LAI from measurements of the transmission of radiation through
the canopy using the radiative transfer theory (Ross, 1989) and employs
optical instruments (e.g. LAI 2200, AccuPAR, digital hemispherical
photography (DHP), etc.) to measure the transmittance but usually
provides effective LAI, which are not taking account of clumping. For
crops and grasses, we did not consider the clumping effect in these
biomes because their typical clumping index is higher than 0.9 (Tang
et al., 2007). For forest biome case, by ignoring the clumping of forest
foliage, the effective LAI often underestimates the true LAI. To retrieve
and upscale true LAI, the clumping effect in forest biomes was corrected
by considering the clumping index in the LAI retrieval model (see de-
tails in Section 3.3).

3.2. High-resolution land cover and reflectance

The 30-m spatial resolution global land cover map (GlobeLand30,
http://www.globallandcover.com/) produced by the National
Geomatics Center of China (Chen et al., 2014) was used to compute the
DVTP indicator as part of the spatial representativeness grading. The
classification approach was first based on the integration of pixel- and
object-based methods with knowledge (POK-based), and then a
knowledge-based interactive verification procedure was developed to
improve the classification quality (Chen et al., 2015). GlobeLand30
identifies the 10 land cover types, including cropland, forest and
grassland, which are comparable with site-based classes. Since two 30-
m land cover datasets for the years 2000 and 2010 have been produced,
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we selected one land cover dataset that is close to the observation date
of the LAIsite-TS to calculate the DVTP. Previous studies reported that the
overall accuracy of GlobeLand30 products is> 80% based on a two-
rank sampling strategy to represent global conditions, and the ac-
curacies of cropland, forest and grassland are 83%, 84% and 72%, re-
spectively (Chen et al., 2015). In particular, the evaluation result of
GlobeLand30 based on the ground vegetation type from the 38 sites
showed that its accuracy (89.5%) was highly reasonable. This reported
accuracy imbues our confidence in the high-resolution land cover map
and suggests a good reliability of the DVTP indicator.

In GUGM, RAE and CS used to evaluate the spatial representativeness of
LAIsite-TS are computed based on the high-resolution LAI maps (i.e. LAIHSI).
The LAIHSI maps are generated by a neural network trained using radiative
transfer models (RTMs). To generate the LAIHSI maps, all available Landsat
TM/ETM+ surface reflectance data acquired on dates close to those of LAIsite-
TS were collected from the US Geological Survey (USGS) Earth Resources
Observation and Science (EROS) Center Science Processing Architecture
(ESPA) On Demand Interface (https://espa.cr.usgs.gov/). The Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) applies the
atmospheric correction routines of the 6S radiative transfer model to Level-1
Landsat TM/ETM+ data, with inputs of water vapor, ozone, geopotential
height, aerosol optical thickness, and digital elevation to generate surface
reflectance (Masek et al., 2006). Given the long revisit cycle (16 days) of the
Landsat satellites and the cloud effects, only 568 clear TM/ETM+ images,
which covered approximately 43% of the available LAIsite-TS, were carefully
selected in this study. Based on the temporal distribution of the acquired
images, in>89% of the cases, differences of<8days existed between the
acquisition dates of the LAIsite-TS and the TM/ETM+ images, and approxi-
mately only 10% of the temporal differences were longer than 8days
(≥14days: 1%) (Supplementary material, Fig. S2). Network sites with long
temporal differences in the Landsat data are mainly situated in evergreen
forest sites. The higher temporal availability (<14days: 99%) of clear
Landsat TM/ETM+ indicates only aminor difference in the acquisition dates,
and we believe the impact of this difference is minimal in this study.

3.3. Generation of the global LAI time-series validation dataset

Based on the Landsat TM/ETM+ reflectance data, a neural network
was trained using RTMs and then used to retrieve the LAI (i.e. LAIHSI).
This method includes three steps: the generation of training dataset
using RTMs, the neural network training and the LAI retrievals using
the trained neural network (Claverie et al., 2013). In this study, we used
the Scattering from Arbitrarily Inclined Leaves (SAIL) model (Verhoef,
1984) to simulate the canopy reflectance of cropland and grassland, and
the Four-Scale model (Chen and Leblanc, 1997) to simulate the canopy
reflectance of forest (Yin et al., 2015). As mentioned in Section 3.1, the
clumping index for cropland and grassland is relatively large, so the
clumping effect was ignored in the SAIL model when simulating the
canopy reflectance for cropland and grassland. For forest, the clumping
index is an important input parameter in the Four-Scale model to si-
mulate the canopy reflectance, and thus the clumping effect was con-
sidered in the LAI retrievals. The input variables of the SAIL and Four-
Scale models were determined (Supplementary material, Table S2-S4)
according to Yin et al. (2015). Note that the spectral response function
(SRF) of the TM/ETM+ sensor in the red and near infra-red (NIR)
bands was used to generate the reflectance for each sensor in the
training dataset. A back-propagation neural network, with demon-
strated efficiency in retrieving LAI (Baret et al., 2013; Verger et al.,
2011), was trained using the generated training dataset. The neural
network contains three layers: the input layer, the hidden layer and the
output layer. The input layer has 4 neurons, representing four input
variables: the reflectances of the red and NIR bands, the solar zenith
angle and the relative azimuth angle between the sun and the sensor. In
this study, based on the recommendation of Mather and Koch (2010),
we set 8 neurons in the hidden layer, i.e. twice the number of neurons
in the input layer (= 4), because this empirically driven combination
maximizes the performance of the neural network. The unique output
variable was the LAI, which was the single linear neuron of the output
layer. The neural network was calibrated based on the methodologies
proposed by Baret et al. (2013) and Verger et al. (2011). Note that the

Fig. 2. Spatial distribution of the 124 global sites for which LAI measurements are available. Green dots (n=38) represent the sites with LAI time-series measurements selected for
analysis in this study. The color images represent the 5 km×5 km area TM pseudocolor (RGB: near-infrared, red and green bands, respectively.) images with the sites at their center
points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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trained and calibrated neural networks were separately built from the
vegetation types because the training dataset was not from the same
RTM, and then these neural networks were applied to all the available
TM/ETM+ datasets to generate LAIHSI maps. It is also critical to con-
firm that the LAIHSI from the trained and calibrated neural networks is
accurate enough. Our additional evaluation of the generated Landsat
LAIHSI (Supplementary material, Fig. S3) revealed that the overall bias
of the neural network-based LAIHSI was minimal (= 0.06 LAI unit),
indicating only an unnoticeable overestimation across various LAI
ranges. Moreover, the comparison between LAIsite-TS and LAIHSI also
showed that the performance of the LAI retrievals (R2 > 0.75,
bias < 0.3 and RMSE < 0.70) was reasonable for different vegetation
types. Acceptable agreement between the Landsat LAIHSI and LAIsite-TS
confirms that the Landsat LAIHSI maps can be reliably used in the
GUGM framework. Although some noise-influenced LAI retrievals oc-
curred, we considered this issue in the spatial upscaling strategy as
mentioned in Section 2.2 (Eq. (5)). Finally, we carefully implemented
the proposed GUGM method in Section 2 into the LAIsite-TS and the
produced Landsat LAIHSI (at 30-m resolution) to generate the global LAI
time-series validation dataset (at 1-km resolution). Overall assessments
of the GUGM-based LAI validation dataset over all available network
sites are provided. Thresholds of DVTP, RAE and CS of 60%, 7% and 6%
were used in this study, respectively. Further details on the threshold
determination for these indicators are reported in Xu et al. (2016).

3.4. Performance evaluation of the GUGM

The performance of the proposed GUGM method should be assessed
prior to further implementation. The evaluation first consisted in se-
lecting field campaign sites where the maximal number of HSI re-
flectance data and corresponding LAI reference benchmark maps are
available. Note that given LAI reference benchmark maps (hereafter,
LAIHSI-BM) used here were independently generated by building a
transfer function between ground LAI and radiometric measurements
(i.e. based on the “bottom-up” upscaling approach). The use of

independent benchmark maps representing local conditions precisely
enabled us to evaluate both the LAIHSI from the RTMs and neural net-
works and the final output of the GUGM. Thereafter, the proposed
GUGM method was applied to the reflectance data for LAIHSI retrievals.
The performance of GUGM can be assessed through the comparison
with the LAI benchmark map at the target spatial grid scale (i.e. 1-km).

In this study, we chose three measurement sites representing forest
(Järvselja, Estonia, 27° 15′ E, 58° 18′ N), cropland (Toulouse, France, 1°
9′ E, 43° 27′ N) and grassland (Kansas, USA, 96° 34′ W, 39° 5′ N) ve-
getation types. The Järvselja, Toulouse and Kansas sites are components
of the VALERI (http://w3.avignon.inra.fr/valeri/), ImagineS (http://
fp7-imagines.eu/) and BigFoot (http://www.fsl.orst.edu/larse/bigfoot/
) projects, respectively. Based on the available SPOT and Landsat
images, the LAIHSI derived from the GUGM were compared to the given
LAIHSI-BM maps to ensure the accuracy of the LAIHSI. The evaluation
results show the good agreement between LAIHSI and LAIHSI-BM for
different vegetation types, with R2 > 0.75, bias < 0.1 and
RMSE < 0.55 (Supplementary material, Fig. S4(a–c)). Note that the
performance of GUGM will be evaluated in the 1-km pixel grid, thus the
uncertainty of LAIHSI will also be highly reduced (Supplementary ma-
terial, Fig. S4(d–f). Then, the spatial representativeness grading and
spatial upscaling procedures described in Section 2 (i.e. GUGM) were
carefully implemented on all the LAIHSI and their associated ground
measurements to generate the LAI validation dataset (LAIsite-HSI) at 1-
km spatial resolution. The comparison of a single acquisition date be-
tween LAIsite-HSI and aggregated LAIHSI-BM was performed across 500
randomly distributed samples within the area of the LAI benchmark
maps, thus a total of 3500 1-km samples (= 7 SPOT×500 samples) for
forest and 2000 1-km samples (= 4 Landsat× 500 samples) for crop-
land and grassland were used in this evaluation. Note that this eva-
luation practice was independent of the global LAI validation dataset
described in Section 3.3.

In turn, to evaluate the performance of GUGM method, we com-
pared with GUGM three widely used conventional methods for pro-
cessing LAIsite-TS for the validation of the remote sensing LAI products:

Fig. 3. Comparisons of GUGM with other three methods (GM, GGM and UGM) for processing site-based LAI measurements.
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(i) using ground measurements without spatial representativeness
grading and upscaling, i.e. direct comparison (GM); (ii) using ground
measurements with spatial representativeness grading but not up-
scaling (only measurements satisfying Level 0 spatial representative-
ness were used) (GGM); and (iii) using upscaled ground measurements
without spatial representativeness grading (proposed by Qin et al.
(2013) (UGM). All the prepared validation datasets based on these four
methods including GUGM, GM, GGM and UGM were compared to the
prepared 1-km benchmark LAI samples, and Fig. 3 summarizes a pro-
cedural description of the overall evaluation. Note that two evaluation
criteria were employed to assess the performance of these methods:
RMSE and the total number of validation dataset (Nm). RMSE and Nm

represent the uncertainty and size of the prepared LAI validation da-
tasets, respectively. Finally, we also investigated (1) how the GUGM
benefits from its spatial representativeness grading and spatial up-
scaling strategies, and (2) how the temporal availability of the HSI
impacts the Nm of each approach in practice.

3.5. Global LAI products and validation under GUGM framework

In this study, three global LAI products, i.e. MODIS, GLASS and
GEOV1, were validated using globally available LAIsite-TS. Since the
performance of the MODIS product was also analyzed by comparison
with that of GLASS and GEOV1 at 1-km spatial resolution, we used the
MODIS Collection (C5) product in this study. The MODIS LAI product
(MOD15A2) C5 was generated at 1-km spatial resolution with an 8-day
interval since 2000 (http://reverb.echo.nasa.gov/). The main algorithm
is based on the biome-specific look-up tables (LUTs) simulated from the
three-dimensional (3D) radiative transfer (RT) model (Knyazikhin
et al., 1998; Shabanov et al., 2005). Given the daily MODIS red and NIR
atmospherically corrected reflectances and the corresponding sun-view
geometries as inputs, the mean LAI value is calculated from all the LAI
elements for which the corresponding simulated reflectances in the
LUTs are close to the MODIS reflectances within specific uncertainties.
When the main algorithm fails due to cloud effects or too low sun/view
zenith angles, the back-up algorithm based on the LAI-NDVI relation-
ships for each biome is used to retrieve LAI (Myneni et al., 2002). Fi-
nally, the LAI corresponding to the maximum Fraction of Photo-
synthetically Active Radiation absorbed by vegetation (FPAR) over an
8-day period is selected as the product value.

The 8-day GLASS LAI product (http://glass-product.bnu.edu.cn/en/
) was estimated based on AVHRR from 1981 to 2000 and on MODIS
from 2001 to 2015. The spatial resolution of the GLASS LAI product is
0.05-degree in a geographic latitude/longitude projection from 1981 to
2000, and 1-km in a sinusoidal projection from 2001 to 2015 (Xiao
et al., 2016). The reflectance was first processed to remove cloud-
contamination using a temporal-spatial filtering algorithm and to gen-
erate continuous and smooth data using an interpolation algorithm. The
key part of this product algorithm is the general regression neural
networks (GRNNs), which were trained using fused LAI time-series
from MODIS and CYCLOPES products and reprocessed MODIS re-
flectance (MOD09A1) for each vegetation type over BELMANIP sites
from 2001 to 2003 (Xiao et al., 2014). Then, the reprocessed 8-day
AVHRR and MODIS reflectance data of a whole year were used as in-
puts into the GRNNs to retrieve the one-year LAI values.

The GEOV1 LAI product (http://land.copernicus.eu/global/) was de-
rived from the SPOT/VEGETATION sensor data at a 10-day interval and 1/
112° (approximately 1-km at the equator) spatial resolution in the Plate
Carrée projection (Baret et al., 2013). A neural network was used to esti-
mate LAI values for all biome types. First, MODIS and CYCLOPES LAI
products were fused and scaled using different weights of these two pro-
ducts (the weight is min(1, LAICYC/4) for CYCLOPES and 1-min (1, LAICYC/
4) for MODIS) over the BELMANIP2 sites for 2003–2004 to generate a new
LAI training dataset (Baret et al., 2006), which was combined with the
corresponding SPOT/VEGETATION reflectance data to train the neural
network. Then, the calibrated neural network was used to generate LAI

products from the SPOT/VEGETATION directionally normalized top of
canopy reflectance data (Baret et al., 2013).

The generated LAI time-series validation dataset (LAIsite-HSI at 1-km
spatial resolution described in Section 3.3) from LAIsite-TS, Landsat HSI
and GUGM was used to validate the three global LAI products. To in-
vestigate the temporal performance of the global LAI products, only
valid LAI values of these products were used for validation. For the
MODIS LAI product, the main and back-up algorithm can be categor-
ized based on the quality control (QC) layer. Due to the low accuracy of
inputs caused by residual clouds or poor atmospheric correction (Wang
et al., 2001; Yang et al., 2006a), only the LAI estimates produced using
the main algorithm were analyzed in this study. Additionally, the
quality flags (i.e., cloud, cloud shadow, cirrus, aerosol, snow, etc.) for
each LAI product were used to exclude invalid retrievals from this
analysis (see Supplementary material Fig. S5 for details regarding the
quality flags applied here). A series of statistical metrics, i.e. R2, bias
and RMSE, were used to evaluate the accuracy and uncertainty of the
product time-series in different years and seasons (Widlowski, 2015).

4. Results and discussion

4.1. Performance evaluation of the GUGM method

Table 2 shows the performance metrics (RMSE and Nm) of the GUGM
and the other three methods (GM, GGM and UGM) based on the benchmark
1-km LAI (i.e. LAIHSI-BM) at the forest, cropland and grassland sites, re-
spectively. The DVTP of the randomly selected samples were greater than
the DVTPThreshold (=60%), thus all the measurements were categorized into
Levels 0–3. As GUGM and GGM directly used the LAI measurements graded
as Level 0 without the spatial upscaling, they had the same RMSE for Level
0. Recall that GUGM applies a rigorous spatial upscaling process to Levels
1–3 cases to consider the heterogeneity, whereas GGM discards any data
that does not satisfy the best spatial representativeness (i.e. Level 0). For
additional quantification of the benefits of GUGM, the RMSE of Levels 1–3
without upscaling were given (see Levels 1–3 of GGM in Table 2). Com-
pared to the significantly increased RMSE (forest: 0.28 to 0.51, cropland:
0.36 to 0.69, grassland: 0.33 to 0.64) from Levels 1–3 without upscaling,
the relatively stable RMSE (forest: 0.21 to 0.25, cropland: 0.12 to 0.20,
grassland: 0.13 to 0.18) of the GUGM indicate that the proposed approach
can reduce the uncertainty caused by spatial heterogeneity by up to 0.5 LAI
units. Note that results also show the degree of uncertainty reduction via
GUGM varied among landscape conditions. Moreover, all the ground
measurements (Nm=3500) at the forest site could be useable via the
GUGM approach, whereas only a few observations were valid in GGM
(Nm=51) accounting for<1.5% of all the ground measurements. This
discrepancy between GUGM (Nm=2000) and GGM (Nm=0) is more
obvious in both the cropland and grassland sites.

For GM and UGM, both of them were able to use all sets of ground
measurements. Overall, the RMSE of GM and UGM at the forest site
were 0.46 and 0.26 LAI units, whereas those at the cropland (grassland)
site were 0.63 (0.59) and 0.40 (0.39). The RMSE difference between
GM and UGM suggests that spatial upscaling without grading can re-
duce the potential uncertainty from spatial heterogeneity by> 0.2 LAI
units. Additionally, we observed relatively larger reduction of RMSE at
the cropland than the forest, probably because of the more hetero-
geneous nature of this vegetation type (Garrigues et al., 2006). Our
result also shows that UGM exhibited reasonable performance but was
still inferior to GUGM. This result is apparent at the cropland site,
which showed the RMSE decreased from 0.40 (UGM) to 0.19 (GUGM).
The observed discrepancy between UGM and GUGM was primarily
caused by the difference in the spatial representativeness of the ground
measurements. GUGM introduces an additional representativeness
grading process to divide LAIsite-TS into different levels and each level of
each sample employs a specific upscaling coefficient (W) to upscale
LAIsite-TS. In contrast, UGM uses only one W for all the observational
dates of each sample, resulting in larger RMSE because the same W
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introduces larger uncertainty for both high and low representativeness,
which will be further discussed below.

To further explore the benefits of the spatial representativeness
grading of the LAIsite-TS for reducing the uncertainty of the validation
dataset, here we show the comparison of errors between UGM and GUGM
at the forest site as an example in Fig. 4. We calculated the reduced error
(RE) for UGM and GUGM by comparing their upscaled LAI dataset with
the LAIHSI-BM (RE=100×(ΔUGM−ΔGUGM) /ΔUGM, Δ=|LAIsite-
HSI− LAIHSI-BM|) at the different levels for all the ground measurements
(Nm=3500), as shown in Fig. 4(a). The Levels 0 and 2 had relatively
greater REs (mean RE=58.9% for Level 0 and 62.5% for Level 2),
whereas Level 3 had the lowest RE (mean RE=30.5%). This pattern can

be clearly explained by the compositional differences in the graded levels.
The upscaling coefficient W is derived from all the available time-series of
observations by minimizing the cost function between the LAI measure-
ments (i.e. LAIsite-TS) and the upscaled LAI (i.e. LAIsite-HSI) (Eq. (5) in
Section 2.2). The upscaling algorithm searches for W by maximizing the
degree of explainable variance by the given inputs, so W largely depends
on the condition of the input samples (i.e. the consistency of their spatial
representativeness, see Fig. S1), and thus the degree of the advantage from
the grading process also varies. For instance, all time-series inputs that are
graded at a certain level yield identical performance from both UGM and
GUGM as the retrieved single upscaling coefficient is sufficient for con-
sistent representativeness. When combining different grade levels, the RE

Table 2
The mean RMSE at each level over 500 samples based on GUGM and the other three methods at the forest, cropland and grassland sites. Nm

indicates the total number of measurements at each level. The Level 4 results were unavailable because the DVTP of all the ground mea-
surements were> 60%. The gray color in the table indicates the final uncertainty of the validation datasets using this method in practice. The
“−” indicates that this method does not include this case.

Site type Method Mean RMSE Nm

Level 0 Level 1 Level 2 Level 3 All Level 0 Level 1 Level 2 Level 3 All

Forest GUGM 0.21 0.21 0.24 0.25 0.24 51 1008 8 2433 3500

GM – – – – 0.46 – – – – 3500

GGM 0.21 0.28 0.50 0.51 0.46 51 1008 8 2433 3500

UGM – – – – 0.26 – – – – 3500

Cropland GUGM – 0.12 – 0.20 0.19 0 646 0 1354 2000

GM – – – – 0.63 – – – – 2000

GGM – 0.36 – 0.69 0.63 0 646 0 1354 2000

UGM – – – – 0.40 – – – – 2000

Grassland GUGM 0.13 0.18 0.18 0 657 0 1343 2000

GM – – – – 0.59 – – – – 2000

GGM – 0.33 – 0.64 0.59 0 657 0 1343 2000

UGM – – – – 0.34 – – – – 2000

Fig. 4. (a) The boxplot of the reduced error (RE=100× (ΔUGM− ΔGUGM) / ΔUGM, Δ=|LAIsite-HSI− LAIHSI-BM|) for the different spatial representativeness levels. The box stretches
from the 25th percentile to the 75th percentile, and the bars indicate the range with in 1.5 IQR (interquartile range). Median and mean values are shown as lines and points, respectively.
(b) The variation in the mean RE at certain levels (Levels 1 and 3) decreases as a function of the proportion of Level 1 measurements (100% - proportion of Level 3 measurements) in the
inputs when combining different levels.

B. Xu et al. Remote Sensing of Environment 209 (2018) 134–151

141



of certain levels decreases as a function of their dominancy in the inputs.
Fig. 4(b) obviously shows this tendency from the evaluation datasets. In
this study,>85% of sites had different representativeness levels during
the acquisition dates, and Levels 1 and 3 were dominant (Table 2). Thus,
the single upscaling coefficient in UGMwas more likely to upscale Levels 1
or 3 than Levels 0 and 2 causing relatively lower RE to be observed in
Levels 1 and 3 (Fig. 4(a)). Nevertheless, the RE of Levels 1 and 3 were also
obvious due to the different degrees of representativeness among the 7
observation dates. These promising results suggest that GUGM sig-
nificantly improved both the size and accuracy of the validation dataset by
combining the strategies of spatial grading and upscaling, compared to the
effects of applying only the spatial representativeness grading (GGM) or
upscaling (UGM). Note that the Nm of GUGMwas ideally quantified in this
evaluation practice because all the observation dates for each site could
access corresponding HSI. However, the limited availability of HSI in
reality is critical when determining the size of the validation dataset,
especially for the GUGM.

Here, we additionally investigated the performance on Nm of the four
different approaches using all the available LAIsite-TS across the sites (Fig. 2
and Table S1). Fig. 5 shows the valid number of LAIsite-HSI calculated based
on the four approaches and the number of available HSI. Since the GM
method does not require HSI and the UGM method requires only several
HSI to calculate individual upscaling coefficients, the number of HSI
would not significantly affect the valid numbers of LAIsite-HSI for these two
methods. For the GGM method, only a few measurements at four sites, i.e.
TH SKR, US MMS, US HO and TH MKL, could be directly used in the
validation of the products, and they were not temporally sufficient to
evaluate the temporal performance of the LAI products. Similarly, many
observation dates in the LAIsite-TS were discarded when aggregating only
HSI to obtain the validation dataset. In contrast, GUGM integrates most
LAIsite-TS and available HSI to generate a more upscaled LAI dataset (40%
more HSI and 25% fewer LAIsite-TS), which is effective not only in assessing
the time-series of LAI products but also in providing more reliable vali-
dation results than other conventional methods (GM, GGM and UGM). The
difference between the number of HSI and GUGM for each site in Fig. 5
indicates the gain from the GUGM back-up strategy, which utilized the
same interannual representativeness level for adjacent dates (<4days) in
different years if no HSI were available.

4.2. Global LAI time-series validation dataset derived from the GUGM
method

The first step in the GUGM is to grade the spatial representativeness of

all the LAIsite-TS. The spatial representativeness of the observed vegetation
types in the product pixel grid was evaluated using the DVTP indicator to
identify Level 4 measurements. Fig. 6(a) shows the fraction of each site-
observed vegetation type within the 1-km pixel grid in 2000 and 2010,
respectively. The results present that the fraction of the vegetation type
observed at the site was similar between 2000 and 2010 for most sites,
suggesting that the vegetation type around the site did not vary sub-
stantially. Among these sites, 6 sites from CERN and 4 sites from FLUXNET
were graded as Level 4, and thus the LAI measurements from these sites
could not be processed by GUGM for the validation of products. The DVTP
of the other 28 sites were>60%, and therefore their representativeness
levels were then determined based on RAE and CS indicators. Fig. 6(b)
shows the value range of RAE and CS at each site. The boxplot in Fig. 6(b)
indicates that the RAE and CS of the different measurements were quite
different at the same site due to variations in the vegetation properties at
the different growth stages, which suggests that temporal variations in
spatial heterogeneities should be carefully considered even at the same
site. Based on the thresholds of RAE and CS, Fig. 6(c) shows a total of 1693
LAIsite-TS over the 38 sites with providing the respective number of graded
each spatial representativeness level. Due to the lack of HSI, GUGM was
unable to use approximately 15% of the ground measurements for
grading, as shown in gray in Fig. 6(c). As mentioned before, the LAIsite-TS at
a site displays varying degree of spatial heterogeneity due to the evolving
vegetation growth stages, even when it is covered by a single vegetation
type. Therefore, the grading results of all the LAIsite-TS were generally
different at a site. As a result, Level 0, 1, 2, 3 and 4 accounted for 4.5%,
21.0%, 0.3%, 45.0% and 29.2% of all graded measurements, respectively.
The low proportion of Level 0 suggests that only a few of the ground
measurements could be directly used to validate the LAI products without
spatial upscaling. In other words, additional upscaling procedures to re-
duce the uncertainty induced by lower spatial representativeness are re-
quired for those measurements graded in to Levels 1–3.

Fig. 7 shows the obvious differences between LAIsite-TS and the
spatially upscaled LAI (i.e. LAIsite-HSI) derived from the GUGM. The
degree of LAI discrepancy between these two datasets was determined
by the level of spatial representativeness (see both Figs. 7(a) and
6(b–c)). For example, the LAI significantly changed at the US NE and US
UMB sites because most measurements were graded as Level 3 (more
heterogeneous), whereas the LAI slightly changed at the US MMS site
due to the large proportion of Level 0 and 1 measurements. Fig. 7(b)
and (c) show LAIsite-TS and LAIsite-HSI in the temporal trajectory at the
cropland site CH YCA and the forest site US MMS, respectively. The
LAIsite-TS changed considerably after using the GUGM method. The

Fig. 5. The valid number of the validation dataset over all the available sites for the four methods and the aggregated high-resolution images. As 10 sites were graded into Level 4, they
would not be used in this analysis (see Section 4.2 and Fig. 8(a) for more details).
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mean ratio of the LAI variation between LAIsite-TS and LAIsite-HSI was
14.4% for Level 1, 41.1% for Level 2 and 175.7% for Level 3 at the CH
YCA site, whereas the variation was 5.0% for Level 1 and 15.5% for
Level 3 at the US MMS site. The main reason for the LAI variation at
each site is that the LAIsite-TS with lower spatial representativeness had
greater error in representing the 1-km pixel grid, which can cause

greater changes in the LAI after upscaling using the GUGM method.
Note that the abnormally large variations in the LAI for Level 3 at the
CH YCA site were observed on some dates because the corresponding
LAIsite-TS were too small (< 0.3), suggesting that the small changes in
LAIsite-TS can cause abnormally large variations. Additionally, the var-
iation in the LAI for different sites depends on the observed vegetation

Fig. 6. (a) The DVTP of 38 sites in the 1-km grid in 2000 and 2010. (b) The distributions of RAE (red box) and CS (blue box), which were calculated for all measurements with
corresponding HSI at each site. Note that only 28 sites were needed to calculate their RAE and CS because their DVTP are> 60%. The box stretches from the 25th percentile to the 75th
percentile. The median value is shown as the line, while the bars indicate the range with in 1.5 IQR (interquartile range). (c) The number of site-based LAI measurements (LAIsite-TS) from
Level 0 to Level 4 and ungraded results over the 38 sites based on the DVTP, RAE and CS indicators in the GUGM method. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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type, which will be further discussed in Table 3. Moreover, the LAIsite-TS
generally exhibited good representativeness during the growing season,
with inferior representativeness for other growth stages. This is because
transitional growth stages (i.e. green-up or senescence) or the dormant
season enhanced the spatial heterogeneity due to variations in devel-
opmental speed or the mixture of plant functional types (e.g., deciduous
and evergreen) (Ding et al., 2014). The observed inconsistency in re-
presentativeness levels for each site demonstrates that the upscaling can

benefit from the spatial representativeness grading process, which is
pivotal in GUGM. Finally, the upscaled LAI (LAIsite-HSI) could be either
higher (Fig. 7(c)) or lower (Fig. 7(b)) than LAIsite-TS and the degree of
the difference also varied as both the surrounding vegetation condition
and its heterogeneity are determinant factors.

The difference between LAIsite-TS and LAIsite-HSI for each grading
level was quantitatively analyzed for all sites and for the different ve-
getation types. Table 3 shows the statistical indicators associated with

Fig. 7. (a) The differences in the LAI range between the site-based LAI measurements and the spatially upscaled LAI validation dataset derived using the GUGM method for each site and a
comparison of the LAI changes between the site-based LAI measurements and the GUGM results on a temporal trajectory at (b) the CH YCA cropland site and (c) the US MMS forest site.
The upper portion of (b–c) displays the LAI change for each year. The points in the lower portion show the relative changes (%) in the LAI values, and their colors stand for the different
representativeness levels.
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the LAI difference between the data before and after the application of
the GUGM method for all 924 ground measurements at each level,
which were divided among cropland, forest and grassland, with 341,
508 and 75 measurements, respectively. Results show that the mean
absolute difference in the LAI values (ΔLAI) for the forest site was
smaller than that for the cropland site, which implies that the spatial
heterogeneity of the forest was generally less than that of the cropland.
This conclusion is consistent with the findings of previous research by
Garrigues et al. (2006). Moreover, the most notable discrepancies in LAI
(mean ΔLAI=0.86 for cropland, 0.62 for forest and 0.38 for grassland)
and its relative form (mean relative ΔLAI=100.3% for cropland,
28.7% for forest and 76.0% for grassland, relative
ΔLAI=100× |LAIsite-TS− LAIsite-HSI| / LAIsite-TS) were observed for
Level 3, which induced larger changes due to greater heterogeneity. As
shown in Table 2, the difference between LAIsite-HSI (GUGM) and the
original LAIsite-TS (GM) was caused by the spatial heterogeneity in the
product pixel grid. Therefore, the observed significant change shows
the uncertainty introduced by the spatial heterogeneity was largely
reduced by GUGM compared with LAIsite-TS (Section 4.1), which con-
firms the greater merit of GUGM in reducing the uncertainty of vali-
dation datasets caused by the observation scale mismatch between
LAIsite-TS and the product pixel.

4.3. Product validation using GUGM-based LAI time-series dataset

4.3.1. Overall validation of the global LAI products
Based on the upscaled site-based LAI measurements derived from

GUGM (LAIsite-HSI) and the quality control (Fig. S5 in Supplementary
material) for each LAI product, 572, 922 and 677 valid pixels were
selected from MODIS, GLASS and GEOV1, respectively. To achieve a
comparable validation result among different products, only pixels with
valid LAI (N=440) from all three products were selected for further
validation in this study. The overall performance of each product for all
biome types is presented in Fig. 8. The results show that GLASS ex-
hibited a little overestimation (bias= 0.11), whereas MODIS and
GEOV1 presented a slight discrepancy in LAI values. The lowest RMSE
was achieved by GLASS (= 0.72), followed by GEOV1 (= 0.82). The
results of this comparison indicate relatively greater uncertainty for
MODIS retrievals (RMSE=0.93), which is partly due to the high un-
certainty of the MODIS retrievals over densely forested regions
(Shabanov et al., 2005), especially when the LAI was>4, as shown in
Fig. 8(a). Overall, the MODIS validation results are similar to those of
similar studies at the global scale, in which the RMSE ranged from 0.78
to 1.17 (Camacho et al., 2013; Fang et al., 2012; Yan et al., 2016).
However, using the time-series validation dataset at the global scale,
the uncertainties associated with GLASS and GEOV1 are slightly higher
than those reported in previous studies (N=25, RMSE=0.64 for
GLASS by Xiao et al. (2014) and N=48, RMSE=0.74 for GEOV1 by
Camacho et al. (2013)).

To further assess the products, each of them was compared to the
LAIsite-HSI for individual biome types, i.e. grasses, crops, EBF (Evergreen
Broadleaf Forest), DBF (Deciduous Broadleaf Forest) and ENF
(Evergreen Needleleaf Forest), as shown in Table 4. The mean values
and standard deviations of the GUGM LAI and product LAI were also
provided. Both the GUGM and products showed the highest mean LAI
for EBF, followed by comparable LAI between DBF and ENF. Crops and
grasses showed the relatively lower vegetation density, with a mean LAI
below 2. For grasses, all the products showed the highest R2 and lowest
uncertainties of all the biomes, with only a slight overestimation. Note
that only one grass site was used to validate the products, and the low-
magnitude LAI values could be one reason for the low uncertainty of the
products. For crops, MODIS showed some underestimation, as was
previously reported by Camacho et al. (2013), whereas GLASS and
GEOV1 presented minor overestimations. This difference between
MODIS and the other two LAI products for crops is possibly because the
CYCLOPES LAI values were given higher weight than MODIS in the
training dataset in the retrieval process for GLASS and GEOV1, espe-
cially for low LAI values of GEOV1 (Baret et al., 2013). Moreover, most
of the GLASS LAI values were<3, and the R2 between GLASS and
GUGM LAI was lower than those between other products, which is
partly because some high reflectance may have been removed when
using temporal-spatial filtering algorithms to obtain smoother re-
flectance data (Xiao et al., 2014). Compared to the relatively low un-
certainty for grasses and crops, MODIS and GEOV1 had relatively larger
RMSEs for forest. For EBF, the number of validation pixels was too
small to comprehensively demonstrate the uncertainty for this biome.
Nevertheless, it still shows that MODIS and GEOV1 presented quite
different LAI because MODIS overestimated LAI while GEOV1 under-
estimated LAI obviously, which was reported by Camacho et al. (2013)
and Yan et al. (2016). The DBF, which is the main biome type for forest,
showed the lowest uncertainty achieved by GLASS (RMSE=0.75)
followed by GEOV1 (RMSE=0.90) and MODIS (RMSE=1.08). In
Fig. 8, MODIS exhibited increasing LAI uncertainties for DBF with in-
creasing LAI, which is an intrinsic limitation of the LAI retrieval algo-
rithm because small variations in reflectances may result in large var-
iation in LAI at condition of saturation (Shabanov et al., 2005). For
ENF, MODIS and GLASS exhibited the similar performance, whereas
GEOV1 displayed better correspondence with LAIsite-HSI.

4.3.2. Analysis of global LAI time-series products
Fig. 9 displays the time-series comparisons among the MODIS,

GLASS, GEOV1 and LAIsite-HSI from 2001 to 2011 over four selected
ground sites representing four biomes (i.e. grasses, crops, DBF and
ENF). For the grasses at CA AB-GRL site (49.71° N, 112.94° W) in Ca-
nada, MODIS and GLASS tracked the seasonal variation of LAIsite-HSI
well, but GEOV1 significantly overestimated the LAI at the peak of the
growing season (Fig. 9(a)). In terms of the crops at CH FQA site (35.02°
N, 114.55° E) in China, all the products well captured the seasonality
for double-cropping LAI (Fig. 9(b)). As expected, the benefit of pre-
processing in GLASS enabled the retention of most observations across
different seasons during 2001–2011, but MODIS provided the fewest
LAI, ensuring good observational quality. As shown in the analysis of
grass, MODIS and GLASS presented quite similar uncertainties, whereas
GEOV1 exhibited greater uncertainty due to the overestimation at the
peak of the crop yield stage, especially in 2008 and 2010. For DBF at
the US MMS site (39.32° N, 86.41° W) in the US, all the products dis-
played the distinct seasonality of a mid-latitude temperate forest and a
slight overestimation compared to LAIsite-HSI (Fig. 9(c)). At this site,
MODIS did not provide valid LAI retrievals during summer for most
years. This gap in valid retrievals between MODIS and the other pro-
ducts is likely due to unfavorable atmospheric conditions, such as cloud
contaminations. Under these challenging conditions, the short compo-
site period (8-day) of MODIS cannot resolve observational gaps without
gap-filling or further rigorous processing used in GLASS and GEOV1.
This obvious discrepancy also could be found at the ENF site (CA BC-

Table 3
The statistical results of the change in LAI from the application of the GUGM method for
all site-based LAI measurements at different levels. The “–” indicates no available data.

Type Indicators Total Level 0 Level 1 Level 2 Level 3

All N 924 65 271 4 584
Mean ΔLAI 0.59 0 0.51 1.05 0.70
Mean relative ΔLAI 51.9% 0 29.9% 49.8% 67.8%

Cropland N 341 – 76 4 261
Mean ΔLAI 0.82 – 0.67 1.05 0.86
Mean relative ΔLAI 91.7% – 56.3% 49.8% 100.3%

Forest N 508 65 195 – 248
Mean ΔLAI 0.47 0 0.44 – 0.62
Mean relative ΔLAI 21.6% 0 19.7% – 28.7%

Grassland N 75 – – – 75
Mean ΔLAI 0.38 – – 0.38
Mean relative ΔLAI 76.0% – – – 76.0%
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DF00, 49.87° N, 125.29° W) in Canada, but this result was mostly due to
the negative impact of snow (Fig. 9(d)). GLASS and GEOV1 displayed
temporally smoother LAI profiles than did MODIS due to the afore-
mentioned pre-processing of the input reflectance. Additionally, unlike
DBF, the three products showed more divergent LAI retrievals for the
ENF site and MODIS had the lowest uncertainty.

With the strong advantages of GUGM for the validation of product
time-series, we further quantified the overall consistency of the un-
certainty across different years. Fig. 10 shows the distribution of the RMSE
calculated from LAIsite-HSI and the three products from 2001 to 2011 (see
Fig. S6 in the Supplementary material for the inter-annual variations in the
RMSE). Across all the biomes for the overall uncertainty (RMSE)
(Fig. 10(a)), GLASS generally presented the lowest magnitude, followed by
GEOV1 and MODIS. However, the variation in RMSE in each year in-
dicates that MODIS had more consistent uncertainty through the years for
overall biome types than GLASS and GEOV1 (Fig. 10(a)). For the in-
dividual biome types, EBF, DBF and ENF were combined into forest due to
the small number of valid product pixels for EBF and ENF in different
years. All the products showed that the RMSE magnitude of the forest
biome from 2001 to 2011 was higher than those of crops and grasses, as
shown in Fig. 10(b). This result can be explained by the larger uncertainty
of forest for MODIS due to the saturation of high LAI (Shabanov et al.,
2005), and both GLASS and GEOV1 also partly adopted MODIS retrievals
as training inputs (Baret et al., 2013; Xiao et al., 2014). Moreover, whether
the uncertainty of the products is similar in each year also depends on the
biome types. MODIS provided more stable RMSE for grass than for crops
and forest, whereas GLASS and GEOV1 had more stable uncertainty in the
forest biome than in the other two biomes across multi-year validation

practices.
In addition, we assessed the seasonal performance of the three

products by dividing the validation dataset (LAIsite-HSI) into four sea-
sons, i.e. March–May, June–August, September–November and
December–February. Fig. 11(a) shows the seasonal performances of
MODIS, GLASS and GEOV1 across different biome types. First, the
statistics for the number of validation pixels (N) shows that the valid
product pixels were mostly situated from March to November, which
corresponds to the critical growth phases of vegetation and the non-
snowy period in the northern hemisphere. The RMSE indicates that
MODIS and GEOV1 presented the similar variation in their un-
certainties across the four seasons, whereas GLASS presented consistent
uncertainties except in December–February. For bias, no obvious de-
viations were observed between MODIS and LAIsite-HSI. However,
GLASS exhibited significant overestimation in June–August and GEOV1
also displayed overestimation in June–August but underestimation in
September–November and December–February. The high R2 (≥0.6) in
the different seasons indicates that the variations were similar between
products and LAIsite-HSI.

Fig. 11(b)–(d) displays the seasonal performance of the products for
individual biome types. For grasses (Fig. 11(b)), all products had si-
milar and consistent uncertainties in different seasons, with a slight
overestimation for LAI in June–August. However, the R2 values were
quite different for each product in the different seasons, likely due to
the limited numbers of valid pixels. For crops (Fig. 11(c)), the number
of ground measurements in December–February was too small to sta-
tistically analyze their uncertainties. The uncertainties of each product
in the other seasons were comparable, but their deviations described by
the bias were quite different in the different seasons. MODIS and GLASS
presented obvious underestimation in March–May, whereas GLASS and
GEOV1 displayed evident overestimation in June–August. The R2 had
similar seasonal variation for each product, but sudden divergence was
observed from GLASS in December–February. For the forest biome
(Fig. 11(d)), the uncertainties of each product were quite different in
the four seasons. MODIS and GLASS tracked similar seasonal variations
in the RMSE across seasons, but MODIS showed relatively larger RMSEs
than GLASS. Both MODIS and GLASS had similar uncertainties from
March to November, whereas GEOV1 showed relatively consistent un-
certainties from June to February. In addition, MODIS exhibited LAI
overestimation across entire seasons, especially spring and summer.
Conversely, GEOV1 showed obvious underestimation except in Ju-
ne–August. The observed changes in the product performance in the
different years and seasons emphasize that assessing the temporal un-
certainty should be a pre-requisite to more comprehensively understand
the global LAI products. The GUGM approach proposed here provides
an effective way to prepare larger and higher quality validation dataset,
which in turn enables us to assess the uncertainty of global LAI products
with higher confidence.

Fig. 8. Comparisons between upscaled site-based LAI measurements derived from the GUGM (GUGM LAI) method and the (a) MODIS, (b) GLASS and (c) GEOV1 products. The different
biomes are depicted by different colors. EBF, DBF and ENF stand for “Evergreen Broadleaf Forest”, “Deciduous Broadleaf Forest” and “Evergreen Needleleaf Forest”, respectively.

Table 4
Direct validation results of three global LAI products for different biome types. The mean
values and standard deviations of both the GUGM and product LAI are also provided
(mean value ± standard deviation). “N” indicates the number of all valid pixels.

Product Biomes N GUGM LAI Product LAI R2 Bias RMSE

MODIS Grasses 36 0.50 ± 0.39 0.63 ± 0.39 0.82 0.13 0.21
Crops 178 1.66 ± 0.93 1.42 ± 0.96 0.52 −0.24 0.74
EBF 5 4.54 ± 0.43 6.18 ± 0.24 0.61 1.64 1.66
DBF 189 3.08 ± 1.45 3.28 ± 1.99 0.73 0.20 1.08
ENF 32 2.86 ± 1.03 3.39 ± 1.80 0.73 0.53 1.17

GLASS Grasses 36 0.50 ± 0.39 0.60 ± 0.33 0.82 0.10 0.19
Crops 178 1.66 ± 0.93 1.79 ± 0.77 0.42 0.13 0.74
EBF 5 4.54 ± 0.43 4.62 ± 0.18 0.28 0.08 0.34
DBF 189 3.08 ± 1.45 3.09 ± 1.47 0.76 0.01 0.75
ENF 32 2.86 ± 1.03 3.41 ± 1.26 0.65 0.55 0.92

GEOV1 Grasses 36 0.50 ± 0.39 0.67 ± 0.54 0.80 0.17 0.31
Crops 178 1.66 ± 0.93 1.86 ± 1.07 0.56 0.20 0.75
EBF 5 4.54 ± 0.43 2.95 ± 1.15 0.08 −1.59 1.99
DBF 189 3.08 ± 1.45 2.83 ± 1.82 0.78 −0.25 0.90
ENF 32 2.86 ± 1.03 2.96 ± 1.13 0.57 0.10 0.75
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5. Conclusions

The spatial scale mismatch between the area of ground measure-
ments and the product pixel grid limits the utilization of site-based LAI
measurements for validating satellite LAI products. Our GUGM ap-
proach, which integrates a spatial representativeness grading and a
spatial upscaling strategy, is proposed here to resolve this scale-mis-
match issue and maximize the use of time-series of ground measure-
ments. This approach first ingests both high-resolution images and site-
based LAI measurements to capture the spatiotemporal variability in
the product pixel grid. Then, the approach calculates the spatial up-
scaling coefficient based on site-based LAI measurements and ag-
gregated high-resolution reference maps to derive a reliable LAI time-
series validation dataset. In this study, we carefully evaluated the per-
formances of the GUGM by comparing to the benchmark LAI and other
widely used approaches. Based on the LAI time-series validation dataset
derived from the GUGM, we additionally assessed the uncertainty of

three global LAI products, including MODIS, GLASS and GEOV1.
Considering all evaluation results together, GUGM can (a) significantly
reduce the uncertainty from spatial scale mismatch and (b) increase the
size of the available validation dataset. These results are strongly cor-
roborated as GUGM outperforms other widely used approaches across
various biomes in the above two respects. By implementing the GUGM
to validate three global LAI products, we also confirmed that the pro-
posed approach is useful to assess the temporal performance of the
products. We believe that this result is critical to better understand the
structure of uncertainty and its evolution along different seasonal or
annual contexts. The quantitative validation practice for three global
products shows GLASS performs better with GUGM LAI than GEOV1
and MODIS for overall biome types. All products can well capture the
seasonal variation witnessed by GUGM LAI. MODIS LAI exhibits noisy
temporal variation at forest sites, which may be primarily caused by the
short compositing period and unsmoothed input reflectances. Across
multiple years, MODIS displays more consistent performance than other

Fig. 9. The temporal trajectories of the MODIS (red line), GLASS (green line) and GEOV1 (blue line) LAI products for (a) grasses, (b) crops, (c) DBF and (d) ENF from 2001 to 2011. The
square points indicate the GUGM LAI results based on the site-based LAI measurements. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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products for overall biome types and all products at different biome
types show the variation of uncertainty. At seasonal scale, both MODIS
and GEOV1 present the similar variation of uncertainty, but their
magnitudes are higher than GLASS for overall biome types. The pro-
mising GUGM approach shows great potentials in the realization of
Stage 3 validation using temporally continuous ground LAI

measurements from global networks and also provides fundamental
information to further improve LAI algorithms.

Additionally, future studies can focus on several issues to improve the
potential applications of the proposed GUGM. First, due to the different
sensors and processing chains for various products, the effect of the point
spread function (PSF) should be properly considered in the 1-km pixel grid to

Fig. 10. The distribution of RMSE derived from compar-
isons among three global LAI products and GUGM LAI for
(a) overall biome types and (b) each biome type from 2001
to 2011. The box stretches from the 25th percentile to the
75th percentile. The numbers at the top of figure corre-
spond to the median RMSE within each boxplot. The bars
indicate the range with in 1.5 IQR (interquartile range).

Fig. 11. The number of valid validation pixels and the derived statistical metrics (R2, bias and RMSE) across four seasons in MODIS (red), GLASS (green) and GEOV1 (blue) for (a) overall
biome types, (b) grasses, (c) crops and (d) forest. The “MAM”, “JJA”, “SON” and “DJF” in the x-axis stand for March–May, June–July, September–November and December–February,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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achieve a robust result for the validation of different global products. Second,
GUGM has a large potential to validate the current and future products in the
next coming years with the help of newly developed techniques for site-based
LAI measurements and high-resolution images. For example, the new in-
struments (LAINet) have been developed to temporally monitor the LAI based
on a wireless sensor network (WSN) (Qu et al., 2014a, 2014b). The recent
availability of high temporal frequency high-resolution images (Harmonized
Landsat Sentinel-2 product) should enable us to utilize more site-based LAI
measurements by providing more time-matched surface reflectance products.
Third, the GUGM can perform an essential role in synthesizing global site-
based LAI measurements from various research networks, such as FLUXNET,
the Terrestrial Ecosystem Research Network (TERN), the National Ecological
Observatory Network (NEON), the Integrated Carbon Observation Network
(ICOS), etc. The synthesized datasets can offer a unique opportunity to more
comprehensively quantify the uncertainties of satellite products and provide
the ecosystem-level information regarding vegetation structural changes. We
believe that the universality of this approach will be beneficial to scientific
communities to evaluate their products using global networks of site-based
measurements.
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Appendix A. Abbreviations, symbols, and descriptions

Table A
Abbreviations or symbols in this study and their descriptions.

Abbreviation
or symbol

Description Abbreviation
or symbol

Description

AVHRR Advanced very high resolution
radiometer

LAIHSI High spatial resolution (e.g. 30-m) LAI map

BELMANIP Benchmark Land Multisite Analysis and
Intercomparison of Products

LAIHSI-AGG Aggregated high-resolution LAI map (e.g. 30-m spatial resolution) to the
product pixel grid (e.g. 1-km)

CEOS Committee on Earth Observation
Satellites

LAIHSI-BM High-resolution LAI benchmark map provided by field campaigns (e.g.
VALERI, BigFoot, ImagineS...)

CERN Chinese ecosystem research network LAIsite-HSI Generated LAI validation dataset in the product pixel grid (e.g. 1-km)
based on site measurements and high-resolution LAI maps

CS Coefficient of sill LAIsite-TS Time-series of site-based LAI measurements
C5 Collection 5 LEDAPS Landsat ecosystem disturbance adaptive processing system
DBF Deciduous broadleaf forest LPV Land product validation
DVTP Dominant vegetation type percent LST Land surface temperature
EBF Evergreen broadleaf forest LUT Look-up table
ENF Evergreen needleleaf forest MODIS Moderate resolution imaging spectroradiometer
EROS Earth Resources Observation and

Science
NDVI Normalized differential vegetation index

ESPA Center Science Processing Architecture NIR Near infra-red
ESUs Elementary sampling units Nm Number of measurements
ETM+ Enhanced thematic mapper plus QC Quality control
FPAR Fraction of photosynthetically active

radiation absorbed by vegetation
RAE Relative absolute error

GEOV1 Geoland2 version 1 RE Reduced error from UGM to GUGM
GGM Grading ground measurements RMSE Root mean square error
GLASS Global land surface satellite RTMs Radiative transfer models
GM Ground measurements SAIL Scattering from arbitrarily inclined leaves
GRNN General regression neural networks TM Thematic mapper
GUGM Grading and upscaling Ground

Measurements
UGM Upscaling ground measurements

HSI High spatial resolution image USGS US Geological Survey
LAI Leaf Area Index VALERI Validation of Land European Remote sensing Instruments

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version, at https://doi.org/10.1016/j.rse.2018.02.049. These data
include the Google map of the site locations described in this article.
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