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Abstract 

 This paper has two aims: (i) to introduce a novel method for measuring which part of overall citation 
inequality can be attributed to differences in citation practices across scientific fields, and (ii) to implement an 
empirical strategy for making meaningful comparisons between the number of citations received by articles in 
the 22 broad fields distinguished by Thomson Scientific. The paper is based on a model in which the number 
of citations received by any article is a function of the article’s scientific influence, and the field to which it 
belongs. The model includes a key assumption according to which articles in the same quantile of any field 
citation distribution have the same degree of citation impact in their respective field. Using a dataset of 4.4 
million articles published in 1998-2003 with a five-year citation window, we find that differences in citation 
practices between the 22 fields account for about 14% of overall citation inequality. Our empirical strategy for 
making comparisons of citation counts across fields is based on the strong similarities found in the behavior 
of citation distributions over a large quantile interval. We obtain three main results. Firstly, we provide a set 
of exchange rates to express citations in any field into citations in the all-fields case. (This can be done for 
articles in the interval between, approximately, the 71st and the 99th percentiles of their citation distributions). 
The answer is very satisfactory for 20 out of 22 fields. Secondly, when the raw citation data is normalized 
with our exchange rates, the effect of differences in citation practices is reduced to, approximately, 2% of 
overall citation inequality in the normalized citation distributions. Thirdly, we provide an empirical 
explanation of why the usual normalization procedure based on the fields’ mean citation rates is found to be 
equally successful.  
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The field dependence of reference and citation counts in scientific articles has been recognized since 

the beginning of Scientometrics as a field of study (see inter alia Pinski and Narin, 1976, Murugesan and 

Moravcsik, 1978, and Garfield, 1979). There are multiple reasons. Consider the differences across scientific 

disciplines in, for example, (i) size, measured by the number of publications in the periodical literature; (ii) the 

average number of authors per paper; (iii) the average paper length; (iv) the average number of papers per 

author in a given period of time; (v) the theoretical or experimental mix that characterizes each discipline; (vi) 

the average number of references per paper; (vii) the proportion of references that are made to other articles 

in the periodical literature; (viii) the percentage of internationally co-authored papers, or (ix) the speed at 

which the citation process evolves. For example, in the dataset used in this paper covering 22 broad fields, the 

mean citation in Mathematics is 2.4, about eight and a half times smaller than in Molecular Biology and 

Genetics where it is equal to 20.4 citations. 

It would appear that differences in publication and citation practices pose insurmountable obstacles to 

direct comparisons of the absolute number of citations received by articles in different fields. However, this 

paper claims that some bold but reasonable assumptions, coupled with the striking similarity between citation 

distributions at different aggregation levels (documented in Albarrán and Ruiz-Castillo, 2011, Albarrán et al., 

2011, and Radicchi and Castellano, 2012a) opens up the possibility of meaningful comparison of citation 

counts across scientific fields.  

We use a model in which the number of citations received by an article is a function of two variables: 

the article’s underlying scientific influence, and the field to which it belongs. For our purposes, we may 

remain agnostic about the myriad of motives researchers have in their citation behavior as long as we are 

allowed to assume that citation impact varies monotonically with scientific influence (for a survey of the 

controversies concerning the meaning of citation counts, see Bornmann and Daniel, 2008). Thus, if one 
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article has greater scientific influence than another one in the same homogeneous field, then we expect the 

former to have also a greater citation impact than the latter.1  

In this context, the citation inequality of the distribution consisting of all articles in all fields –the all-

fields case– is the result of two forces: differences in scientific influence, and differences in citation practices 

across fields. Given the field, the monotonicity assumption imposed on the function that links citation impact 

with scientific influence ensures that the quantiles of the (unobservable) scientific influence distribution for that 

field coincide with the quantiles of the corresponding (observable) citation distribution. More importantly, the 

model includes a second, strong assumption according to which articles in the same quantile have the same 

degree of scientific influence independently of the field to which they belong. Therefore, citation inequality at 

any given quantile can be solely attributed to differences in citation practices across fields. The aggregation of 

this measure over all quantiles provides a distribution-free method of quantifying the effect of these 

differences (This is, essentially, John Roemer’s, 1998, model for the study of inequality of opportunities in an 

economic or sociological context). We implement this model by using an additively decomposable inequality 

index, in which case the citation inequality attributed to differences in citation practices can be measured as a 

between-group inequality term in the double partition by field and citation quantile (This idea is taken from 

Ruiz-Castillo, 2003). The usefulness of our approach lies in the fact that any normalization procedure can be 

evaluated by the reduction it induces in the between-group term just described. 

Using a dataset of 4.4 million articles published in 1998-2003 with a five-year citation window, we find 

that the citation inequality attributable to differences in citation practices across the 22 fields distinguished by 

Thomson Scientific is approximately constant over a wide range of quantiles. This allows the effect of 

idiosyncratic citation practices to be rather well estimated over that interval. Consequently, we provide a set 

of exchange rates and their standard deviations (SDs hereafter) that serve to address the following two empirical 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The idea that citations is an observable indicator for a latent concept of scientific or scholarly influence, as well as the 
monotonicity assumption, are also found in Ravallion and Wagstaff (2011) in a different scenario: the construction of bibliometric 
measures of research impact. 
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questions. Firstly, how many citations in a given field are equivalent to, say, 10 citations in the all-fields case? 

For example, in Clinical Medicine the answer is 12.1 with a SD of 0.6, while in Mathematics the answer is 3.3 

with a SD of 0.2. Secondly, how much can we reduce the effect of different citation practices by normalizing 

the raw citation data with the exchange rates? We find that this normalization procedure reduces this effect 

from, approximately, 14% to 2% of overall citation inequality. 

It should be emphasized that the difficulty of comparing citation counts across scientific fields is a very 

well known issue that has worried practitioners of Scientometrics since its inception. Differences in citation 

practices are usually taken into account by choosing the world mean citation rates as normalization factors 

(see inter alia Moed et al., 1985, 1988, 1995, Braun et al., 1985, Schubert et al., 1983, 1987, 1988, Schubert and 

Braun, 1986, 1996, and Vinkler 1986, 2003). More recently, other contributions support this traditional 

procedure on different grounds (Radicchi et al., 2008, Radicchi and Castellano, 2012a, 2012b). In our last 

contribution to the literature, we find that using field mean citations as normalization factors leads practically 

to the same large reduction of the effect of differences in citation practices as our exchange rates. We show 

how our model helps explaining why the traditional model is so successful.2 

The rest of the paper consists of three Sections. Section II introduces the model for the measurement 

of the effect of differences in citation practices. Section III presents the estimation of average-based exchange 

rates and its SDs over a large quantile interval, and discusses the consequences of using field exchange rates 

and mean citations as normalization factors. Section IV contains some concluding comments. 

 
 

II. THE MODEL 
II. 1. Notation 
  
From an operational point of view, a scientific field is a collection of papers published in a set of closely 

related professional journals. A field is said to be homogeneous if the number of citations received by its papers 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Methods that use mean citations or exchange rates as normalization factors belong to the class of target or “cited side” 
normalization procedures. Following an idea in Small and Sweeney (1985), source or “citing side” procedures have been recently 
suggested (see inter alia Zitt and Small, 2008, Moed, 2010, and Leydesdorff and Opthof, 2010). Since our dataset lacks citing side 
information, applying this type of procedure is beyond the scope of this paper. 
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is comparable independently of the journal where each has been published. Let Nf be the total number of 

articles in a homogeneous field f, and let c f = (cf1,…,cfNf) be the citation distribution for that field where, for 

each i = 1,…, Nf, cfi is the number of citations received by the i-th article. Assume that there are F 

homogeneous fields, indexed by f = 1,…, F. The total number of articles in the all-fields case is N = Σf Nf,.  

The number of citations of any article, cfi, is assumed to be a function of two variables: the field f to 

which the article belongs, and the scientific influence of the article in question, qfi, which is assumed for 

simplicity to be a single-dimensional variable. Thus, for every f we write: 

 cfi = φ(f, qfi), i = 1,…, Nf. (1) 

Let qf = (qf1, qf2,…, qfNf) with qf1 ≤ qf2 ≤…≤ qfNf be the ordered distribution of scientific influence in every 

field. The distribution qf is assumed to be a characteristic of the field. Consequently, for any two articles i and 

j in two different fields f and g, the values qfi and qgj cannot be compared. No restriction is a priori imposed on 

distributions qf, f = 1,…, F. The form of φ is unknown, but we adopt the following assumption about it: 

Assumption 1 (A1). The function φ in expression (1) is assumed to be monotonic in scientific influence, that is, for 

every pair of articles i and j in field f, if qfi ≤ qfj, then cfi ≤ cfj.  

For each f, consider the partition of qf into Π quantiles of size Nf/Π, indexed by qf
π , π = 1,…, Π, so 

that qf = (qf
1 ,…, q f

π ,…, qf
Π). Typically, scientific influence is an unobservable variable. However, given A1, 

the degree of scientific influence uniquely determines the location of an article in its field citation distribution. 

In other words, for every f, the partition of the scientific influence distribution qf into Π quantiles induces a 

corresponding partition of the citation distribution c f = (c f
1 ,…, c f

π ,…, c f
Π) into Π quantiles, where c f

π is the 
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vector of the citations received by the Nf/Π articles in the π-th quantile of field f. For later reference, let µf be 

the mean citation of field f. 

Consider the overall citation distribution in the all-fields case, C  = (c1,…, cl,…, cN), where, for each l, there 

exists some article i in some field f such that cl = cfi. Note that distribution C  can be organized as an (F x Π) array 

consisting of F rows, c f = (c f
1 ,…, c f

π ,…, c f
Π), f = 1,…, F, or Π columns, cπ = (c1

π ,…, c f
π ,…, cF

π)’, π = 1,…, Π. 

Assume for a moment that we disregard the citation inequality within every vector c f
π  by assigning to every 

article in that vector the mean citation of the vector itself, namely, µf
π. Consider the corresponding (F x Π) array, 

denoted by M :   

  µ1
1… µ1

π… µ1
Π

  

                  M =    µ f
1… µ f

π…  µ f
Π

 (2) 

  µF
1… µF

π… µF
Π

  

Of course, the citation inequality of each row mf = (µ f
1 ,…, µ f

Π) of M  is due to differences in the underlying 

scientific influence distribution qf. The citation inequality of each column mπ = (µ1
π ,…, µF

π) of M  require 

some explanation that will be provided in the next Sub-section with the help of Assumption 2. 

II. 2. Comparability Conditions  

As we know, the number of citations cfi and cgj for any two articles i and j in two fields f and g cannot be 

directly compared. We do not even know how to rank the scientific influences of the two articles in question. 

Similarly, mean citations µf and µg are not comparable either. To overcome this difficulty, in this paper we 

introduce some structure into the comparability problem by means of the following key assumption.  
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Assumption 2 (A2). Articles at the same quantile π of any field citation distribution have the same degree of citation 

impact in their respective field.3  

Let µf
π and µg

π be the mean citations of articles in quantile π in two fields f and g. Under A2, the 

interpretation of the fact that, for example, µf
 π = 2 µg

π is that, on average, field f uses twice the number of 

citations as field g to represent the same underlying phenomenon, namely, the same degree of scientific 

influence in both fields. Consequently, for any π, the difference between µf
 π and µg

π for articles with the 

same degree of scientific influence is entirely attributable to differences in citation practices between the two 

fields.4  

II.3. The Measurement of the Effect of Differences in Citation Practices 

 For any population partition, we are interested in expressing the overall citation inequality as the sum 

of two terms: a weighted sum of within-group inequalities, plus a between-group inequality component. An 

inequality index is said to be decomposable by population subgroup, if the decomposition procedure of overall 

inequality into a within-group and a between-group term is valid for any arbitrary population partition. In the 

relative, or scale-invariant inequality case it is customary to calculate the between-group component by 

applying the inequality index to a citation vector in which each article in a given subgroup is assigned the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Since the quantiles of citation impact correspond –as we have already seen– to quantiles of the underlying scientific influence 
distribution, holding constant the degree of citation impact at any level is equivalent to holding constant the degree of scientific 
influence at that level. 

4 Welfare economists would surely recognize the above as Roemer’s (1998) model for the inequality of opportunities where 
individual incomes (or other indicators of performance, such as educational outcomes) are assumed to be a function of two types of 
factors: a set of variables outside an individual’s responsibility –the circumstances, mainly inherited from our parents–, and effort, an 
unobservable single dimensional variable entirely within the sphere of each individual’s responsibility. Circumstances allow a 
partition of the population into types. In this model, income inequality holding constant the degree of effort by every type is seen to 
be entirely due to differences in circumstances, or to the inequality of opportunities at this degree of effort. Income inequality due to 
differences in effort is not worrisome from a social point of view. It is income inequality due to differences in circumstances, 
namely, the inequality of opportunities, what society might attempt to compensate for. Individuals are articles, the equivalent of 
income is citations, types are fields, and effort is scientific influence.  
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subgroup’s citation mean. Under this convention, it is well known that the Generalized Entropy (GE 

hereafter) family of inequality indices are the only measures of relative inequality that satisfy the usual 

properties required from any inequality index5 and, in addition, are decomposable by population subgroup 

(Bourguignon, 1978, and Shorrocks, 1980, 1984).  

Without loss of generality, it is useful to develop the following measurement framework in terms of 

only one member of this family, the first Theil index, denoted by I1, and defined as: 

   I1(C) = (1/N) Σl (cl/µ) log (cl/µ),  (3) 

where µ is the mean of distribution C . In the Working Paper version of this article, Crespo et al. (2012), it is 

shown that, in this case, overall citation inequality in the double partition of distribution C  into Π quantiles 

and F fields is seen to be: 

      I1(C) = W + S + IDCP,     (4) 

where:    W = Σπ Σf v
π,f I1(c f

π) 

    S = I1(µ1 ,..., µΠ) 

    IDCP = Σπ vπ I1(µ1
π ,…, µF

π) = Σπ vπ I1(π),  

where vπ,f is the share of total citations in quantile π of field f, and vπ = Σf v
π,f is the share of total citations in 

quantile π. The term W in equation (4) is a within-group term, which captures the weighted citation inequality 

within each quantile in every field. Obviously, since all articles in each vector c f
π  belong to the same field, 

there is no difficulty in computing the expression I1(c f
π). The term S is the citation inequality of the 

distribution m  = (µ1 ,..., µΠ) in which each article in a given quantile π is assigned the quantile’s citation 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Namely, continuity; scale invariance; invariance to population replications, or size-invariance, and S-convexity that ensures that 
transfers from an article with more citations to another with fewer citations without altering their ranking reduces citation 
inequality. 
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mean, µπ = Σf [(Nf/N]µf
π. Thus, S is a measure of citation inequality at different degrees of citation impact 

that captures well the skewness of science in the all-fields case. Finally, for any π, under A2 the citation 

inequality of distribution mπ  according to any relative inequality index I, I1(µ1
π,…, µF

π), abbreviated I(π), is 

entirely attributable to differences in citation practices across the F fields at quantile π. Thus, the weighted 

average of these quantities that constitute the third term in expression (4), denoted by IDCP (Inequality due 

to Differences in Citation Practices), provides a good measure of the citation inequality due to such 

differences. 

The following three points should be emphasized. Firstly, for large Π, I1(c f
π), and hence term W is 

expected to be small. Secondly, due to the high skewness of all citation distributions (see inter alia Albarrán 

and Ruiz-Castillo, 2011, and Albarrán et al., 2011), the term S is expected to be large. Thirdly, overall citation 

inequality due to differences in scientific influence –captured by the W and S terms– is not worrisome. 

Instead, we would like to eliminate as much as possible the citation inequality attributable to differences in 

citation practices. Thus, the impact of any normalization procedure can be evaluated by the reduction in the 

term IDCP before and after normalization. 

III. EMPIRICAL RESULTS 

In this paper only research articles or, simply, articles, are studied. Our dataset consists of 4.4 million 

articles published in 1998-2003, and the 35 million citations they receive after a common five-year citation 

window for every year. Since we must work with partitions of the N articles, we identify the set of 

homogeneous fields with the 20 broad fields for the natural sciences and two fields for the social sciences 

distinguished by Thomson Scientific (Table A in the Appendix in Crespo et al., 2012, presents the number of 

articles and mean citation rates by field).  
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This Section analyzes two empirical problems: (i) how to compare the citations received by two articles 

in any pair of the 22 fields in our dataset by using exchange rates that are approximately constant over a large 

quantile interval, and (ii) how much the effect of differences in citation practices is reduced when these 

exchange rates, or the field mean citations are used as normalization factors. 

 
III. 1. The Comparison of Citation Counts Across Different Fields  

Mean citations of comparable articles belonging to the same quantile can be used to express the 

citations in any field in terms of the citations in a reference situation. For example, if we let µπ be the mean 

citation of all articles in quantile π, then the exchange rates at quantile π, ef(π), defined by 

 ef(π) = µf
π/µπ, (5) 

can be seen to answer the following question: how many citations for an article at the degree π of scientific 

influence in field f are equivalent on average to one citation in the all-fields case? In the metaphor according 

to which a field’s citation distribution is like an income distribution in a certain currency, the exchange rates 

ef(π) permit to express all citations in the same reference currency for that π: since cfi is the number of 

citations received by article i in quantile π of field f, the ratio cfi*(π) = cfi/ef(π) is the equivalent number of 

citations in the reference currency at that quantile. Naturally, if for many fields ef(π) were to drastically vary 

with π, then we might not be able to claim that differences in citation practices have a common element that 

can be precisely estimated. However, we next establish that exchange rates are sufficiently constant over a 

wide range of quantiles. 

It is very instructive to have a graphical representation of how the effect of differences in citation 

practices, measured by I(π), changes with π when Π = 1,000 (since I(π) is very high for π < 600, for clarity 
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these quantiles are omitted from Figure 1).6 It is observed that I(π) is particularly high until π ≈ 700, as well as 

for a few quantiles at the very upper tail of citation distributions. However, I(π) is strikingly similar for a wide 

range of intermediate values.7 In this situation, it is reasonable to define an average-based exchange rate (ER 

hereafter) over some interval [πm, πM] in that range as 

 ef =  [1/(πM – πm)] [Σπ ef(π)]. (6) 

The advantage of this definition is that we can easily compute the associated SD, denoted by σf. The fact that, 

for each f, the ef(π) defined in (5) are very similar for all π in the interval [πm, πM] would manifest itself in a 

small σf, and hence in a small coefficient of variation CVf = σf/ef.  

Figure 1 around here 

We find that the choice [πm, πM] = [706, 998] –where I(π) for most π is equal to I(πm) = 0.1081 and 

I(πM) = 0.1084– is a good one. The ERs ef, as well as the σf, and CVf are in columns 1 to 3 in Table 1. For 

convenience, ERs are multiplied by 10. Thus, for example, the first row indicates that 15.8 citations with a 

standard deviation of 0.9 for an article in Biology and Biochemistry between, approximately, the 71st and the 

99th percentile of its citation distribution, are equivalent to 10 citations for an article in that interval in the all-

sciences case. We find it useful to divide fields into three groups according to the CVf. Group I (colored in 

green in Table 1), consisting of 10 fields, has a CVf smaller than or equal to 0.05. This means that the SD of 

the exchange rate, σf, is less than or equal to five percent of the exchange rate itself. Hence, we consider ERs 

in this group as highly reliable. Group II (black), consisting of 10 fields, has a CVf between 0.05 and 0.10. We 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Crespo et al. (2012) discusses the choice of the inequality index I1 among the members of the GE family. To solve the problem 
that I1 is not defined for articles without citations (see expression 3), we have followed the convention 0 log(0) = 0. However, we 
have also experimented with the assignment of values 0.1 and 0.01 to these articles. Crespo et al. (2012) establishes the robustness 
of our results to this choice, as well as to the alternatives Π = 10, 50, 100, 1000. 
7 It is important to emphasize that this is consistent with the stylized facts characterizing citation distributions documented in 
Albarrán and Ruiz-Castillo (2011), and Albarrán et al. (2012): although citation distributions are rather different in a long lower tail 
and at the very top of the upper tail, they behave very similarly over a partition into three broad classes.  
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consider ERs in this group as fairly reliable. Group III (red), consists of two fields: Computer Science, with a 

CVf greater than 0.10, which is known from previous work to behave as an outlier (Herranz and Ruiz-

Castillo, 2012), and the Multidisciplinary field with a CVf greater than 0.15.  The results for these two fields 

should be considered unreliable. 

As is observed in column 4 in Table 1, on average the interval [706, 998] includes 72.1% of all citations 

(with a SD of 3.9). Although this is a large percentage, expanding the interval in either direction would bring a 

larger percentage of citations. It turns out that the ERs do not change much. However, they exhibit greater 

variability (for details, see Crespo et al., 2012). Therefore, we find it useful to retain the interval [706, 998] in 

the sequel. 

Table 1 around here 

III. 2. Normalization Results 

 Figure 2 focuses on the product vπ I(π) as a function of π. Of course, the term IDCP is equal to the 

integral of this expression (for clarity, quantiles π < 600, and π > 994, are omitted from Figure 2). As we saw 

in Section II.3, the impact of any normalization procedure can be evaluated by the reduction in this term 

before and after normalization. In the first place, we want to assess the normalization procedure based on 

ERs whereby the citations received by any article i in field f, cfi, are converted into normalized citations cfi* as 

follows: cfi* = cfi/ef. Relative to the blue curve, the red curve illustrates the correction achieved by 

normalization: the size of the IDCP term is very much reduced. The numerical results before and after this 

normalization are in Panels A and B in Table 2.  

Table 2 and Figure 2 around here 

Note that, as expected, the term W is small, while the term S is large. Both terms remain essentially 

constant after normalization. However, in absolute terms the IDPC term is reduced from 0.1221 to 0.0156, a 

87.2% difference. Of course, total citation inequality after normalization is also reduced. On balance, the 
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IDPC term after normalization only represents 1.96% of total citation inequality –a dramatic reduction from 

the 13.9% with the raw data (for the robustness of this estimate to different choices of Π, as well as different 

members of the GE family, see Crespo et al., 2012).  

However, it should be recognized that in the last two quantiles and, above all, in the [1, 705] interval 

normalization results quickly deteriorate. It would appear that a convenient alternative consists of normalizing 

the lower tail of the original distributions by some appropriate ERs within the [1, 705] interval. The problem 

is that citation inequality due to different citation practices in that interval is both high and extremely variable 

for different quantiles. This explains why the ERs computed according to equation (6) for the entire [1, 705] 

interval lead to a worsening of the situation. Moreover, the improvement achieved with the restriction to the 

interval [356, 705] is, at most, very slight (see Crespo et al., 2012). 

As indicated in the Introduction, the difficulties of combining heterogeneous citation distributions into 

broader aggregates have been traditionally confronted using mean citations as normalization factors (see 

Crespo et al., 2011, for a review of this literature). In our dataset, the IDCP term after the traditional 

normalization procedure only represents 1.92% of total citation inequality (see Panel C in Table 2). The two 

solutions are so near that we refrain to illustrate the latter in Figure 2 because it will be indistinguishable with 

the red curve after normalization by our ERs. This confirms the results in Radicchi and Castellano (2012a) –

RC hereafter–, where it is concluded that, despite not being strictly correct, this procedure is a very good 

approximation of the two-parameter transformation able to make citation counts independent of the 

scientific field. All of which justifies the use of mean citations as normalization factors, as traditional practiced 

in Scientometrics since the mid 1980s, and as recently suggested by Radicchi et al. (2008) and Radicchi and 

Castellano (2012b). 

The question is, how can this similarity of results be accounted for? The explanation is as follows. As 

we have seen in Figure 1, field citation distributions differ approximately by a set of scale factors only in the 
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[706, 998] interval. Therefore, these scale factors should be well captured by any average-based measure of 

what takes place in that interval –such as our ERs. However, as documented in Albarrán et al. (2011), field 

mean citations µf are reached, on average, at the 69.7 percentile with a SD of 2.6, that is, at the lower bound 

of our [706, 998] interval. Thus, the ERs based on mean citations, ef(µf) = µf/µ, computed with data from all 

quantiles of citation distributions, are approximately equal to the average of our own ef(π) for the [706, 998] 

interval (see column 5 in Table 1). In other words, let ef(µ’f) = µ’f/µ’ be the ERs based on the mean citations 

restricted to the [706, 998] interval (see column 6 in Table 1). The scale factors separating field citation 

distributions over that interval should be well captured by such new ERs. However, as can be seen in Table 1, 

these ERs are essentially equal to the old ones, that is, for each f, ef(µ’f) ≈ ef(µf) ≈ ef. 

 
IV. CONCLUSIONS 

 
The lessons that can be drawn from this paper can be summarized in the following four points. 

1. We have provided a simple model for the measurement of the effect of differences in citation 

practices across scientific fields. Using a member of the GE family of inequality indices, this effect is well 

captured by a between-group term –denoted by IDCP– in the double partition by field and quantile of the 

overall citation distribution in the all-fields case. This method is distribution free, that is, it imposes no a priori 

restrictions whatsoever on citation distributions. The success of any normalization procedure in eliminating as 

much as possible the impact of differences in citation practices can be evaluated by the reduction it induces in 

the IDCP term. 

2. Using a large dataset of 4.4 million articles, the striking similarity of citation distributions allows the 

effect of idiosyncratic citation practices to be rather well estimated over a wide range of quantiles where 

citation distributions essentially differ by a scale factor. Consequently, a set of exchange rates is estimated for 

two purposes: the translation of citation counts of articles in different fields within that interval into the 
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citations in a reference situation, and the normalization of the raw citation data. The advantage of this 

procedure is that, contrary to the field citation means, the exchange rates are estimated with a reasonably low 

standard deviation for 20 out of 22 fields.  

It should be stressed that, for uncited and poorly cited articles below the mean, and for articles in the 

very upper tail of citation distributions, no clear answer to the comparability of citation counts for articles in 

different fields can be provided. Since the citation process evolves at different velocity in different fields, 

using variable citation windows to ensure that the process has reached a similar stage in all fields should 

improve field comparability at the lower tail of citation distributions. Naturally, we may also worry about how 

to compare citation counts in the last two quantiles of citation distributions. Given the fact that in this key 

segment the citation impact appears to be very diverse across fields, perhaps this task should not be even 

attempted. Until we know more concerning how differential citation practices operate in these top quantiles, 

the most we can do within this paper’s framework is to use exchange rates ef(π) for π = 999, 1000. 

3. It has been established that both the normalization procedure using our exchange factors, as well as 

the traditional method of taking the field citation means as normalization factors reduces the importance of 

the IDCP term relative to overall citation inequality from, approximately, 14% to 2%. The paper provides an 

empirical explanation of why the two methods are equally successful. Other normalization proposals –such as 

the one in RC, or those based on citing side procedures quoted in the Introduction, might be analogously 

evaluated. In turn, it would be interesting to evaluate the normalization procedure based on the exchange 

rates in terms of the reduction of the bias in the RC model. Given how near our ERs are from those based 

on the fields’ mean citation rates, the conjecture is that our procedure would perform as well as the 

approximation provided by these means in the RC paper. 

4. Policy makers and other interested parties should be very cautious when comparing citation 

performance in different scientific fields. More research is still needed. In particular, we need to study the 

robustness of our strategy to other datasets, as well as to extend it to lower aggregation levels. However, 
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together with the important contribution by RC, the results of this paper indicate that the combination of 

interesting assumptions with the empirical similarity of citation distributions paves the way for meaningful 

comparisons of citation counts across heterogeneous fields. 
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Figure 1. Citation Inequality Due to Differences in Citation Practices, I(π) versus π .  Raw Data 
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Table 1. Exchange Rates, Standard Deviations, and Coefficient of variation for the [706, 998]  Interval, and Exchange 
Rates Based on Mean Citations 
 
  
        Exchange         Standard       Coefficient of            % of         ERs Based on      ERs Based on Mean Cits.  
               Rates         Deviation             Variation      Citations       Mean Citations     In the [706, 998]  Interval 
 

       (1)                   (2)  (3)   (4)                      (5)                              (6) 

1. Biology & Biochemistry 15.8 0.9 0.054 68.0 16.0 15.3 

2. Clinical Medicine 12.1 0.6 0.049 71.8 12.4 12.5 

3. Immunology 19.5 0.9 0.048 66.3 20.4 19.0 

4. Microbiology 14.4 1.3 0.092 65.8 14.6 13.5 

5. Molecular Biology & Genetics 25.7 0.6 0.022 71.1 25.9 25.9 

6. Neuroscience & Behav. Science 17.1 0.8 0.050 67.2 17.5 16.5 

7. Pharmacology & Toxicology 10.1 0.6 0.056 68.4 10.2 9.8 

8. Psychiatry & Psychology 9.1 0.2 0.025 72.4 9.0 9.1 

9. Chemistry 9.9 0.4 0.037 70.9 9.7 9.7 

10. Computer Science 3.7 0.5 0.124 76.3 3.8 4.0 

11. Mathematics 3.3 0.2 0.059 75.4 3.1 3.3 

12. Physics 8.8 0.5 0.061 74.2 8.7 9.1 

13. Space Science 14.2 0.3 0.019 71.9 14.0 14.2 

14. Agricultural Sciences 6.5 0.4 0.056 72.5 6.2 6.3 

15. Engineering 4.4 0.2 0.054 75.9 4.1 4.4 

16. Environment & Ecology 9.1 0.7 0.073 68.3 9.1 8.7 

17. Geoscience 8.9 0.6 0.069 70.1 8.6 8.5 

18. Materials Science 5.9 0.3 0.048 75.0 5.8 6.1 

19. Multidisciplinary 4.3 0.7 0.158 81.6 4.1 4.7 

20. Plant & Animal Science 6.7 0.3 0.045 71.3 6.5 6.5 

21. Economics & Business 5.2 0.4 0.068 75.6 5.0 5.3 

22. Social Sciences, General 4.5 0.2 0.045 75.1 4.2 4.5 

Mean    72.1   
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Figure 2. Weighted Citation Inequality Due to Differences in Citation Practices, v
π
Ι(π) vs. π .  Raw  vs .  Normalized Data 
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Table 2. Total Citation Inequality Decomposition Before and After Normalization: ICP  Interval Detail 

 

 Within-group 
Term,  W  

Skew. of Sc. 
Term, S  

IDCP 
Term 

Total Citation 
Ineq., I1(C ) 

Percentages In %: 

(1)/(4) (2)/(4) (3)/(4) 

 (1) (2) (3) (4) (5) (6) (7) 

A. RAW DATA 

 
       

All Quantiles 0.0046 0.7488 0.1221 0.8755 0.52 85.53 13.95 

[1, 705]   0.0449    5.13 

[706, 998]   0.0717    8.18 

[999, 1000]   0.0056    0.64 

        

B. EXCHANGE 
FACTOR 
NORMALIZATION 

       

All Quantiles 0.0050 0.7756 0.0156 0.7962 0.6 97.4 1.96 

[1, 705]   0.0117    1.47 

[706, 998]   0.0018    0.23 

[999, 1000]   0.0022    0.27 

        

C. MEAN 
NORMALIZATION        

All Quantiles 0.0050 0.7761 0.0153 0.7964 0.6 97.4 1.92 

[1, 705]   0.0114    1.43 

[706, 998]   0.0020    0.25 

[999, 1000]   0.0020    0.25 
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