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Abstract

We develop a model of endogenous productivity change to examine the impact of

the investment in knowledge on the productivity of firms. Our dynamic investment

model extends the tradition of the knowledge capital model of Griliches (1979) that

has remained a cornerstone of the productivity literature. Rather than constructing

a stock of knowledge capital from a firm’s observed R&D expenditures, we consider

productivity to be unobservable to the econometrician. Our approach accounts for

uncertainty, nonlinearity, and heterogeneity across firms in the link between R&D and

productivity. We also derive a novel estimator for production functions in this setting.

Using an unbalanced panel of more than 1800 Spanish manufacturing firms in nine

industries during the 1990s, we provide evidence of nonlinearities as well as economically

significant uncertainties in the R&D process. R&D expenditures play a key role in

determining the differences in productivity across firms and the evolution of firm-level

productivity over time.
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1 Introduction

A firm invests in R&D and related activities to develop and introduce process and product

innovations. These investments in knowledge enhance the productivity of the firm and

change its competitive position relative to that of other firms.

Our goal in this paper is to assess the role of R&D in determining the differences

in productivity across firms and the evolution of firm-level productivity over time. To

achieve this goal, we develop a model of endogenous productivity change resulting from

investment in knowledge. We also derive an estimator for production functions in this

setting. With these tools in hand we study the link between R&D and productivity in

Spanish manufacturing firms during the 1990s.

Our starting point is a dynamic model of a firm that invests in R&D in order to improve

its productivity over time in addition to carrying out a series of investments in physical cap-

ital. Both investment decisions depend on the current productivity and the capital stock

of the firm as do the subsequent decisions on static inputs such as labor and materials.

Productivity follows a Markov process that can be shifted by R&D expenditures. The evo-

lution of productivity is thus subject to random shocks. These innovations to productivity

capture the factors that have a persistent influence on productivity such as absorption of

techniques, modification of processes, and gains and losses due to changes in labor com-

position and management abilities. For a firm that engages in R&D, the productivity

innovations additionally capture the uncertainties inherent in the R&D process such as

chance in discovery, degree of applicability, and success in implementation.

Our model of endogenous productivity change is not the first attempt to account for

investment in knowledge. In a very influential paper, Griliches (1979) proposed to augment

a standard production function with “a measure of the current state of technical knowledge,

determined in part by current and past research and development expenditures” (p. 95). In

practice, a firm’s observed R&D expenditures are used to construct a proxy for the state of

knowledge. This knowledge capital model has remained a cornerstone of the productivity

literature for more than 25 years and has been applied in hundreds of studies on firm-level

productivity (see the surveys by Mairesse & Sassenou (1991), Griliches (1995, 2000), and

Hall, Mairesse & Mohnen (2010)).

In a departure from the previous literature we do not attempt to construct a stock of

knowledge capital from the available history of R&D expenditures and with it control for

the impact of R&D on productivity. Instead, we consider productivity to be unobservable to

the econometrician and in this way relax the assumptions on the R&D process in a natural

fashion. We recognize that the outcome of the R&D process is likely to be subject to a high

degree of uncertainty. Once discovered, an idea has to be developed and applied, and there

are the technical and commercial uncertainties linked to its practical implementation. We

further recognize that current and past investments in knowledge are likely to interact with

each other in many ways. Since there is little reason to believe that features such as com-
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plementarities and economies of scale in the accumulation of knowledge or the obsolescence

of previously acquired knowledge can be adequately captured by simple functional forms,

we model the interactions between current and past investments in knowledge in a flexible

fashion.

To retrieve productivity at the level of the firm, we have to estimate the parameters

of the production function. However, if a firm adjusts to a change in its productivity by

expanding or contracting its production depending on whether the change is favorable or

not, then unobserved productivity and input usage are correlated and biased estimates result

(Marschak & Andrews 1944). Recent advances in the structural estimation of production

functions, starting with the dynamic investment model of Olley & Pakes (1996) (OP), tackle

this endogeneity problem.1 The insight of OP is that if observed investment is a monotone

function of unobserved productivity, then this function can be inverted to back out—and

thus control for—productivity. This line of research has been extended by Levinsohn &

Petrin (2003) (LP) and Ackerberg, Caves & Frazer (2006) (ACF).

Instead of relying on the firm’s dynamic programming problem as OP do, we use the fact

that static inputs are decided on with current productivity known and therefore contain in-

formation about it. As first shown by LP, the input demands resulting from short-run profit

maximization are invertible functions of unobserved productivity. We use this insight to

control for productivity and obtain consistent estimates of the parameters of the production

function. In addition, we recognize that, given a parametric specification of the production

function, the functional form of the inverse input demand functions is known. Because we

fully exploit the structural assumptions, we do not have to rely on nonparametric methods

to estimate these functions. Our parametric inversion yields a particularly simple estimator

for production functions.

We apply our estimator to an unbalanced panel of more than 1800 Spanish manufactur-

ing firms during the 1990s. Our data is of notably high quality and combines information

on production with information on firms’ R&D activities in nine industries. This broad

coverage of industries is uncommon and allows us to examine the link between R&D and

productivity in a variety of settings that differ greatly in the importance of R&D. At the

same time, it allows us to put to the test our model of endogenous productivity change and

the estimator we develop for it.

Somewhat unusually we have firm-level wage and price data.2 The fact that the wage

and prices vary across firms is at variance with the often-made assumption in the literature

following OP that all firms face the same wage and prices and that these variables can

therefore be replaced by a dummy. Instead, as LP point out, the wage and prices must be

1See Griliches & Mairesse (1998) and Ackerberg, Benkard, Berry & Pakes (2007) for reviews of this and
other problems that arise in the estimation of production functions.

2There are other data sets such as the Colombian Annual Manufacturers Survey (Eslava, Haltiwanger,
Kugler & Kugler 2004) and the Longitudinal Business Database at the U.S. Census Bureau that contain
separate information about prices and quantities, at least for a subset of industries (Roberts & Supina 1996,
Foster, Haltiwanger & Syverson 2008).
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accounted for in the inverse input demand functions used to recover unobserved productiv-

ity. Nonparametrically estimating the inverse input demand functions, however, becomes

difficult as the number of their arguments increases and may be altogether infeasible for

typical sample sizes if there are more than just a few arguments. Our parametric inversion

is much less demanding on the data.

Our estimates attest to important nonlinearities and uncertainties in the R&D process.

The impact of current R&D on future productivity depends crucially on current produc-

tivity. Nonlinearities often take the form of complementarities between current R&D and

current productivity. Furthermore, the R&D process must be treated as inherently uncer-

tain. We estimate that, depending on the industry, between 25% and 75% of the variance in

productivity is explained by innovations that cannot be predicted when decisions on R&D

expenditures are made. Moreover, the return to R&D is often twice that of the return

to investment in physical capital. Our estimates therefore suggest that the uncertainties

inherent in the R&D process are economically significant and matter for firms’ investment

decisions.

Capturing the uncertainties in the R&D process also paves the way for heterogeneity

across firms. Because we allow the shocks to productivity to accumulate over time, even

firms with the same time path of R&D expenditures may not have the same productiv-

ity. This gives us the ability to assess the role of R&D in determining the differences in

productivity across firms and the evolution of firm-level productivity over time.

Despite the uncertainties in the R&D process, we show that the expected productivity of

firms that perform R&D is systematically more favorable in the sense that their distribution

of expected productivity tends to stochastically dominate the distribution of firms that do

not perform R&D. Assuming that the productivity process is exogenous (as in most of the

literature following OP) amounts to averaging over firms with distinct innovative activities

and hence blurs important differences in the impact of the investment in knowledge on the

productivity of firms.3 In addition, we estimate that firms that perform R&D contribute

between 65% and 90% of productivity growth in the industries with intermediate or high

innovative activity. R&D expenditures are thus a primary source of productivity growth.

Our model allows us to recover the entire distribution of the elasticity of output with

respect to R&D expenditures—a measure of the return to R&D—as well as that of the

elasticity of output with respect to already attained productivity—a measure of the degree

of persistence in the productivity process. On average we obtain higher elasticities with

respect to R&D expenditures than in the knowledge capital model and lower elasticities

with respect to already attained productivity. Since old knowledge is hard to keep but new

knowledge is easy to add, productivity is considerably more fluid than what the knowledge

capital literature suggests.

3Subsequent research on extending the two-stage procedures in OP, LP, and ACF to an endogenous
productivity process echoes this conclusion (De Loecker 2010).
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The remainder of this paper is organized as follows. Section 2 lays out a dynamic

investment model with endogenous productivity change. Section 3 describes the data and

Section 4 develops our empirical strategy. Sections 5 and 6 discuss our results and Section

7 concludes.

2 A model for investment in knowledge

A firm carries out two types of investments, one in physical capital and another in knowledge

through R&D expenditures. Investment decisions are made in a discrete time setting with

the goal of maximizing the expected net present value of future cash flows. Capital is

the only dynamic (or “fixed”) input among the conventional factors of production and

accumulates according to Kjt = (1 − δ)Kjt−1 + Ijt−1, where Kjt is the stock of capital

of firm j in period t and δ is the rate of depreciation. This law of motion implies that

investment Ijt−1 chosen in period t− 1 becomes productive in period t.

The productivity of firm j in period t is ωjt. While the firm knows its productivity when

it makes its decisions, we follow OP and often refer to ωjt as “unobserved productivity” since

it is not observed by the econometrician. Productivity is correlated over time and perhaps

also correlated across firms. Because our goal is to assess the role of R&D in determining

the differences in productivity across firms and the evolution of firm-level productivity over

time, we have to endogenize the productivity process. To this end, we assume that produc-

tivity is governed by a controlled first-order Markov process with transition probabilities

P (ωjt|ωjt−1, rjt−1), where rjt−1 is the log of R&D expenditures.4

Adopting the convention that lower case letters denote logs and upper case letters levels,

the firm has the Cobb-Douglas production function

yjt = β0 + βtt+ βkkjt + βlljt + βmmjt + ωjt + ejt, (1)

where yjt is the output of firm j in period t, ljt is labor, and mjt is materials. We allow for

a secular trend t in the production function. In contrast to productivity ωjt, the mean zero

random shock ejt is uncorrelated over time and across firms. The firm does not know the

value of ejt when it makes its decisions at time t.

The Bellman equation for the firm’s dynamic programming problem is

V (sjt) = max
ijt,rjt

Π(sjt)− Ci(ijt)− Cr(rjt) +
1

1 + ρ
E [V (sjt+1)|sjt, ijt, rjt] ,

where sjt = (t, kjt, ωjt, wjt, pmjt, djt) is the vector of state variables. Besides the trend t,

the stock of capital kjt, and productivity ωjt, the vector of state variables comprises other

variables that are correlated over time, namely the wage wjt and the price of materials pmjt

4The literature following OP typically assumes an exogenous Markov process with transition probabilities
P (ωjt|ωjt−1).
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that the firm faces, and the demand shifter djt. Π(·) denotes per-period profits and Ci(·)
and Cr(·) the cost of investment in physical capital and knowledge, respectively, and ρ the

discount rate. In the simplest case the cost functions Ci(·) and Cr(·) just transform logs into

levels, but they may also capture indivisibilities in investment projects or adjustment costs;

their exact forms are irrelevant for our purposes.5 The dynamic programming problem

gives rise to two policy functions i(sjt) and r(sjt) for the investments in physical capital

and knowledge, respectively.

The firm anticipates the effect of R&D on productivity in period t when making the

decision about investment in knowledge in period t−1. The Markovian assumption implies

ωjt = E [ωjt|ωjt−1, rjt−1] + ξjt = g(ωjt−1, rjt−1) + ξjt. (2)

That is, actual productivity ωjt in period t can be decomposed into expected productivity

g(ωjt−1, rjt−1) and a random shock ξjt. While the conditional expectation function g(·)
depends on already attained productivity ωjt−1 and R&D expenditures rjt−1, ξjt does not:

by construction ξjt is mean independent (although not necessarily fully independent) of

ωjt−1 and rjt−1. This productivity innovation represents the uncertainties that are naturally

linked to productivity plus the uncertainties inherent in the R&D process such as chance in

discovery, degree of applicability, and success in implementation. It is important to stress

the timing of decisions in this context: When the decision about investment in knowledge

is made in period t − 1, the firm is only able to anticipate the expected effect of R&D on

productivity in period t as given by g(ωjt−1, rjt−1) while its actual effect also depends on

the realization of the productivity innovation ξjt that occurs after the investment has been

completely carried out. The conditional expectation function g(·) is not observed by the

econometrician and must be estimated nonparametrically along with the parameters of the

production function.

As noted by LP, the firm’s dynamic programming problem—and the policy functions

for the investments in physical capital and knowledge it gives rise to—can easily become

very complicated. Buettner (2005) incorporates R&D expenditures into the dynamic in-

vestment model of OP. To prove that the policy function for investment in physical capital

can be used to nonparametrically recover unobserved productivity, Buettner (2005) has to

restrict the transition probabilities P (ωjt|ωjt−1, rjt−1) of the Markov process that governs

the evolution of productivity to be of the form P (ωjt|ψjt), where ψjt = ψ(ωjt−1, rjt−1) is an

index that orders the probability distributions for ωjt. The restriction to an index excludes

the possibility that current productivity and R&D expenditures affect future productivity

in qualitatively different ways.

5In practice, investment opportunities and the price of equipment goods are likely to vary and the cost
of investment in knowledge depends greatly on the nature of the undertaken project (Adda & Cooper 2003,
p. 188). To capture variation in the cost of investment in physical capital and knowledge across firms and
time, a cost shifter xjt can be added to Ci(·) and Cr(·).
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To free up the relationship between current productivity, R&D expenditures, and future

productivity, we base our empirical strategy on the firm’s decisions on static (or “variable”)

inputs that are subsumed in per-period profits Π(·). Specifically, we follow LP and assume

that labor ljt and materials mjt are chosen to maximize short-run profits.6 This gives rise

to two input demand functions l(sjt) and m(sjt) that allow us to parametrically recover

unobserved productivity and control for it in estimating the parameters of the production

function in equation (1) and the law of motion for productivity in equation (2). Before

detailing our empirical strategy in Section 4, we describe the data at hand.

3 Data

Our data come from the Encuesta Sobre Estrategias Empresariales (ESEE) survey, a firm-

level survey of Spanish manufacturing sponsored by the Ministry of Industry. The unit

surveyed is the firm, not the plant or the establishment. At the beginning of this survey in

1990, 5% of firms with up to 200 workers were sampled randomly by industry and size strata.

All firms with more than 200 workers were asked to participate, and 70% of these large

firms chose to respond. Some firms vanish from the sample, due to either exit (shutdown

by death or abandonment of activity) or attrition. The two reasons can be distinguished,

and attrition remained within acceptable limits. To preserve representativeness, samples of

newly created firms were added to the initial sample every year. Details on industry and

variable definitions can be found in Appendix A.

Our sample covers a total of 1870 firms when restricted to firms with at least two years

of data. Columns (1) and (2) of Table 1 show the number of observations and firms by

industry. Samples sizes are moderate. Columns (3) and (4) show entry and exit. Newly

created firms are a large share of the total number of firms, ranging from 15% to one third

in the different industries. In each industry there is a significant proportion of exiting firms

(from 5% to above 10% in a few cases). Firms tend to remain in the sample for short

periods, ranging from a minimum of two years to a maximum of 10 years between 1990 and

1999.

The 1990s were a period of rapid output growth, coupled with stagnant or at best

slightly increasing employment and intense investment in physical capital, as can be seen

from columns (5)–(8) of Table 1. Consistent with this rapid growth, firms on average report

that their markets are slightly more often expanding than contracting; hence, demand tends

to shift out over time.

The growth of prices, averaged from the growth of prices as reported individually by

each firm, is moderate. The growth of the price of output in column (9) ranges from 0.7%

6LP invoke this assumption to establish in their equation (9) a sufficient condition for the invertibility
of the intermediate input: On p. 320 just below equation (1) LP assume that labor is “freely variable,” on
p. 322 just above equation (6) they assume that the intermediate input is also “freely variable,” and they
invoke short-run profit maximization at the start of the proof on p. 339.
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to 2.2%. The growth of the wage and the price of materials ranges from 4.4% to 6.0% and,

respectively, from 2.5% to 3.9%.

Our empirical strategy treats labor as a static input. This is appropriate because Spain

greatly enhanced the possibilities for hiring and firing temporary workers during the 1980s

and, by the beginning of the 1990s, had one the highest shares of temporary workers in

Europe (Dolado, Garcia-Serrano & Jimeno 2002). In our sample the share of temporary

workers ranges from 14% to 33% across industries. Rapid expansions and contractions of

temporary workers are common: The difference between the maximum and the minimum

share of temporary workers within a firm ranges on average from 12% to 20%. In addition,

we measure labor as hours worked (see Appendix A for details). At this margin at least

firms enjoy a high degree of flexibility in determining the demand for labor.

The R&D intensity of Spanish manufacturing firms is low by European standards, but

R&D became increasingly important during the 1990s (see, e.g., European Commission

2001).7 The manufacturing sector consists partly of multinational companies with produc-

tion facilities in Spain and very large R&D expenditures and partly of small and medium-

sized companies that invested heavily in R&D in a struggle to increase their competitiveness

in a growing and already very open economy.8,9

Columns (10)–(13) of Table 1 reveal that the nine industries differ markedly in terms

of firms’ R&D activities. Chemical products (3), agricultural and industrial machinery

(4), and transport equipment (6) exhibit high innovative activity. The share of firms that

perform R&D during at least one year in the sample period is about two thirds, with slightly

more than 40% of stable performers that engage in R&D in all years (column (11)) and

slightly more than 20% of occasional performers that engage in R&D in some (but not all)

years (column (12)). The average R&D intensity among performers ranges from 2.2% to

2.7% (column (13)). The standard deviation of R&D intensity is substantial and shows

that firms engage in R&D to various degrees and quite possibly with many different specific

innovative activities. Metals and metal products (1), non-metallic minerals (2), food, drink

and tobacco (7), and textile, leather and shoes (8) are in an intermediate position. The

share of firms that perform R&D is below one half and there are fewer stable than occasional

performers. The average R&D intensity is between 1.0% and 1.5% with a much lower value

of 0.7% in industry 7. Finally, timber and furniture (9) and paper and printing products

(10) exhibit low innovative activity. The share of firms that perform R&D is around one

7R&D intensities for manufacturing firms are 2.1% in France, 2.6% in Germany, and 2.2% in the UK as
compared to 0.6% in Spain (European Commission 2004).

8At most a small fraction of the firms that engaged in R&D received subsidies that typically covered
between 20% and 50% of R&D expenditures. The impact of subsidies is mostly limited to the amount that
they add to the project, without crowding out private funds (see Gonzalez, Jaumandreu & Pazo 2005).
This suggests that R&D expenditures irrespective of their origin are the relevant variable for explaining
productivity.

9While some R&D expenditures were tax deductible during the 1990s, the schedule was not overly
generous and most firms simply ignored it. A large reform that introduced some real stimulus took place
towards the end of our sample period in 1999.
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quarter and the average R&D intensity is 1.4%.

4 Empirical strategy

Our estimator builds on the insight of LP that the demands for static inputs such as labor

and materials can be used to recover unobserved productivity. Static inputs are chosen

with current productivity known and therefore contain information about it. Importantly,

the demands for static inputs are the solution to the firm’s short-run profit maximization

problem. We are thus able to back out productivity without making assumptions on the

firm’s dynamic programming problem. Our estimator differs from LP by recognizing that,

given a parametric specification of the production function, the functional form of the input

demand functions (and their inverses) is known. This allows us to parameterically recover

unobserved productivity.

To allow the firm to have some market power, e.g., because products are differentiated,

we assume that the firm faces a downward sloping demand function that depends on the

price of output pjt and the demand shifter djt. Profit maximization requires that the firm

sets the price that equates marginal cost to marginal revenue Pjt

(
1− 1

η(pjt,djt)

)
, where

η(·) is the absolute value of the elasticity of demand. Given the Cobb-Douglas production

function in equation (1), the assumption that labor and materials are static inputs implies

that the labor demand function is

l(sjt) =
1

1− βl − βm

(
β0 + (1− βm) lnβl + βm lnβm + µ

+βtt+ βkkjt + ωjt − (1− βm)(wjt − pjt)− βm(pmjt − pjt) + ln

(
1− 1

η(pjt, djt)

))
, (3)

where µ = lnE [exp(ejt)], (wjt − pjt) is the real wage, and (pmjt − pjt) is the real price of

materials. Solving equation (3) for ωjt we obtain the inverse labor demand function

hl(t, kjt, ljt, pjt, wjt, pmjt, djt)

= λl − βtt− βkkjt + (1− βl − βm)ljt + (1− βm)(wjt − pjt)

+βm(pmjt − pjt)− ln

(
1− 1

η(pjt, djt)

)
, (4)

where λl = −β0 − (1 − βm) lnβl − βm lnβm − µ combines constants. These derivations

generalize beyond the Cobb-Douglas production function in equation (1): Maintaining the

Hicks-neutrality of productivity, the inverse labor demand function can be characterized

in closed form for a CES or a generalized linear production function, although not for a

translog production function.

To obtain our estimation equation, we proceed in two steps. We first substitute the law

9



of motion for the controlled Markov process in equation (2) into the production function

in equation (1). Then we use the inverse labor demand function hl(·) in equation (4) to

substitute for ωjt−1 to obtain

yjt = β0 + βtt+ βkkjt + βlljt + βmmjt + g(hljt−1, rjt−1) + ξjt + ejt, (5)

where hljt−1 is shorthand for hl(t− 1, kjt−1, ljt−1, pjt−1, wjt−1, pmjt−1, djt−1).
10,11

We base estimation on the moment restrictions

E
[
A(zjt)(ξjt + ejt)

]
= 0,

where A(·) is a vector of functions (to be specified in Section 4.2) of the exogenous variables

zjt.
12 Because ξjt is the innovation to productivity in period t, its value is not known to

the firm when it makes its decisions at time t− 1. Hence, all lagged variables appearing in

equation (5) are uncorrelated with ξjt. Moreover, kjt, whose value is determined in period

t−1 by ijt−1 = i(sjt−1), is uncorrelated with ξjt by virtue of our timing assumptions. Only

ljt and mjt are correlated with ξjt (since ξjt is part of ωjt and ljt = l(sjt) and mjt = m(sjt)

are functions of ωjt) and as endogenous variables must be instrumented for.

In considering instruments, it is important to remember that because equation (5) mod-

els the law of motion for productivity it has an advantage over equation (1): Instruments

have to be uncorrelated with the innovation to productivity ξjt but not necessarily with the

level of productivity ωjt. For example, while ljt−1 is uncorrelated with ξjt in equation (5),

ljt−1 is correlated with ωjt in equation (1) as long as productivity is correlated over time.

Modeling the law of motion in this way mitigates the endogeneity problem in estimating

production functions.

Our instrumenting strategy is grounded in a simultaneous-equations perspective. Equa-

tions (1)–(4) define a simultaneous-equations model. To simplify the exposition, we restrict

the production function in equation (1) to yjt = βlljt + ωjt + ejt, the law of motion in

equation (2) to an exogenous Markov process ωjt = g(ωjt−1) + ξjt, and assume perfect

10In Section 5 we also provide estimates using the inverse materials demand function hm(·).
11Our model nests a restricted version of the dynamic panel model of Blundell & Bond (2000). Leaving

aside the fixed effects in their specification, we obtain their estimation equation (2.2) by switching from a
gross-output to a value-added production function with βm = 0, restricting the law of motion in equation
(2) to an exogenous AR(1) process with g(ωjt−1) = ρωjt−1, and using the marginal productivity condition

for profit maximization to substitute yjt−1 for − lnβl−µ+ ljt−1+(wjt−1−pjt−1)− ln
(
1− 1

η(pjt−1,djt−1)

)
in

equation (5). Hence, the differences between their and our approach lie in the generality of the productivity
process and the strategy of estimation.

12These moments in ξjt + ejt correspond to the “second-stage moments” in OP, LP, and ACF. The
literature following OP also uses “first-stage moments” in ejt that are obtained by using hl(·) to substitute
for ωjt in the production function in equation (1). Estimating this marginal productivity condition for profit
maximization together with equation (5) may increase efficiency. Parameters of interest may, however, cancel.
In the special case of a value-added production function with βm = 0 and perfect competition in the product
market with η(·) = ∞, the estimation equation is yjt = λ1 + ljt + (wjt − pjt) + ejt, where λ1 = − lnβl − µ
combines constants.
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competition in the product market with η(·) = ∞ to obtain the simultaneous-equations

model

yjt = βlljt + g(λl + (1− βl)ljt−1 + (wjt−1 − pjt−1)) + ξjt + ejt, (6)

ljt =
1

1− βl

(
−λl + g(λl + (1− βl)ljt−1 + (wjt−1 − pjt−1))− (wjt − pjt) + ξjt

)
, (7)

where λl = − lnβl−µ combines constants. The endogenous variables are yjt and ljt. While

equation (7) is in reduced form, equation (6) is structural. To derive its reduced form, we

substitute equation (7) into equation (6) to obtain

yjt =
1

1− βl

(
−βlλl + g(λl + (1− βl)ljt−1 + (wjt−1 − pjt−1))− βl(wjt − pjt) + ξjt

)
+ ejt.

(8)

The exogenous variables zjt on the right-hand side of the reduced-form equations (7) and

(8) are the constant, (wjt − pjt), ljt−1, and (wjt−1 − pjt−1).

An important conclusion from viewing our model as a simultaneous-equations model is

that the model is overidentified even in the simplest case of an exogenous AR(1) process

with g(ωjt−1) = ρωjt−1: We have four exogenous variables to estimate the three parameters

λ0 = ρλl, βl, and ρ in equation (6).

Another conclusion is that equation (6) does not suffice to estimate the parameters

of the model absent price variation. Without variation in the real wage we are left with

the constant and ljt−1 as exogenous variables. Clearly, we cannot hope to estimate three

parameters with two exogenous variables.13

Our empirical application is more elaborate than this example. In an imperfectly com-

petitive setting, the firm sets the current price of output pjt in light of the level of pro-

ductivity ωjt. As ξjt is part of ωjt, pjt is endogenous in the sense of being correlated with

the innovation to productivity ξjt. A potential concern is that the current wage wjt and

the current price of materials pmjt may also be endogenous. Underlying OP, LP, and ACF

is the reasoning that a change in productivity that is not anticipated by the firm is not

correlated with its past decisions. This implies that lagged values are less susceptible to en-

dogeneity than current values. In our empirical application we thus rely on the lagged price

of output pjt−1, the lagged wage wjt−1, and the lagged price of materials pmjt−1 for instru-

ments; the tests for overidentifying restrictions in Section 5.1 indicate that the variation in

13It may be possible to derive other estimation equations that allow us to estimate the parameters of the
model absent price variation. Assume we observe revenue (p+ yjt) and the wage bill (w+ ljt) and consider
the system of equations

(p+ yjt) = λ1 + (w + ljt) + ejt, (9)

(p+ yjt) = λ2 + βl(w + ljt) + ρ(1− βl)(w + ljt−1) + ξjt + ejt, (10)

where λ1 = − lnβl − µ and λ2 = −ρ(lnβl + µ) − (1 − ρ)(βlw − p) combine constants. In a Monte Carlo
study we first estimated equation (9) by OLS to obtain λ1 and then recovered βl from λ1 using the definition
µ = lnE [exp(ejt)]. Finally, taking βl as given, we estimated equation (10) by OLS to obtain λ2 and ρ.
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pjt−1, wjt−1, and pmjt−1 is exogenous with respect to ξjt and therefore useful in estimating

equation (5). We provide further details on our instrumenting strategy in Section 4.2 after

discussing identification in Section 4.1. In Section 4.3 we then turn to the advantages and

disadvantages of our parametric inversion.

4.1 Identification

Our estimation equation (5) is a semiparametric, so-called partially-linear, model with the

additional restriction that the inverse labor demand function hl(·) is of known form. To

see how the known form of hl(·) aids identification, suppose to the contrary that hl(·) is

of unknown form. In this case, the composition of hl(·) and g(·) is another function of

unknown form. The fundamental condition for identification is that the variables in the

parametric part of the model are not perfectly predictable (in the least squares sense) by

the variables in the nonparametric part (Robinson 1988). In other words, there cannot be

a functional relationship between the variables in the parametric and nonparametric parts

(see Newey, Powell & Vella 1999).

The fundamental identification condition is violated if hl(·) is of unknown form because

kjt is perfectly predictable from the variables in the nonparametric part. To see this, re-

call that Kjt = (1 − δ)Kjt−1 + exp(i(sjt−1)) by the law of motion and the policy function

for investment in physical capital. The central question is whether kjt−1 and sjt−1 = (t −
1, kjt−1, ωjt−1, wjt−1, pmjt−1, djt−1) can be inferred from (t−1, kjt−1, ljt−1, pjt−1, wjt−1, pmjt−1, djt−1, rjt−1),

the arguments of the composition of hl(·) and g(·). The answer is affirmative because ωjt−1

is by construction a function of all arguments of hl(·). Hence, there is a collinearity problem

similar to the one that ACF ascertain for the estimator in LP.14

Our approach differs from LP in that it exploits the known form of the inverse labor

demand function hl(·). In this case, the central question becomes whether kjt−1 and sjt−1

can be inferred from hljt−1, the value of hl(·) as opposed to its arguments, and rjt−1. This is

not the case: While hljt−1 is identical to ωjt−1, we cannot infer the remaining state variables

from hljt−1 and rjt−1. In particular, even if rjt−1 = r(sjt−1) happened to be invertible for,

say, kjt−1 we are still short of wjt−1, pmjt−1, and djt−1.
15 Since kjt in the parametric part

is not perfectly predictable from hljt−1 and rjt−1 in the nonparametric part, the model is

identified. Note that this argument rests on either the wage, the price of materials, or the

demand shifter being a state variable in the firm’s dynamic programming problem.

14The answer changes if a cost shifter xjt is added to Ci(·) and Cr(·): while i(·) depends on xjt, xjt cannot
be inferred from the arguments of the composition of hl(·) and g(·).

15In our application we have a substantial fraction of observations with zero R&D expenditures (between
43% and 83% depending on the industry, see column (10) of Table 1) that cannot possibly be inverted for the
stock of capital. More generally, we suspect that R&D projects may often be lumpy and involve substantial
and possibly non-convex adjustment costs that negate invertibility.

12



4.2 Estimation

Define the residual of our estimation equation (5) as a function of the parameters θ to be

estimated as

νjt(θ) = yjt − (β0 + βtt+ βkkjt + βlljt + βmmjt + g(hljt−1, rjt−1)) .

The GMM problem is

min
θ

 1

N

∑
j

A(zj)νj(θ)

′

WN

 1

N

∑
j

A(zj)νj(θ)

 ,
where A(·) is a L×Tj matrix of functions of the exogenous variables zj and νj(·) is a Tj ×1

vector with L being the number of instruments, Tj the number of observations of firm j, and

N the number of firms. We use the two-step GMM estimator of Hansen (1982). We first ob-

tain a consistent estimate θ̂ of θ with weighting matrix WN =
(

1
N

∑
j A(zj)A(zj)

′
)−1

. This

first step is the NL2SLS estimator of Amemiya (1974). In the second step we then compute

the optimal estimate with weighting matrix WN =
(

1
N

∑
j A(zj)νj(θ̂)νj(θ̂)

′
A(zj)

′
)−1

.

Markov process. We allow for a different function when the firm adopts the corner

solution of zero R&D expenditures and when it chooses positive R&D expenditures and

specify g(hljt−1, rjt−1) as

1(Rjt−1 = 0) (g00 + g01(hljt−1 − λl)) + 1(Rjt−1 > 0) (g10 + g11(hljt−1 − λl, rjt−1)) . (11)

Since the constants g00 and g10 cannot be separately estimated from the constant β0 in

equation (5), we estimate the combined constant λ0 = β0 + g00 and include the dummy for

performers 1(Rjt−1 > 0) to measure g10 − g00.

Series approximation. We model an unknown function q(·) of one variable u by a

univariate polynomial of degree three. We model an unknown function q(·) of two variables

u and v by a complete set of polynomials of degree three. We specify the absolute value

of the elasticity of demand as 1 + exp(q(pjt−1, djt−1)) in order to impose the theoretical

restriction η(pjt−1, djt−1) > 1.

Secular trend. We model the trend t by a linear time trend in industries 2, 3, 6, 8, and

10 and by dummies in industries 1 and 7.

Parameters. Our baseline specification with time trend has 27 parameters: constant,

time trend, three production function coefficients, thirteen coefficients in the series approx-

imation of g(·) and nine coefficients in the series approximation of η(·).
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Instruments. The literature on optimal instruments shows that setting

A(zj) = E

[
∂νj(θ0)

′

∂θ

∣∣∣∣ zj] , (12)

where θ0 is the true value of θ, minimizes the variance of the GMM estimator (Amemiya

1974, Newey 1990, Newey 1993). For general nonlinear models the conditional expecta-

tion in equation (12) is difficult or perhaps even impossible to compute. Substituting a

nonparametric estimate of it into the GMM problem is feasible but cumbersome.16

Fortunately, however, our model affords a more direct approach because our estima-

tion equation (5) is linear in the endogenous variables and the reduced-form equations are

available in closed form. Returning for simplicity to the example in equations (6)–(8), the

conditional expectation of the derivative of νjt(θ) with respect to βl, say, is

− 1

1− βl
(−λl + g(λl + (1− βl)ljt−1 + (wjt−1 − pjt−1))− (wjt − pjt))

+ljt−1
∂g(λl + (1− βl)ljt−1 + (wjt−1 − pjt−1))

∂ωjt−1
.

Because we approximate the conditional expectation function g(·) by a univariate polyno-

mial, this expression is a linear combination of the constant, (wjt − pjt), and the complete

set of polynomials in ljt−1 and (wjt−1 − pjt−1). Using the constant, (wjt − pjt), and the

complete set of polynomials in ljt−1 and (wjt−1 − pjt−1) as instruments therefore achieves

the same variance as using optimal instruments (Arellano 2003, p. 206).

In our empirical application we similarly use polynomials in the exogenous variables as

instruments. This strategy is widely employed in the literature, e.g., in Wooldridge’s (2009)

GMM version of the two-stage procedures of OP, LP, and ACF and in the sieve estimation

procedure of Ai & Chen (2003, 2007); see also the discussion on p. 862 of Berry, Levinsohn

& Pakes (1995). The exogenous variables we rely on are the constant, t, kjt, kjt−1, ljt−1,

mjt−1, pjt−1, wjt−1, pmjt−1, djt−1, rjt−1, and 1(Rjt−1 > 0) = 1 − 1(Rjt−1 = 0). We omit

pjt because we consider an imperfectly competitive setting and djt because it is highly

correlated with djt−1. Finally, we omit wjt and pmjt to guard against potential endogeneity

concerns.

In light of equation (11) spanning the optimal instruments requires a complete set of

polynomials in the arguments of hl(·) interacted with 1(Rjt−1 = 0) and a complete set of

polynomials in the arguments of hl(·) and rjt−1 interacted with 1(Rjt−1 > 0). To arrive at

a number of overidentifying restrictions that is reasonable for the data at hand, we select

after experimentation the most important terms for predicting the derivative in equation

(12).

16Equation (12) presumes Ω(zj) = E [νj(θ0)νj(θ0)
′| zj ] = σ2ITj . Instead of nonparametrically estimating

Ω(zj) along with A(zj) we use the two-step GMM estimator of Hansen (1982) to account for heteroskedas-
ticity and autocorrelation of unknown form.
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For industries 4, 9, and 10 we use a basic set of 69 instruments: The constant, t, kjt,

mjt−1, 1(Rjt−1 > 0) (5 instruments); a complete set of polynomials in pjt−1 and djt−1 (9

instruments); a complete set of polynomials in kjt−1, ljt−1, wjt−1−pjt−1, and pmjt−1−pjt−1

(34 instruments); a univariate polynomial in rjt−1 (3 instruments); and all interactions of

degree less than three of rjt−1 with kjt−1, ljt−1, wjt−1 − pjt−1, pmjt−1 − pjt−1, pjt−1, and

djt−1 (18 instruments).

In the remaining industries, where we tend to have more data, we use additional in-

struments: In industries 2, 3, and 6 we add the interactions of 1(Rjt−1 > 0) with kjt−1,

ljt−1, mjt−1, wjt−1 − pjt−1, and pmjt−1 − pjt−1 (5 instruments); in industry 7 we add the

interactions of t−1 with kjt−1, ljt−1, wjt−1−pjt−1, and pmjt−1−pjt−1 (4 instruments); and

in industries 1 and 8 we do both.

Productivity estimates. Once the model is estimated, we can recover actual produc-

tivity hljt and expected productivity g(·) up to a constant. We estimate the productivity

innovation ξjt up to a constant as the difference between hljt and g(·). We can also estimate

the random shocks ejt. In the remainder of this paper we let ĥljt, ĝ(·), ξ̂jt, and êjt denote
these estimates.

4.3 Parametric vs. nonparametric inversion

OP, LP, and ACF use nonparametric methods to recover unobserved productivity. We differ

from the previous literature by recognizing that the parametric specification of the produc-

tion function in combination with the assumption that labor and materials are static inputs

implies a known form for the inverse labor demand function hl(·). We can thus parametri-

cally recover unobserved productivity and control for it in estimating the parameters of the

production function in equation (1) and the law of motion for productivity in equation (2).

A seeming drawback of our parametric approach is that it requires firm-level wage

and price data. However, the same is true for a nonparametric approach: The demand

for labor is a function of the wage and prices whether one inverts it parametrically or

nonparametrically (see the discussion on p. 323 of LP); by spelling out the demand for

labor in equation (3) our parametric approach just makes the role of the wage and prices

explicit.

In the absence of firm-level wage and price data, one may be able to replace the wage

and prices in the firm’s short-run profit maximization problem by dummies (as in LP

and ACF) or aggregate wage and price indices. This may be justified if firms can be

assumed to operate in identical environments because inputs and output are homogenous

or symmetrically differentiated. One may then also have to confront an issue raised by

Bond & Söderbom (2005). They argue that, absent any variation in the wage and prices,

it may be hard to estimate the coefficients on static inputs in a Cobb-Douglas production

function.
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Making full use of the structural assumptions by parametrically recovering unobserved

productivity aids identification (Section 4.1). Moreover, we have but a single equation to

estimate, and only the conditional expectation function g(·) is unknown and must be es-

timated nonparametrically (Section 4.2). This yields a particularly simple estimator for

production functions. In contrast, the previous literature either relies on a two-stage proce-

dure (OP, LP, and ACF) or jointly estimates a system of equations (Wooldridge 2009). The

fact that only the conditional expectation function g(·) is unknown and must be estimated

nonparametrically means that our estimator can be applied even when the available data

is insufficient to nonparametrically estimate an inverse labor demand function hl(·) with

more than just a few arguments.

Our parametric approach rests on the assumption that the demands for static inputs

are the solution to the firm’s short-run profit maximization problem. This assumption may

or may not be valid in a given application. However, as detailed in ACF, the nonparamet-

ric approach also relies on specific assumptions that may or may not be valid in a given

application.

The advantage of the nonparametric approach is that it can accommodate situations

where the assumption of short-run profit maximization is violated. There are at least two

difficulties, however: First, if input choices have dynamic implications say because of adjust-

ment costs, then lagged input choices are typically state variables that must be accounted

for in nonparametrically recovering unobserved productivity. Second, to the extent that

the nonparametric approach relies on inverting decisions that have dynamic implications

(as in OP and parts of ACF), it requires the researcher to first prove invertibility from the

firm’s dynamic programming problem, and the discussion of Buettner (2005) in Section 2

suggests that this can be difficult especially if the productivity process is endogenized. We

thus view our parametric approach as complementing the existing literature for situations

where one can be reasonably confident in the assumption of short-run profit-maximization.

5 Production function estimates and comparison to knowl-

edge capital model

We first present our estimates of the production function and the Markov process that

governs the evolution of productivity. We next show that the link between R&D and pro-

ductivity is subject to a high degree of nonlinearity and uncertainty. Then we provide a

more detailed comparison of our model of endogenous productivity change and the knowl-

edge capital model.

5.1 Production function estimates

Table 2 summarizes different production function estimates. Columns (1)–(3) report OLS

estimates for the coefficients of the Cobb-Douglas production function in equation (1). The
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coefficients are reasonable and returns to scale, as given by βk + βl + βm, are close to

constant.

Columns (4)–(6) of Table 2 report GMM estimates for our leading specification in equa-

tion (5). Compared to the OLS estimates, the changes go in the direction expected from

theory and match the results in OP and LP. The labor coefficients decrease considerably

in eight industries while the capital coefficients increase somewhat in six industries. The

materials coefficients show no particular pattern.

To assess the validity of our estimates we subject them to a battery of specification

tests.17

Overidentifying restrictions. We first test for overidentifying restrictions or validity of

the moment conditions.18 At a 5% level the validity of the moment conditions cannot be

rejected in any industry, see columns (7) and (8) of Table 2.

The lagged wage and the lagged price of materials play a key role in the estimation.

To more explicitly validate them as instruments we compute the difference in the value of

the objective function for our leading specification to its value when the subset of moments

involving either the lagged wage or the lagged price of materials are excluded.19 The

exogeneity assumption on the lagged wage is rejected in industry 8 at a 5% level while that

on the lagged price of materials cannot be rejected in any industry.20

We similarly assess the validity of lagged labor, lagged materials, and current and lagged

capital as instruments. While the exogeneity assumption on lagged labor cannot be rejected

in any industry at a 5% level, that on lagged materials is rejected in industry 8. Finally, the

exogeneity assumption on current and lagged capital is rejected at a 5% level in industries

2 and 10. Viewing all these tests in conjunction, however, we feel that there is little ground

for concern regarding the validity of the moment conditions that we are using.

17We follow LP and ACF and do not account for sample selection by modeling a firm’s exit decision because
the institutional realities in Spain render it unlikely that a firm is able to exit the industry immediately after
receiving an adverse shock to productivity (see, e.g., Djankov, La Porta, Lopez-de Silanes & Shleifer 2002).
Moreover, innovative activities often imply large sunk cost that make a firm more reluctant to exit the
industry or at least to exit it immediately, thus further mitigating the potential for sample selection.

18The value of the GMM objective function for the optimal estimator, scaled by N , has a limiting χ2

distribution with L − P degrees of freedom, where L is the number of instruments and P the number of
parameters to be estimated.

19To use the same weighting matrix for both specifications, we delete the rows and columns corresponding
to the excluded moments from the weighting matrix of the optimal estimator.

20As a further check we have replaced the lagged firm-specific wage as an instrument by the lagged average
earnings per hour of work in the manufacturing sector from the Encuesta de Salarios, an employee survey
conducted by the Instituto Nacional de Estadistica. Compared to columns (4)–(6) of Table 2, the standard
errors tend to increase as expected from an instrument that does not vary across firms. The most visible
changes are in the labor coefficient, which increases in industries 1, 3, 9, and 10 and decreases in industries
4, 6, and 8. The capital coefficient decreases in industries 3 and 9 and increases in industries 4, 6, 7, and 8.
The materials coefficient remains essentially the same in all industries. The absence of systematic changes
confirms that the variation in wjt−1 is exogenous with respect to ξjt and therefore useful in estimating
equation (5).
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Imperfect competition. We test for perfect competition in the product market with

η(·) = ∞ by removing the function in the price of output pjt and the demand shifter djt

from hl(·) in equation (4).21 The data reject perfect competition at a 5% level in seven

industries and in all industries at a 10% level. Our estimates of the average elasticity of

demand are around 2.

Parameter restrictions. The coefficients βk, βl, and βm appear both in the production

function in equation (1) and in the inverse labor demand function in equation (4). We test

the implied restrictions on the parameters of our estimation equation (5). As columns (9)

and (10) of Table 2 show, we reject at a 5% level that the coefficients in the production

function equal their counterparts in the inverse labor demand function in industries 1 and

7.

There are many possible reasons. First, the functional form of the production function

in equation (1) may be inappropriate. Second, the functional form of the inverse labor

demand function in equation (4) may be inappropriate if the labor decision has dynamic

consequences. Third, imperfectly observable wages and prices may drive a wedge between

the coefficients in the production function and their counterparts in the inverse labor de-

mand function (see Appendix B for details). In our view, measurement error is a plausible

explanation for rejecting the parameter restrictions, especially because the existing litera-

ture has emphasized the importance of measurement error in practice (see, e.g., p. 326 of

LP). Moreover, if we recover productivity from materials instead of labor, then we reject

at a 5% level that the coefficients in the production function equal their counterparts in

the inverse materials demand function in four industries (see below). This may reflect that

materials are more prone to measurement error than labor due to inventories, outsourcing,

and the sheer amount of heterogeneity in materials.

The parameter restrictions test is just one of many specification tests that we conduct.

While in industries 1 and 7 there is a statistical tension between βk, βl, and βm in the

production function and in the inverse labor demand function, there is evidence that the

scope of the problem is limited. First, if in industries 1 and 7 we test one coefficient at a

time, then we reject at a 5% level that that coefficient in the production function equals

its counterpart in the inverse labor demand function in one of six cases. This suggests that

the gap for any individual coefficient tends to be small. Second, we no longer reject the

parameter restrictions in industries 1 and 7 at a 5% level if we simply use more instruments.

This suggests that the instruments we select for our leading specification do not fully account

for all the nonlinearities in the estimation equation (5) so that a pattern remains in the

residuals. Third, our conclusions regarding the link between productivity and R&D remain

21We test whether the model satisfies one or more restrictions by using the weighting matrix for the
optimal estimator to compute the restricted estimator. The difference of the GMM objective functions,
scaled by N , has a limiting χ2 distribution with degrees of freedom equal to the number of restrictions.
Similarly, we test whether one or more restrictions can be relaxed by using the weighting matrix for the
optimal estimator to compute the unrestricted estimator.
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unchanged if we drop the parameter restrictions to consistently estimate the parameters of

the production function and recover productivity in case wages and prices are imperfectly

observable (see again Appendix B).

Alternative inversion. Our model allows us to alternatively use labor or materials to

recover productivity. We present production function estimates and specification tests when

we use the inverse materials demand function hm(·) instead of the inverse labor demand

function hl(·) in Appendix C. To compare the overall goodness of fit we apply the Rivers &

Vuong (2002) test for model selection among nonnested models.22 At a 5% level the data

do not favor one inversion over another in seven industries. In the remaining two industries

labor is favored over materials.

The estimates using materials have problems. We reject the validity of the moment

conditions in four industries at a 5% level. We further reject the parameter restrictions in

four industries. Finally, the capital coefficient in industry 9 and the materials coefficient in

industry 8 are implausibly small.

Following LP we test whether the capital coefficient is the same when we use materials

instead of labor to recover productivity. We cannot reject the equality of the capital coeffi-

cient in five industries at a 5% level. Moreover, in three of the four industries where we do

reject, the estimates using materials are especially problematic. To the extent that different

inversions perform differently there is a gap between the model and the data generating

process. While our findings are consistent with materials being more prone to measurement

error than labor, pinpointing the exact source of this gap is difficult.23

Comparing the labor and materials coefficients further reveals an interesting pattern

that the literature following OP may have overlooked. The labor coefficient tends to be

higher and the materials coefficient lower when we use materials instead of labor to recover

productivity. What appears to be reasonably well estimated is the sum of the labor and

materials coefficients: We cannot reject the equality of the sum in five industries at a 5%

22Consider models 1 and 2 and define ν̂nj = νj(θ̂n) and Anj = An(zj), where θ̂n are the estimates for
model n, An(·) is a matrix of functions of the exogenous variables zj , and WnN is the first-step weighting
matrix. Then the difference between the GMM objective functions, scaled by

√
N , has an asymptotic normal

distribution with zero mean and variance

σ2 = 4

[(
1

N

∑
j

A1j ν̂1j

)′

W1N

(
1

N

∑
j

A1j ν̂1j ν̂
′
1jA

′
1j

)
W1N

(
1

N

∑
j

A1j ν̂1j

)

+

(
1

N

∑
j

A2j ν̂2j

)′

W2N

(
1

N

∑
j

A2j ν̂2j ν̂
′
2jA

′
2j

)
W2N

(
1

N

∑
j

A2j ν̂2j

)

−2

(
1

N

∑
j

A1j ν̂1j

)′

W1N

(
1

N

∑
j

A1j ν̂1j ν̂
′
2jA

′
2j

)
W2N

(
1

N

∑
j

A2j ν̂2j

)]
.

23The literature following OP assumes that unobserved productivity can be recovered from observed
decisions without error. It may be possible to relax this assumption by combining different inversions while
allowing each of them to be subject to error. We leave this as a topic for future research.
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level. This hints at collinearity. Its likely origin are the powers of the lagged input (ljt−1

or mjt−1) that appear in the nonparametric part (g(hljt−1, rjt−1) or g(hmjt−1, rjt−1)) of the

estimation equation. It may be difficult to separate the impact of the lagged input on the

nonparametric part from its impact on the production function.

5.2 Nonlinearity and uncertainty

A key contribution of this paper is to endogenize the productivity process. We assess

the role of R&D by comparing the controlled Markov process in equation (2) with an

exogenous Markov process (as in OP, LP, and ACF). To this end, we test whether R&D

can be excluded from the conditional expectation function g(·) so that g00 = g10 and

g01(hljt−1 − λl) = g11(hljt−1 − λl, rjt−1) in equation (11). As columns (1) and (2) of Table

3 show, in all industries the exogenous Markov process is clearly rejected.

We next ask if the evolution of productivity depends on the amount of R&D expenditures

in addition to whether or not a firm engages in R&D. The data reject the restriction

g11(hljt−1 − λl, rjt−1) = g11(hljt−1 − λl) in all industries at a 5% level.

Finally we ask if further lags of R&D expenditures matter. The impact of rjt−1 on

ωjt in equation (2) may be moderated by rjt−2. Or it may be that R&D expenditures

take more than one period to come to fruition, although the available evidence points to

rather short gestation periods (see pp. 82–84 of Pakes & Schankerman (1984) and the

references therein). For the four industries with the largest number of observations we

replace g11(hljt−1 − λl, rjt−1) in equation (11) by g11(hljt−1 − λl, rjt−1, rjt−2), where we set

rjt−2 = 0 if Rjt−2 = 0. We reject our leading specification at a 5% level in industry 3 but not

in industries 1, 7, and 8. In industry 3 (chemical products) may be especially cumulative in

that many research projects continue—and directly build on—previous ones. This may also

create an incentive for firms “to keep R&D going,” and indeed industry 3 has the largest

share of stable performers (see again column (11) of Table 1). Overall, however, we feel that

our leading specification is a reasonable first pass at endogenizing the productivity process.

Nonlinearity. As a first step in exploring the link between R&D and productivity, we

test whether the conditional expectation function g(·) is separable in already attained pro-

ductivity ωjt−1 and R&D expenditures rjt−1 so that g11(hljt−1 − λl, rjt−1) = g111(hjt−1 −
λl) + g112(rjt−1) in equation (11). Columns (3) and (4) of Table 3 indicate that this re-

striction is rejected in eight industries at a 5% level and in all industries at a 10% level.

Hence, the R&D process can hardly be considered separable. From the economic point of

view this stresses that the impact of current R&D on future productivity depends crucially

on current productivity, and that current and past investments in knowledge interact in a

complex fashion.

To illustrate the nature of these interactions, we compute the percentage of observations

where
∂2g(ωjt−1,rjt−1)
∂ωjt−1∂Rjt−1

= 1
Rjt−1

∂2g(ωjt−1,rjt−1)
∂ωjt−1∂rjt−1

is significantly positive (negative) at a 5% level
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so that productivity and (the level of) R&D expenditures are, at least locally, complements

(substitutes) in the accumulation of productivity. While in industry 8 productivity and

R&D expenditures are substitutes for a substantial fraction of observations, there is evidence

of complementarities in industries 1, 2, 3, 4, 6, 9, and 10. Current productivity thus tends

to reinforce the impact of current R&D on future productivity.

Uncertainty. Turning from nonlinearity to uncertainty, column (5) of Table 3 tells us the

ratio of the variance of the random shock ejt to the variance of unobserved productivity ωjt.

Despite differences among industries, the variances are quite similar in magnitude. This

suggests that unobserved productivity is at least as important in explaining the data as the

host of other factors that are embedded in the random shock.

Column (6) of Table 3 gives the ratio of the variance of the productivity innovation ξjt to

the variance of actual productivity ωjt. The ratio shows that the unpredictable component

accounts for a large part of productivity, between 25% and 75%. Interestingly enough, a

high degree of uncertainty in the R&D process seems to be characteristic for both some of

the most and some of the least R&D intensive industries. We come back to the economic

significance of the uncertainties inherent in the R&D process in Section 6.4.

5.3 Comparison to knowledge capital model

The knowledge capital model of Griliches (1979) has remained a cornerstone of the produc-

tivity literature. It augments a standard production function with a measure of the current

state of technical knowledge yielding

yjt = β0 + βtt+ βkkjt + βlljt + βmmjt + εcjt + ejt, (13)

where cjt is the stock of knowledge capital of firm j in period t and ε is the elasticity of

output with respect to this stock.

While the knowledge capital model has been used in hundreds of studies on firm-level

productivity, the underlying empirical strategy has changed little over the years (see the

surveys by Mairesse & Sassenou (1991), Griliches (1995, 2000), and Hall et al. (2010)).

Almost all studies use a simple perpetual inventory or declining balance methodology to

construct the stock of knowledge capital from the firm’s observed R&D expenditures as

Cjt = (1− δ)Cjt−1 +Rjt−1, where δ is a single constant rate of depreciation. This assumes

linear and certain accumulation of knowledge from period to period in proportion to R&D

expenditures as well as linear and certain depreciation.

From a practical point of view, there are at least two problems. First, estimating the rate

of depreciation δ using distributed lag models is notoriously difficult, even in case of physical

capital (Pakes & Schankerman 1984, Pakes & Griliches 1984, Nadiri & Prucha 1996). Our

own attempts at estimating δ together with the parameters in equation (13) have largely
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failed. Second, the available history of R&D expenditures is often not very long and there

rarely is information on the initial stock of knowledge capital. Following Hall & Mairesse

(1995) we therefore assume a rate of depreciation of 0.15 (see also p. 16 of Hall et al. 2010)

and estimate the initial condition from the date of birth of the firm by extrapolating its

average R&D expenditures during the time that it is observed.

We test this basic—albeit most widely used—form of the knowledge capital model

against our dynamic investment model.24 The nonnested test very clearly rejects the knowl-

edge capital model in its basic form, see columns (7) and (8) of Table 3.

Replacing εcjt by ωjt in equation (13) shows that the basic knowledge capital model can

be understood as a special case of our model in which the stochastic process that governs

productivity has degenerated to a deterministic process with a particular functional form

for g(·). Given that we have already shown that nonlinearity and uncertainty play a large

role in the link between R&D and productivity, it is therefore not surprising that the data

favor our model.

There are few attempts to relax the linearity and certainty assumptions of the basic

knowledge capital model. Griliches (1979) allows for a random shock to the constructed

stock of knowledge capital. Being entirely transitory, however, this shock is absorbed by the

error term of the production function and hence does not capture the uncertainties inherent

in the R&D process (p. 100).

Klette (1996) and Hall & Hayashi (1989) allow for complementarities in the accumulation

of knowledge. To prevent the stock of knowledge capital from vanishing if a firm does not

engage in R&D in a single year, we start with a law of motion of the form Cjt = Cσ
jt−1(1 +

Rjt−1)
1−σ. Borrowing from Hall & Hayashi (1989) we further allow for uncertainties by

specifying Cjt = Cσ
jt−1(1 + Rjt−1)

1−σe
1
ε
ξjt . Note that it is no longer possible to construct

the stock of knowledge capital from the firm’s observed R&D expenditures, contrary to the

standard approach in the knowledge capital literature.

To make this model estimable, we recast it within our setting. Taking logs and letting

ωjt = εcjt, the law of motion can be written as

ωjt = σωjt−1 + ε(1− σ) ln(1 + exp(rjt−1)) + ξjt

and hence ωjt = g(ωjt−1, rjt−1) + ξjt, a special case of our controlled first-order Markov

process with a particular functional form for g(·). An advantage of our setting is that we

do not have to estimate the initial stock of knowledge capital; instead we infer a firm’s

unobserved productivity from its observed decisions. The nonnested test rejects this first

generalization of the knowledge capital model in seven industries at a 5% level and in all

industries at a 10% level, see columns (9) and (10) of Table 3.25

24For firms without a positive stock of knowledge capital we drop the term εcjt from equation (13) and
specify a different constant.

25We obtain very similar results if we start with a law of motion of the form Cjt = (1− δ)Cjt−1 +Rjt−1 +
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Our second generalization builds on Griliches &Mairesse (1998) and combines the knowl-

edge capital model with the literature following OP (see pp. 190–194 and also pp. 276–278

of Griliches (1998) and pp. 57–58 of Griliches (2000)). It endogenizes productivity by mod-

eling it as ϵcjt+ωjt, where Cjt = (1−δ)Cjt−1+Rjt−1 is constructed from the firm’s observed

R&D expenditures (as in the knowledge capital literature) and ωjt follows an exogenous

Markov process (as in OP, LP, and ACF). Hence, equation (13) becomes

yjt = β0 + βtt+ βkkjt + βlljt + βmmjt + εcjt + ωjt + ejt.

This model has two Markov processes, one for the deterministic component of productivity

(ϵcjt) and one for the stochastic component (ωjt). Because the sum of two Markov processes

is not necessarily a Markov process, it is not nested in our dynamic investment model with

just one Markov process. In this sense our model is more parsimonious. The nonnested

test nevertheless rejects this second generalization of the knowledge capital model in two

industries at a 5% level and in six industries at a 10% level, see column (11) and (12) of

Table 3.

In sum, our dynamic investment model can be viewed either as a generalization of

the basic knowledge capital model or as a practical alternative to generalizations of the

knowledge capital model. The unspecified form of the law of motion and the random

nature of accumulation are important advantages of our setting. Moreover, by treating

productivity as unobserved, we circumvent the initial condition problem in the knowledge

capital model.

6 R&D and productivity

To assess the role of R&D in determining the differences in productivity across firms and the

evolution of firm-level productivity over time, we examine five aspects of the link between

R&D and productivity in more detail: productivity levels and growth, the return to R&D,

the persistence in productivity, and the rate of return.

6.1 Productivity levels

To describe differences in expected productivity g(ωjt−1, rjt−1) between firms that perform

R&D and firms that do not, we employ kernels to estimate the distribution functions for

the subsamples of observations with and without R&D. To be able to interpret these and

other descriptive measures in the remainder of the paper as representative aggregates, we

replicate the subsample of small firms 70
5 = 14 times before pooling it with the subsample

1
ε
Cjt−1ξjt = Cjt−1

(
1− δ +

Rjt−1

Cjt−1
+ 1

ε
ξjt

)
so that the effect of the rate of investment in knowledge

Rjt−1

Cjt−1

has an unpredictable component 1
ε
ξjt. Taking logs and letting ωjt = εcjt, this law of motion can be written

as ωjt ≃ ωjt−1 + ε
(

exp(rjt−1)

exp(ωjt−1/ε)
− δ
)
+ ξjt.
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of large firms.26 Figure 1 shows the distribution functions for performers (solid line) and

nonperformers (dashed line) for each industry. In most industries the distribution function

for performers is to the right of the distribution function for nonperformers. This strongly

suggests stochastic dominance. In contrast, the distribution functions cross in industries 2

and 4 that exhibit medium and high innovative activity as well as in industries 9 and 10

that exhibit low innovative activity.

Mean. Before more formally comparing the distributions themselves, we compute the

difference in means as

g0 − g1 =
1

NT0

∑
j

∑
t
1(Rjt−1 = 0)ĝ01(ĥljt−1)

− 1

NT1

∑
j

∑
t
1(Rjt−1 > 0)[( ̂g10 − g00) + ĝ11(ĥljt−1, rt−1)],

where NT0 and NT1 are the size of the subsamples of observations without and with R&D,

respectively. Then the test statistic

t =
g0 − g1√

V ar
(
ĝ01(ĥljt−1)

)
/(NT0 − 1) + V ar

(
ĝ11(ĥljt−1, rjt−1)

)
/(NT1 − 1)

follows a t distribution with min(NT0, NT1) − 1 degrees of freedom. To account for the

survey design we conduct separate tests for the subsamples of small and large firms.

Column (1) of Table 4 reports the difference in means g1 − g0 (rather than g0 − g1 to

aid intuition). The difference in means is positive for firms of all sizes in all industries that

exhibit medium or high innovative activity, with the striking exception of industry 4.27 The

differences are sizable, typically between 3% and 5%. They are often larger for the smaller

firms. In the two industries that exhibit low innovative activity, however, the difference in

means is negative for small firms. Nevertheless, as can be seen from columns (2) and (3), at

a 5% level the test rejects the hypothesis that the mean of expected productivity is higher

for performers than nonperformers solely in industry 4.

Distribution. To compare the distribution themselves, we apply a Kolmogorov-Smirnov

test (see Barrett & Donald (2003) and Delgado, Fariñas & Ruano (2002) for similar ap-

plications). Since this test requires that the observations in each sample are independent,

we consider as the variable of interest the average of expected productivity for each firm.

For occasional performers we average only over the years with R&D (and discard the years

26Because replicating the subsample of small firms distorts variances in the pooled sample, we have been
careful to use replication only if we compute averages. Whenever we compute variances we do so either
separately for small and large firms or we pool small and large firms but without first replicating the small
firms.

27A possible explanation for the abnormal result in industry 4 is the considerable heterogeneity in activities
across the firms within an industry that arises due the level of aggregation we use.

24



without R&D).

Let GN1(·) and FN0(·) be the empirical distribution functions of performers and nonper-

formers, respectively, with N1 and N0 being the number of performers and nonperformers.

We apply a two-sided test of the hypothesis GN1(g) − FN0(g) = 0 for all g, i.e., the distri-

butions GN1(·) and FN0(·) of expected productivity are equal, and a one-sided test of the

hypothesis GN1(g)−FN0(g) ≤ 0 for all g, i.e., the distribution GN1(·) of expected productiv-

ity of performers stochastically dominates the distribution FN0(·) of expected productivity

of nonperformers. The test statistics are

S1 =

√
N0N1

N0 +N1
max

g
{|GN1(g)− FN0(g)|} , S2 =

√
N0N1

N0 +N1
max

g
{GN1(g)− FN0(g)} ,

respectively, and the probability values can be computed using the limiting distributions

P (S1 > c) = −2
∑∞

k=1(−1)k exp(−2k2c2) and P (S2 > c) = exp(−2c2).

Because the tests tend to be inconclusive when the number of firms is small, we limit

them to cases in which we have at least 20 performers and 20 nonperformers. As can be

seen from columns (4)–(7) of Table 4 we reject equality of the distributions for performers

and nonperformers in five of ten cases at a 5% level. We cannot reject stochastic dominance

anywhere at a 5% level.28,29

Omitting R&D expenditures. To illustrate the consequences of omitting R&D expen-

ditures from the Markov process of unobserved productivity, we have added the so-obtained

distribution functions to Figure 1 (dotted line). Comparing them to the distribution func-

tions for the controlled Markov process in our leading specification reveals that the exoge-

nous process amounts to averaging over firms with distinct innovative activities and hence

blurs important differences in the impact of the investment in knowledge on the productivity

of firms.

Redoing the above tests for the exogenous Markov process yields striking results: We

no longer reject equality of the distributions of expected productivity of performers and

nonperformers in three of the five cases where we rejected for a controlled Markov process.

Figure 2 shows at the example of industry 6 that the distribution functions for performers

(solid line) and nonperformers (dashed line) are virtually indistinguishable if an exogenous

Markov process is assumed. This once more makes apparent that omitting R&D expen-

ditures substantially distorts the retrieved productivities and cautions against the popular

28Treating occasional performers as nonperformers by averaging only over the years without R&D (and
discarding the years with R&D), we reject equality of the distributions in three cases at a 5% level and in
five cases at a 10% level. We cannot reject stochastic dominance anywhere at a 5% level.

29Linton, Maasoumi & Whang (2005) relax the independence assumption in Barrett & Donald (2003) and
their test for stochastic dominance can be applied directly to the expected productivity of each firm in each
period (rather than an average thereof). The test statistic is the same as in Barrett & Donald (2003), but
the critical value has to be computed by a subsampling method. Applying this alternative test to the 12
cases in which we have at least 80 observations with R&D and 80 observations without R&D, we cannot
reject stochastic dominance anywhere at a 5% level.
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approach of first estimating productivity from a model with an exogenous Markov process

and then regressing estimated productivity on its determinants such as R&D expenditures

or export market participation.

6.2 Return to R&D and persistence in productivity

How hard must a firm work to maintain and advance its productivity? Since a change

in the conditional expectation function g(·) can be interpreted as the expected percentage

change in total factor productivity,
∂g(ωjt−1,rjt−1)

∂rjt−1
is the elasticity of output with respect

to R&D expenditures or a measure of the return to R&D.30 Similarly,
∂g(ωjt−1,rjt−1)

∂ωjt−1
is the

elasticity of output with respect to already attained productivity.
∂g(ωjt−1,rjt−1)

∂ωjt−1
is the degree

of persistence in the productivity process or a measure of inertia. It tells us the fraction of

past productivity that is carried forward into current productivity. Note that the elasticities

of output with respect to R&D expenditures and already attained productivity vary from

firm to firm with already attained productivity and R&D expenditures. Our model thus

allows us to recover the distribution of these elasticities and to describe the heterogeneity

across firms.

Return to R&D. Columns (1)–(4) of Table 5 present the quartiles of the distribution of

the elasticity with respect to R&D expenditures along with a weighted average computed

as 1
T

∑
t

∑
j µjt

∂ĝ(ĥljt−1,rjt−1)
∂rjt−1

, where the weights µjt = Yjt/
∑

j Yjt are given by the share

of output of a firm. There is a considerable amount of variation across industries and the

firms within an industry. The returns to R&D at the first, second, and third quartile range

between −0.036 and 0.009, −0.012 and 0.022, and 0.000 and 0.051, respectively. Their

average is close to 0.015, varying from −0.006 to 0.046 across industries.

Negative returns to R&D are legitimate and meaningful in our setting, although some

of them may be an artifact of the nonparametric estimation of g(·) at the boundaries of the
support. A negative return at the margin is consistent with an overall positive impact of

R&D expenditures on output. A firm may invest in R&D to the point of driving returns

below zero for a number of reasons including indivisibilities and strategic considerations such

as a loss of an early-mover advantage. This type of effect is excluded by the functional form

restrictions of the knowledge capital model, in particular the assumption that the stock

of knowledge capital depreciates at a constant rate. More generally, it is plausible that

investments in knowledge take place in response to existing knowledge becoming obsolete

or vice versa that investments render existing knowledge obsolete. Our model captures this

interplay between adding “new” knowledge and keeping “old” knowledge.

30If we consider a ceteris paribus increase in R&D expenditures that changes ωjt to ω̃jt, then ω̃jt − ωjt

approximates the effect of this change in productivity on output in percentage terms, i.e., (Ỹjt − Yjt)/Yjt =
exp(ω̃jt − ωjt) − 1 ≃ ω̃jt − ωjt. That is, the change in ωjt shifts the production function and hence
measures the change in total factor productivity. Also g(·) and ξjt can be interpreted in percentage terms
and decompose the change in total factor productivity.
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Degree of persistence. The degree of persistence can be computed separately for per-

formers using the conditional expectation function g1(·) that depends both on already at-

tained productivity and R&D expenditures and for nonperformers using g0(·) that depends
solely on already attained productivity. Columns (5)–(10) of Table 5 summarize the distri-

butions for performers and nonperformers.

Again there is a considerable amount of variation across industries and the firms within

an industry. Nevertheless, nonperformers tend to enjoy a higher degree of persistence than

performers in industries 1, 2, 3, 4, 7, and 8. An intuitive explanation for this finding is that

nonperformers learn from performers, but by the time this happens the transferred knowl-

edge is already entrenched in the industry and therefore more persistent. Put differently,

common practice may be “stickier” than best practice.

The degree of persistence for performers is negatively related to the degree of uncertainty

in the productivity process as measured by the ratio of the variance of the productivity inno-

vation ξjt to the variance of actual productivity ωjt. That is, productivity is less persistent

in an industry where a large part of its variance is due to random shocks that represent the

uncertainties inherent in the R&D process. Figure 3 illustrates this relationship between

persistence and uncertainty at the level of the industry.

Comparison to knowledge capital model. To facilitate the comparison with the ex-

isting literature, we have estimated the knowledge capital model as given in equation (13).31

Column (11) of Table 5 presents the estimate of the elasticity of output with respect to the

stock of knowledge capital from the knowledge capital model. In addition to the gross-

output version in equation (13) we have also estimated a value-added version of the knowl-

edge capital model (column (13)). In contrast to our model, the knowledge capital model

yields one number—an average elasticity—per industry. The elasticity of output with re-

spect to the stock of knowledge capital tends to be small and rarely significant in the

gross-output version but becomes larger in the value-added version.32

To convert the elasticity with respect to the stock of knowledge capital into an elasticity

with respect to R&D expenditures that is comparable to our model, we multiply the former

by Rjt−1/Cjt. Columns (12) and (14) of Table 5 show a weighted average of the so-obtained

elasticities, where the weights µjt = Yjt/
∑

j Yjt are given by the share of output of a firm.

The elasticities with respect to R&D expenditures from our model are higher than the

highest elasticities from the knowledge capital model in five industries and lower but very

close in two more industries. In addition, the elasticities obtained with our model have a

non-normal, fairly spread out distribution. This sharply contrasts with the fact that the

dispersion of elasticities in the knowledge capital model is purely driven by the distribution

of the ratio Rjt−1/Cjt (since, recall, the knowledge capital model yields just an average of

31To improve the estimates we impose the widely accepted constraint of constant returns to scale in the
conventional inputs.

32Beneito (2001) and Ornaghi (2006) estimate comparable elasticities ranging from 0.04 to 0.10.
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the elasticity with respect to the stock of knowledge capital).

Turning to persistence in productivity, note that the degree of persistence is 1− 0.15 =

0.85 by assumption in the knowledge capital model. In contrast, the degree of persistence

in our model is much lower, in line with previous evidence from patent renewal decisions

(see, e.g., Pakes & Schankerman (1984) and Schankerman & Pakes (1986)).

In sum, it appears that old knowledge is hard to keep but new knowledge is easy to add.

Productivity is therefore considerably more fluid than what the knowledge capital literature

suggests. As a consequence, a firm’s position in the productivity distribution is considerably

less stable than what the knowledge capital literature suggests, especially because a firm is

repeatedly subjected to shocks that may make it hard for it to “break away” from its rivals

and remain at or near the top of the productivity distribution.

6.3 Productivity growth

We explore productivity growth from the point of view of what a firm expects when it makes

its decisions in period t − 1. Because ωjt−1 is known to the firm at the time it decides on

rjt−1, the expectation of productivity growth including the trend is

βt + E [ωjt − ωjt−1|ωjt−1, rjt−1] = βt + g(ωjt−1, rjt−1)− ωjt−1. (14)

We estimate the average of the expectation of productivity growth as βt+
1
T

∑
t

∑
j µjt[ĝ(ĥljt−1, rjt−1)−

ĝ(ĥljt−2, rjt−2)], where the weights µjt = Yjt−2/
∑

j Yjt−2 are given by the share of output

of a firm two periods ago and we assume E
[
µjtξjt−1|ωjt−2, rjt−2

]
= 0. Columns (1)–(3)

of Table 6 report this average for the entire sample and for the subsamples of observations

with and without R&D.

As can be seen in column (1) of Table 6, productivity growth is highest in some of

the industries with high innovative activity (above 1.5% in industries 3 and 4 and around

2.5% in industry 6) followed by some of the industries with intermediate innovative activity

(above 1.5% in industry 1).

Productivity growth is higher for performers than for nonperformers in five industries,

sometimes considerably so (columns (2) and (3)). Taken together these industries account

for over half of manufacturing output (see Appendix A for details). The decomposition

into the contributions of observations with and without R&D to productivity growth shows

that firms that perform R&D contribute between 65% and 85% of productivity growth in

industries 3, 4, and 6 with high innovative activity and between 70% and 90% in industries

1 and 2 with intermediate innovative activity. This is all the more remarkable since in these

industries between 20% and 45% of firms engage in R&D. While these firms manufacture

between 45% and 75% of output, their contribution to productivity growth exceeds their

share of output by on average 15%. That is, firms that engage in R&D tend not only to be

larger than those that do not but also to grow even larger over time. R&D expenditures
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are thus a primary source of productivity growth.

6.4 Rate of return

We finally compute an alternative—and perhaps more intuitive—measure of the return to

R&D. The growth in expected productivity in equation (14) can be decomposed as

βt + g(ωjt−1, rjt−1)− ωjt−1 = [βt + g(ωjt−1, rjt−1)− g(ωjt−1, r)] + [g(ωjt−1, r)− ωjt−1] ,

(15)

where r denotes a negligible amount of R&D expenditures.33 The first term in brackets

reflects the change in expected productivity that is attributable to R&D expenditures rjt−1,

the second the change that takes place in the absence of investment in knowledge. That is,

the second term in brackets is attributable to depreciation of already attained productivity

and, consequently, is expected to be negative. The net effect of R&D is thus the sum of its

gross effect (first term in brackets) and the impact of depreciation (second term).

Consider the change in expected productivity that is attributable to R&D expenditures.

Multiplying βt+g(ωjt−1, rjt−1)−g(ωjt−1, r) in equation (15) by a measure of expected value

added, say Vjt, gives the rent that the firm can expect from this investment at the time

it makes its decisions. Dividing it further by R&D expenditures Rjt−1 gives an estimate

of the gross rate of return, or dollars obtained by spending one dollar on R&D.34 Note

that we compute the gross rate of return on R&D using value added instead of gross

output both to make it comparable to the existing literature (e.g., Nadiri 1993, Griliches &

Regev 1995, Griliches 2000) and because value added is closer to profits than gross output.

We similarly compute the net rate of return to R&D and the compensation for depreciation

from the growth decomposition in equation (15) by multiplying and dividing through by

Vjt and Rjt−1.

Columns (4)–(6) of Table 6 summarize the gross rate of return to R&D and its de-

composition into the net rate and the compensation for depreciation. We report weighted

averages where the weights µjt = Rjt−2/
∑

j Rjt−2 are given by the share of R&D expen-

ditures of a firm two periods ago. The gross rate of return to R&D far exceeds the net

rate, thus indicating that a large part of firms’ R&D expenditures is devoted to maintain-

ing already attained productivity rather than to advancing it. The net rates of return to

R&D are around 40% and differ across industries, ranging from very modest values near

10% to 65%. Interestingly enough, the net rate of return to R&D is higher in an industry

33Recall from equation (11) that we allow the conditional expectation function g(·) to be different when the
firm adopts the corner solution of zero R&D expenditures and when it chooses positive R&D expenditures.
To avoid this discontinuity, we take g(ωjt−1, r) to be a weighted average of g0(ωjt−1) and g1(ωjt−1, r), where
r is the 2.5th percentile of the industry’s R&D expenditures.

34The average rate that we compute is close to the marginal rate of return to R&D. To see this, lin-

early approximate g(ωjt−1, lnR) ≃ g(ωjt−1, lnRjt−1) +
∂g(ωjt−1,lnRjt−1)

∂rjt−1

1
Rjt−1

(R − Rjt−1). If R → 0, then

g(ωjt−1, rjt−1) − g(ωjt−1, r) ≡ g(ωjt−1, lnRjt−1) − g(ωjt−1, lnR) ≃ ∂g(ωjt−1,rjt−1)

∂rjt−1
. In practice, we use

firm-specific averages of value added and investment in knowledge.
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where a large part of the variance in productivity is due to random shocks, as can be seen

in Figure 4. This suggests that the net rate of return to R&D includes a compensation for

the uncertainties inherent in the R&D process.

As a point of comparison we report the net rate of return on investment in physical

capital in column (7) of Table 6. We first compute the gross rate of return as βkVjt/Kjt

and then subtract the rate of depreciation of physical capital from it to obtain the net rate of

return.35 Column (8) reports the ratio of the net rates of return to R&D and investment in

physical capital. Returns to R&D are clearly higher than returns to investment in physical

capital. The net rate of return to R&D is often twice that of the net rate of return to

investment in physical capital.

Recall that in our model the productivity innovation ξjt may be thought of as the real-

ization of the uncertainties that are naturally linked to productivity plus the uncertainties

inherent in the R&D process such as chance in discovery and success in implementation.

The question therefore is whether an investment in knowledge indeed injects further un-

certainties into the productivity process that would be absent if the firm did not engage

in R&D. As before we measure the degree of uncertainty by the ratio of the variance of

the productivity innovation ξjt to the variance of actual productivity ωjt. Regressing an

estimate of the log of the ratio ξ2jt/V ar(ωljt) on a constant, a dummy for large firms with

more than 200 workers, a dummy for investment in knowledge, and a dummy for investment

in physical capital shows a positive impact of investment in knowledge on the degree of un-

certainty in all industries (see column (9) of Table 6).36 Whereas investment in knowledge

substantially increases the degree of uncertainty in the productivity process, investment in

physical capital leaves it unchanged (column (10)).

In sum, investment in knowledge is systematically more uncertain than investment in

physical capital. The net rate of return includes a compensation for the uncertainties

inherent in the R&D process. Moreover, the large gap between the net rates of return

to R&D and investment in physical capital suggests that the uncertainties inherent in the

R&D process are economically significant and matter for firms’ investment decisions.

Comparison to knowledge capital model. To facilitate the comparison with the ex-

isting literature, we have used the value-added version of the knowledge capital model in

equation (13) to estimate the rate of return to R&D by regressing the first-difference of the

log of value added on the first-differences of the logs of conventional inputs and the ratio

Rjt−1/Vjt−1 of R&D expenditures to value added.37 The estimated coefficient of this ratio

35The rate of depreciation that is assumed in computing the stock of physical capital is around 0.1 but
differs across industries and groups of firms within industries. We report a weighted average where the
weights µjt = Vjt/

∑
j Vjt are given by are given by the share of value added of a firm. In practice, we use

firm-specific averages of value added and the stock of physical capital.
36We estimate V ar(ωljt) separately for firms that do not engage in R&D, firms that engage in R&D and

have R&D expenditures below the median and those that have R&D expenditures above the median.
37To improve the estimates we impose the widely accepted constraint of constant returns to scale in the

conventional inputs.
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can be interpreted as the gross rate of return to R&D.38 We obtain the net rate of return

to R&D by subtracting the rate of depreciation of knowledge capital. As can be seen from

column (11) of Table 6, the net rates in the knowledge capital model are around 80%. While

they are imprecisely estimated, they are higher than the net rates in our model with the

exception of industry 9.

The knowledge capital literature has had limited success in estimating the rate of return

to R&D. Griliches (2000) contends that “[e]arly studies of this topic were happy to get the

sign of the R&D variable ‘right’ and to show that it matters, that it is a ‘significant’ variable,

contributing to productivity growth” (p. 51). Estimates of the rate of return to R&D tended

to be high, often implausibly high: “our current quantitative understanding of this whole

process remains seriously flawed ... [T]he size of the effects we have estimated may be

seriously off, perhaps by an order of magnitude” (Griliches 1995, p. 83). Our estimates, by

contrast, are more modest.

7 Concluding remarks

In this paper we develop a model of endogenous productivity change resulting from invest-

ment in knowledge. While the knowledge capital model in its basic form can be viewed as a

special case of our model, we differ in that, rather than attempting to construct a stock of

knowledge capital from a firm’s observed R&D expenditures, we consider productivity to be

unobservable to the econometrician. We also derive an estimator for production functions

in this setting.

Applying our approach to an unbalanced panel of more than 1800 Spanish manufac-

turing firms in nine industries during the 1990s, we show that the link between R&D and

productivity is subject to a high degree of uncertainty, nonlinearity, and heterogeneity. R&D

is a major determinant of the differences in productivity across firms and the evolution of

firm-level productivity over time.

While our focus is on the link between R&D and productivity, we hope that our model

of endogenous productivity change facilitates further inquiries into the determinants of

productivity. To date, our model has been applied by Aw, Roberts & Xu (2011) to examine

the impact of export market participation on the productivity of firms; other applications

include Maican & Orth (2008) and Añon & Manjon (2009). Our parametric inversion

and the resulting estimator for production functions may also prove useful in empirical

research into the nature of technological change that requires multi-dimensional productivity

measures, such as the recent work by Doraszelski & Jaumandreu (2009).

38Recall that ε is the elasticity of value added with respect to knowledge capital. Since ε∆cjt =
∂V
∂C

Cjt−1

Vjt−1
∆cjt ≃ ∂V

∂C

∆Cjt

Vjt−1
and Rjt−1 approximates ∆Cjt (by the law of motion for knowledge capital),

the estimated coefficient is ∂V
∂C

. Since spending one dollar on R&D adds one unit of knowledge capital ∂V
∂C

is, in turn, equal to ∂V
∂R

or the gross rate of return to R&D.
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Appendix A

We observe firms for a maximum of ten years between 1990 and 1999. We restrict the
sample to firms with at least two years of data on all variables required for estimation.
Because of data problems we exclude industry 5 (office and data-processing machines and
electrical goods). Our final sample covers 1870 firms in 9 industries. The number of firms
with 2, 3,. . . , 10 years of data is 259, 377, 244, 191, 171, 134, 127, 153, and 214 respectively.
Table A1 gives the industry definitions along with their equivalent definitions in terms of
the ESEE, National Accounts, and ISIC classifications (columns (1)–(3)). We finally report
the shares of the various industries in the total value added of the manufacturing sector in
1995 (column (4)).

The ESEE survey provides information on the total R&D expenditures of each firm in
each year. These include the cost of intramural R&D activities, payments for outside R&D
contracts with laboratories and research centers, and payments for imported technology in
the form of patent licensing or technical assistance, with the various expenditures defined
according to the OECD Oslo and Frascati manuals. We consider a firm to be performing
R&D if it reports positive expenditures. While total R&D expenditures vary widely across
firms, it is quite likely even for small firms that they exceed nonnegligible values relative
to firm size. In addition, firms are asked to provide many details about the combination of
R&D activities, R&D employment, R&D subsidies, and the number of process and product
innovations as well as the patents that result from these activities. Taken together, this
supports the notion that the reported expenditures are truly R&D related.

In what follows we define the remaining variables.

• Investment. Value of current investments in equipment goods (excluding buildings,
land, and financial assets) deflated by the price index of investment. By measur-
ing investment in operative capital we avoid some of the more severe measurement
issues of the other assets. We follow Ackerberg et al. (2007) and assume that the
investment decided in period t − 1 coincides with the investment observed in period
t. Experimentation with the lagged value of this flow gave very similar results.

• Capital. Capital at current replacement values K̃jt is computed recursively from

an initial estimate and the data on current investments in equipment goods Ĩjt. We
update the value of the past stock of capital by means of the price index of investment
PIt as K̃jt = (1− δ) PIt

PIt−1
K̃jt−1 + Ĩjt−1, where δ is an industry-specific estimate of the

rate of depreciation. Capital in real terms is obtained by deflating capital at current

replacement values by the price index of investment as Kjt =
K̃jt

PIt
.

• Labor. Total hours worked computed as the number of workers times the average
hours per worker, where the latter is computed as normal hours plus average overtime
minus average working time lost at the workplace.

• Materials. Value of intermediate consumption (including raw materials, components,
energy, and services) deflated by a firm-specific price index of materials.

• Output. Value of produced goods and services computed as sales plus the variation of
inventories deflated by a firm-specific price index of output.

• Price of investment. Equipment goods component of the index of industry prices
computed and published by the Spanish Ministry of Industry.
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• Wage. Hourly wage cost computed as total labor cost including social security pay-
ments divided by total hours worked.

• Price of materials. Firm-specific price index for intermediate consumption. Firms
are asked about the price changes that occurred during the year for raw materials,
components, energy, and services. The price index is computed as a Paasche-type
index of the responses and normalized by the average of its values for each firm.

• Price of output. Firm-specific price index for output. Firms are asked about the
price changes they made during the year in up to 5 separate markets in which they
operate. The price index is computed as a Paasche-type index of the responses and
and normalized by the average of its values for each firm.

• Index of market dynamism. Firms are asked to assess the current and future situation
(contraction, stability, or expansion) of up to 5 separate markets in which they operate.
The index of market dynamism is computed as a weighted average of the responses
and proxies for the demand shifter djt.

• Technological sophistication. Dummy variable that takes the value one if the firm
uses digitally controlled machines, robots, CAD/CAM, or some combination of these
procedures.

• Identification between ownership and control. Dummy variable that takes the value
one if the owner of the firm or the family of the owner hold management positions.

• Age. Years elapsed since the foundation of the firm with a maximum of 40 years.

• Worker quality. Fraction of workers under fixed term contracts with very small or
no severance pay (temporary workers). Fraction of non-production employees (white
collar workers), workers with an engineering degree (engineers), and workers with an
intermediate degree (technicians).

• Location of industrial employment. 19 dummy variables corresponding to the Spanish
autonomous communities when employment is located in a unique region and another
dummy variable when employment is spread over several regions.

• Product submarket. Dummy variables corresponding to a finer breakdown of the 9
industries into subindustries (see column (5) of Table A1).

Appendix B

To simplify the exposition, we restrict the production function in equation (1) to yjt =
βlljt + ωjt + ejt, the law of motion in equation (2) to an exogenous AR(1) process with
g(ωjt−1) = ρωjt−1, and assume perfect competition in the product market with η(·) = ∞.
Normalizing the price of output, the labor demand function is

ljt =
1

1− βl

(
lnβl + µ− w∗

jt + ωjt

)
. (16)

While equation (16) accurately describes the firm’s decision making process, there is
a problem of observability. Assume, as may easily happen in practice, that we as econo-
metricians imperfectly observe prices: Instead of w∗

jt we observe wjt, where the difference
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between observed and true prices is measurement error vjt = wjt − w∗
jt. Given what we

observe, we can no longer recover true productivity as

h∗ljt = ωjt = λl + (1− βl)ljt + w∗
jt. (17)

where λl = − lnβl − µ. Instead we recover

hljt = λl + (1− βl)ljt + wjt = h∗jt + vjt. (18)

We refer to hljt as observed (as opposed to true) productivity and base the estimation on
it.

We assume throughout that the measurement error vjt is independent of productivity
ωjt and distinguish two polar cases: In the case of classical measurement error with respect
to prices, the measurement error vjt is uncorrelated with true prices w∗

jt and therefore
correlated with observed prices wjt. In the case of nonclassical measurement error with
respect to prices, the measurement error vjt is uncorrelated with observed prices wjt and
therefore correlated with true prices w∗

jt.
To explore the consequences of imperfectly observable prices, we assume that

vjt = E [vjt|ljt, wjt] + ujt = δ0 + δ1ljt + δ2wjt + ujt, (19)

where ujt is mean independent of ljt and wjt.
39 For the case of classical measurement error

with respect to prices we then have

δ1 = (1− βl)
σ2v

σ2w∗σ2ω + σ2w∗σ2v + σ2ωσ
2
v

σ2w∗ , δ2 =
σ2v

σ2w∗σ2ω + σ2w∗σ2v + σ2ωσ
2
v

(σ2w∗ + σ2ω)

and

δ1 = (1− βl)
σ2v

σ2v + σ2ω
, δ2 =

σ2v
σ2v + σ2ω

for the case of nonclassical measurement error with respect to prices.
Substituting ωjt = ρωjt−1 + ξjt and equation (17) into yjt = βlljt +ωjt + ejt, the model

is
yjt = λ0 + βlljt + ρh∗ljt−1 + ξjt + ejt,

where λ0 = −ρ(lnβl + µ). Using equations (18) and (19) to express the model in terms of
observables we thus have

yjt = λ0 + βlljt + ρ (hljt−1 − δ0 − δ1ljt−1 − δ2wjt−1)− ρujt−1 + ξjt + ejt

= −λ̃0 + βlljt + ρ̃
(
(1− β̃l)ljt−1 + wjt−1

)
− ρujt−1 + ξjt + ejt,

where

λ̃0 = λ0 − ρδ0, ρ̃ = ρ(1− δ2), 1− β̃l =
1− βl − δ1

1− δ2
.

39Assumption (19) does not require vjt, ljt, and wjt to be jointly normal distributed and extends, for
example, to the elliptical and Pearson families. Moreover, it is easy to show that if the joint distribution of
vjt, ωjt, and w∗

jt (classical measurement error) or wjt (nonclassical measurement error) is in the elliptical
family, then so is the induced joint distribution of vjt, ljt, and wjt. More generally, assumption (19) may
be viewed as a useful approximation that allows us to explore the consequences of imperfectly observable
prices. In the literature following OP, by contrast, the so-called scalar unobservable assumption (Ackerberg
et al. 2007, Section 2.3) rules out measurement error.
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We conclude that imperfectly observable prices drive a wedge between the coefficients in
the production function and their counterparts in the inverse labor demand function which
may cause the parameter restrictions test to reject.40

Fortunately, however, by simply dropping the restriction between parameters it remains
possible to consistently estimate the coefficients in the production function (βl in this simple
example) because ujt−1 is uncorrelated with the instruments (constant, ljt−1, and wjt−1).
With these coefficients in hand we are moreover able to consistently recover actual produc-
tivity ωjt. What we are no longer able to do is consistently decompose ωjt into expected
productivity ρωjt−1 and the random shock ξjt.

41

Appendix C

The inverse material demand function is

hm(t, kjt,mjt, pjt, wjt, pmjt, djt)

= λm − βtt− βkkjt + (1− βl − βm)mjt + βl(wjt − pjt)

+(1− βl)(pmjt − pjt)− ln

(
1− 1

η(pjt, djt)

)
,

where λm = −β0 − (1− βl) lnβm − βl lnβl − µ combines constants.
Columns (1)–(3) of Table A2 report GMM estimates of the production function coef-

ficients and columns (4)–(6) specification tests when we use the inverse materials demand
function hm(·) instead of the inverse labor demand function hl(·). Column (7) reports the
nonnested test, column (8) the test for the equality of the capital coefficient, and column
(9) the test for the equality of the sum of the labor and materials coefficients.
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Figure 1: Distribution of expected productivity.



Figure 1: (cont’d) Distribution of expected productivity.

Figure 2: Distribution of expected productivity. Exogenous Markov process.



Figure 3: Persistence and uncertainty.

Figure 4: Return to R&D and uncertainty.


