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1 Introduction

Distinguishing among di¤erent forms of nonstationarity has been a topic of long-standing

interest in time series analysis; e.g., distinguishing a deterministic trend from a unit root

process (I(1), a stochastic trend) and infrequent shifts in trend versus unit root (Perron,

1989). Also, tests for changes in the deterministic trend are sensitive to the nature of the

stochastic component, stationary [I(0)] or I(1) (Harvey et al., 2009, Perron and Yabu, 2009).

An important related problem concerns inference about the conditional mean in the presence

of nonstationarity in variance. Structural changes in variance have been extensively docu-

mented for macroeconomic and �nancial time series; e.g., Sensier and van Dijk (2004), Perron

and Yamamoto (2020). The non-robustness of unit root tests to nonstationary volatility was

established by Cavaliere (2005) and Cavaliere and Taylor (2007, 2008a, 2009). A smaller

literature addressed the problem of discriminating between changes in the conditional mean

and nonstationary volatility. Hansen (2000) shows that standard structural change tests

do not have the correct size with nonstationary variance. Pitarakis (2004), Perron and Ya-

mamoto (2019) and Xu (2015) document the extent of size distortions and power losses for

various tests. Perron, Yamamoto and Zhou (2020) develop likelihood ratio tests of the joint

hypothesis of changes in coe¢ cients and error variance in a linear regression model.

Given the importance of allowing for nonstationary volatility, this paper deals with the

problem of testing for structural changes in the persistence of a time series in this context; i.e.,

changes involving switches between unit root I(1) and stationary I(0) processes and changes

that preserve the I(0) properties across regimes. Most procedures available are based on a

global homoskedasticity assumption; e.g., Kim (2000), Busetti and Taylor (2004), Harvey

et al. (2006) for a single break and Bai and Perron (1998, BP henceforth), Leybourne et

al. (2007), Kejriwal et al. (2013, KPZ henceforth) for multiple breaks as well as Kejriwal

(2019) for procedures to determine the number of breaks. Cavaliere and Taylor (2008b, CT

henceforth) develop bootstrap tests robust to nonstationary volatility based on the ratio of

partial sums of demeaned (or detrended) residuals. Their procedure assumes that the process

is I(0) under the null hypothesis of stability, a single break under the alternative with either

a I(1)-I(0) or I(0)-I(1) shift but not an I(0)-I(0) shift and a stable trend function.

We provide a comprehensive treatment of issues related to testing for changes in per-

sistence with heteroskedastic errors. Our approach is general and allows: (1) an I(1) or

I(0) null hypothesis; (2) multiple changes with unknown number and timing; (3) changes of

the form I(1)-I(0); I(0)-I(1) and I(0)-I(0), without prior knowledge of the speci�c form;
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(4) disentangling persistence shifts from shifts in the trend function. The assumed volatil-

ity process is general and accommodates breaks, smooth transitions and trending volatility.

We develop sup-Wald tests based on a wild bootstrap scheme that have accurate size and

satisfactory power in �nite samples. We also propose a sequential method to estimate the

number of persistence breaks. Extensive simulation experiments are provided to assess the

�nite sample properties of the methods suggested, including comparisons with existing tests.

Our proposed methods can be applied to study a wide range of important empirical

issues. We comment here on three potential applications, one explored in detail later. The

�rst concerns the issue of in�ation persistence that plays a key role in the formulation and

evaluation of quantitative macroeconomic models (see, e.g., Korenok et al., 2010). The Lucas

Critique suggests that the parameters of reduced form speci�cations depend implicitly on

agents�expectations of the policy process and are unlikely to remain stable as policymakers

change their behavior, if agents are forward looking. An empirical �nding of high and stable

persistence in such a context can potentially be interpreted either in terms of the presence

of a strong backward looking component in the dynamics of in�ation induced through, say

indexation or rule-of-thumb behavior on the part of the price setters, or in terms of historical

policy shifts being of relatively modest magnitude. Our approach enables a robust treatment

of in�ation dynamics that allows disentangling breaks in mean and persistence allowing for

changing volatility and thereby provides reliable guidance on whether changes in persistence

is a feature that a reasonable macroeconomic model should be able to replicate; see Section

8 for the analysis, references and further discussions.

A second application concerns climate change. The anthropogenic theory of climate

change postulates that human activity increases emissions of radiatively active gases relative

to natural sources and sinks. It can do so in a way that changes global biogeochemical cycles

thereby increasing the persistence of radiative forcing and surface temperature. Using data

over 1500-2011, Dergiades et al. (2016) �nd evidence supporting persistence change [I(0) to

I(1)] for both series based on the single break tests of Busetti and Taylor (2004) and Harvey

et al. (2006). The long time span, however, covers the three Industrial Revolutions (the

steam engine, electricity and mass production, and digital technology) suggesting that the

single break assumption may be unduly restrictive. Further, they assume homoskedasticity in

contrast to evidence favoring heteroskedasticity in both series (see Cavaliere et al., 2018, for

global CO2 emissions and Chang et al., 2020, for temperature). Our approach o¤ers methods

to comprehensively evaluate this hypothesis owing to its ability to accommodate multiple

persistence breaks, non-stationary volatility, and broken trends (Estrada and Perron, 2017).
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A third possible application is to predictive regression. Predicting a low persistence

I(0) variable like stock returns using a highly persistent predictor, say the dividend-price

ratio (D/P), involves a (nearly) unbalanced regression that can potentially explain its spo-

radic predictive power in practice. Lettau and Nieuwerburgh (2008) argue that D/P is well

represented by a regime-wise stationary process and use demeaned residuals obtained from

the BP procedure to construct a new predictor that is shown to deliver superior predictive

performance (see Verdickt et al., 2019, for a more recent related contribution). In contrast,

Park (2010) argues, based on single break homoskedasticity-based persistence change tests

(Harvey et al., 2006), that D/P is better approximated by a process that switches between

I(1) and I(0) regimes and consequently has strong predictive power in the I(0) regime but

not in the I(1) regime due to the unbalanced regression problem. Given that neither of

these studies allow for nonstationary volatility in D/P or returns (Johannes et al., 2014),

their estimation and inference results can be potentially misleading. The generality a¤orded

by our approach can be fruitfully employed in this context to distinguish between the mean

shift and persistence change alternatives for the D/P process, demarcate the I(1) and I(0)

regimes, and assess regime-wise predictability accordingly.

The paper is organized as follows. Section 2 describes the models and the assumptions

and Section 3 the testing procedures. The large sample e¤ects of nonstationary volatility

on these persistence change tests are studied in Section 4. The proposed bootstrap tests

are presented in Section 5. Section 6 discusses extensions of the procedures to deal with

deterministic trends as well as disentangling shifts in persistence from shifts in the trend

function. Section 7 provides a summary of the Monte Carlo evidence, Section 8 presents an

application to OECD in�ation rates and Section 9 concludes. An online supplement contains

all proofs, detailed simulation results and additional empirical results.

2 The Persistence Change Model

We start with a univariate time series yt generated by the following AR(p) model:

yt = �i + ut; ut = uT 0i�1 + ht (t = T
0
i�1 + 1; :::; T

0
i ; i = 1; :::;m+ 1) (1)

ht = �iht�1 +
Pp�1

j=1 �ij�ht�j + et (hT 0i�1 = ::: = hT 0i�1�p+1 = 0)

with the convention T 00 = 0 and T 0m+1 = T , where T is the sample size. The process is

therefore subject to m breaks or m + 1 regimes with break dates (T 01 ; :::; T
0
m). Both the

break dates and the number of breaks are assumed unknown. The autoregressive order p is
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assumed to be �nite. This Data Generating Process (DGP) was considered by Leybourne et

al. (2007) and Kejriwal (2019) and is designed to ensure that adjacent I(1) and I(0) regimes

join up at the breakpoints thereby avoiding the problem of spurious jumps to zero in ut.

While we assume a common lag length p across regimes, regime-speci�c lag lengths can be

accommodated interpreting p as the maximum lag length across the (m + 1) regimes. Our

analysis is based on the following assumptions:

Assumption A: 1) T 0i =
�
T�0i

�
; where 0 < �01 < ::: < �

0
m < 1 and b:c denotes the integer

part of its argument; 2) All roots of the polynomial �i(L) = 1��i1L��i2L2�:::��i;p�1Lp�1 lie
outside the unit circle; 3) et = �t"t, where f"tg is an i.i.d. sequence with zero mean and
unit variance and f�tg is a strictly positive non-stochastic sequence, also suptE("

4+�
t ) <

1 for some � > 0; 4) For some strictly positive deterministic sequence faTg; f�tg satis�es
a�1T �bTsc = g(s); s 2 [0; 1], where g(:) is a strictly positive, non-stochastic function with a
�nite number of discontinuities satisfying a uniform �rst-order Lipschitz condition except at

the points of discontinuity.

Assumption A1 is standard and dictates the asymptotic framework adopted so that each

segment increases proportionately with T . A2 speci�es at most one unit root in each regime

and precludes explosive regimes. A3 speci�es that the stochastic process for fetg is deter-
mined by the time-varying volatilities f�tg (e.g., Xu, 2008). In contrast to CT who make
a mixing-type assumption on the errors thereby allowing for moving average processes and

conditional heteroskedasticity, our analysis is based on the stronger assumption of a �nite

order autoregressive process with i.i.d. innovations. We do, however, demonstrate the ro-

bustness of our procedures to moving average errors through simulations (see Section 7). A4

is the key assumption, which allows fytg to be generated by a wide class of nonstationary
heteroskedastic errors; e.g., single or multiple volatility breaks, linearly trending volatility,

piece-wise linear trends in variance and smooth transition shifts satisfy A4 with aT = 1 with

a particular choice of g(:). Models with explosive deterministic volatility are allowed speci-

fying aT appropriately; see Cavaliere and Taylor (2008a, 2009). The function g(:) is assumed

to be non-stochastic to enable simpli�cation of the theoretical analysis. Hence, A4 rules out

nonstationary autoregressive stochastic volatility (SV) models (Hansen,1995), SV models

with jumps (Georgiev, 2008, Perron and Qu, 2010), �nonstationary nonlinear heteroskedas-

tic� models with stochastically trending volatility, and near-integrated GARCH models.

This assumption can be weakened to allow sequences f�tg and f"tg that are stochastically
independent and interpreting the results as holding conditional on a given realization of g(:).

In order to accommodate I(0) preserving persistence changes as in the framework of Bai
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and Perron (1998), we also consider the following data generating process for yt:

yt = �i + ut; ut = �iut�1 +
Pp�1

j=1 �ij�ut�j + et (2)

for t = T 0i�1 + 1; ; :::; T
0
i ; i = 1; :::;m + 1, with u0 = ::: = u�p+1 = 0. The conditions in

Assumption A are assumed to hold for (2) as well.

3 Testing Procedures

This section describes the testing procedures which form the basis of our proposed bootstrap

tests. These procedures are not new and were developed in KPZ and BP. We �rst consider

the KPZ tests that specify the null hypothesis of an I(1) process throughout the sample (no

change), H(1)
0 : �i = 1, versus the alternative that the process switches between being I(1)

and I(0). The following two models are considered depending on whether the initial regime

contains a unit root or not: Model 1a: �i = 1 in odd regimes and j�ij < 1 in even regimes;
Model 1b: �i = 1 in even regimes and j�ij < 1 in odd regimes. We next review the test
statistics designed to detect a speci�ed number of breaks and outline the procedures when

the number of breaks is not speci�ed.

Tests for a Speci�ed Number of Breaks. To test the null hypothesis H(1)
0 : �i = 1 for

all i in (1), the regression used is

�yt = ci + (�i � 1)yt�1 +
Pp�1

j=1 �j�yt�j + e
�
t (3)

with ci = (1 � �i)[uT 0i�1 + �i] and e
�
t the residuals. Under H

(1)
0 ; ci = 0 for all i, which is

imposed. The true lag order p is assumed known but can be estimated using standard infor-

mation criteria such as the AIC or BIC. The coe¢ cients of the lagged di¤erences in (3) are

not allowed to change since, as argued in KPZ, the goal is to direct power against changes in

the persistence parameter �i. A joint test on all parameters would not be particularly infor-

mative in this context given the di¢ culty in interpreting a rejection. As shown in KPZ, the

test does not have much power against pure changes in short-run dynamics but is powerful

when there is a change in both persistence and these dynamics. In fact, the simulation ex-

periments conducted in Section 7 for assessing power with serially correlated errors consider

data generating processes that involve changes in both persistence and short-run dynamics

in their autoregressive representation.

Consider �rst the Wald test that applies when the alternative involves a �xed value

m = k of changes. Denote a candidate vector of break fractions by � = (�1; :::; �k) and the
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alternative hypotheses corresponding to Models 1a and 1b as H(1)
a;k and H

(1)
b;k ; respectively.

The corresponding tests are for d = a; b:

F1d(�; k) = (T � k � 1� ij)(SSR(1)0 � SSR(1)1d;k)=[(k + 1 + ij)SSR
(1)
1d;k] (4)

where j = 1 if k is even and j = 0 if k is odd, i = �1 if d = a and i = 1 if d =

b. Here, SSR(1)0 is the sum of squared residuals (SSR) under H(1)
0 while SSR(1)1a;k and

SSR
(1)
1b;k denote, respectively, the SSR from estimating (3) under the restrictions imposed by

Models 1a-1b. For some small positive number �, we de�ne the set �k� = f� : j�i+1 � �ij �
�; � 1 � �; � k � 1 � �g. The sup-Wald tests are then F1a(k) = sup�2�k� F1a(�; k) and

F1b(k) = sup�2�k� F1b(�; k). When the initial regime is unknown, the relevant test statistic

is W1(k) = max[F1a(k); F1b(k)]. The stable I(0) null can be tested using the BP procedure.

This amounts to testing H(0)
0 : ci = c; �i = �; for all i with j�j < 1 in (3). The relevant

alternative hypothesis is H(0)
1;k : �1 6= �2 6= ::: 6= �k+1, j�ij < 1 for all i, so that the time series

is regimewise-I(0) under H(0)
1;k . The BP test for a �xed number m = k of changes is given by

G1(�; k) = [T � 2(k + 1)](SSR(0)0 � SSR(0)1;k)=[kSSR
(0)
1;k] (5)

where SSR(0)0 denotes the SSR under H(0)
0 and SSR(0)1;k the unrestricted SSR. The BP test

is G1(k) = sup�2�k� G1(�; k). To control asymptotic size when the process is either I(1) or

I(0) under the null hypothesis, KPZ proposed a joint test. Let H0 = H
(1)
0 [H(0)

0 . The test

for H0 is H(k; �) = min [W1(k), [cvw;k(�)=cvg;k(�)]G1(k)], where cvw;k(�) and cvg;k(�) are the

critical values of the statistics W1(k) and G1(k), respectively, for some signi�cance level �.

Computing G1(:) and W1(:) is done using the dynamic programming algorithms of Bai and

Perron (2003) and Perron and Qu (2006), respectively.

Tests when the Number of Breaks is Unknown. With the number of breaks unknown
up to an upper bound A; KPZ proposed the following test statistic to detect processes alter-

nating between I(1) and I(0) regimes: Wmax1 = max1�k�AW1(k). Similarly, to detect I(0)-

preserving changes, the BP test is UDmax1 = max1�k�AG1(k). To achieve correct size under

H0;KPZ also suggested the testHmax1(�) = min [Wmax1; [cvw;max(�)=cvg;max(�)]UDmax1],

where, cvw;max(�) and cvg;max(�) are the critical values ofWmax1 and UDmax1, respectively.

The decision rule is to reject H0 if Hmax1(�) > cvw;max(�).

4 The Large Sample E¤ects of Nonstationary Volatility

We consider the large sample behavior of the KPZ and BP tests in the presence of nonsta-

tionary volatility as speci�ed in A(3-4). Theorems 1 and 2 below show that the null limiting
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distributions of the tests are not pivotal and depend on the sample path of the volatility

process g(:); hence the tests do not have the correct asymptotic size unless g(:) is a constant.

As a matter of notation, for r 2 [0; 1], let eg(r) = (R r
0
g(s)2)1=2, Bg;1(r) = eg(1)�1R r0 g(s)dB1(s)

and Bg;2(r) = eg(1)�1R r
0
g(s)2dB2(s). The process Bg;1(s) is Gaussian with zero mean and

variance �(s) = eg(s)2=eg(1)2 so that Bg;1(:) is a variance-transformed Brownian motion with
directing process �; see Davidson (1994, Section 29.4) and Cavaliere (2005).

Theorem 1 Under Assumptions A and H(1)
0 , F1d(�; k)

w! F 01d(�; k) de�ned by

1

k + 1 + ij

k+ij�i
2P

n= 1�i
2

266664
[fB(2n+

i+1
2 )

g;1 (�
2n+ i+1

2
)g2�fB(2n+

i+1
2 )

g;1 (�
2n+ i�1

2
)g2�eg(1)�2feg(�

2n+ i+1
2
)2�eg(�

2n+ i�1
2
)2g]2

4
R �2n+ i+1

2
�
2n+ i�1

2

[B
(2n+ i+1

2 )

g;1 (r)]2dr

+ 1
�
2n+ i+1

2
��

2n+ i�1
2

fBg;1(�2n+ i+1
2
)�Bg;1(�2n+ i�1

2
)g2

377775
where j = 1 if k is even and j = 0 if k is odd, i = �1 if d = a and i = 1 if d = b.

Also, F1d(k)
w! sup�2�k� F

0
1d(�; k) (d = a; b), W1(k)

w! max[F 01a(k); F
0
1b(k)]; Wmax1 =

max1�k�AW1(k)
w! max1�k�A fmax[F 01a(k); F 01b(k)]g.

Theorem 2 Under Assumption A and H(0)
0 , G1(�; k)

w! G01(�; k), de�ned by

1

k

kP
n=1

"
f�nBg;1(�n+1)� �n+1Bg;1(�n)g2

�n�n+1(�n+1 � �n)
+
feg(�n)2Bg;2(�n+1)� eg(�n+1)2Bg;2(�n)g2eg(�n)2eg(�n+1)2 feg(�n+1)2 � eg(�n)2g

#

Also, G1(k)
w! sup�2�k� G

0
1(�; k) and UDmax1

w! max1�k�Afsup�2�k� G
0
1(�; k)g.

The non-robustness of G1(1) to shifts in the marginal distribution of the regressors was

shown in Hansen (2000). The absence of large sample invariance of the KPZ and BP tests to

unconditional heteroskedasticity continues to hold for the heteroskedasticity-robust versions

of these tests; see Georgiev et al. (2018, Remark 12). Unreported simulations did not reveal

any advantage of the robust versions in the presence of unconditional heteroskedasticity.

Hence, we focus on non-robust version for simplicity. Note also that under H(0)
0 , the KPZ

tests diverge to positive in�nity while under H(1)
0 ; the BP tests have incorrect asymptotic

size even when conditional homoskedasticity holds. It can be shown that these properties

continue to hold under Assumptions A. Monte Carlo evidence indicates that the extent of

size distortions in �nite samples can be considerable (see Supplement B, Table B-1).
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5 The Wild Bootstrap Versions of the Tests

We now propose wild bootstrap versions of the tests and establish their asymptotic validity

under Assumption A. Unlike the standard residual bootstrap, the wild bootstrap procedure

(Liu, 1988) can mimic the pattern of heteroskedasticity in the errors. We also show that

the bootstrap KPZ and BP test statistics are consistent under the relevant alternatives.

With the direction of persistence change typically unknown, our subsequent analysis will

only consider the recommended W1(:), Wmax1, G1(:) and UDmax1 tests. Since the null

hypothesisH0 involves both I(1) and I(0) processes, the algorithm is based on generating two

kinds of bootstrap samples, one for each case, conditional on the data fytgTt=1: The I(1) (resp.,
I(0)) bootstrap samples are used to approximate the �nite sample distribution of the KPZ

(resp., BP) tests. For reasons discussed below, our proposed bootstrap scheme is not recursive

as in Xu (2008) for the stationary autoregressive model. Denote by fvt; t = 1; :::; Tg a
sequence of i.i.d. random variables with zero mean, unit variance and uniformly bounded

fourth moments (i.e., suptE("
4+�
t ) < 1 for some � > 0) that are independent of fytgTt=1.

We now describe the algorithms to generate the bootstrap samples.

I(1) Bootstrap Samples: 1) Estimate the regression �yt =
PlT

j=1 �j�yt�j + e
�
t (t =

lT + 2; :::; T ) where lT is chosen using the BIC. Denote the estimates by (�lT ; ��1; :::; ���lT )

and construct the residuals �et = �yt �
P�lT

j=1 ��j�yt�j (t = �lT + 2; :::; T ); 2) Obtain the

bootstrap residuals e(1)t = �etvt (t = �lT + 2; :::; T ); 3) Generate the bootstrap sample as

follows: y(1)t = y
(1)
t�1 + e

(1)
t (t = �lT + 2; :::; T ), y

(1)
t = yt (t = 1; :::; �lT + 1); 4) Construct the

bootstrap versions of the W1(:) and Wmax1 statistics using fy(1)t gTt=1 based on a regression
that does not include lagged �rst di¤erences of y(1)t ; 5) Repeat steps (2)-(4) B times to

approximate the bootstrap distribution of the statistics.

I(0) Bootstrap Samples: The algorithm is the same except that in step (1) the regression
is yt = c+�yt�1+

PlT
j=1 �j�yt�j+e

�
t and the residuals are eet = yt�ec�e�yt�1�PelT

j=1 e�j�yt�j;
also in step (3), we generate y(0)t = e

(0)
t = eetvt (t = elT + 2; :::; T ), y(0)t = 0 (t = 1; :::;elT + 1).

For the I(1) scheme, we do not introduce �rst-di¤erences in step (4) to avoid explosive

or multiple unit roots, as in Cavaliere and Taylor (2008a). The I(0) bootstrap scheme is

non-recursive since we do not �add back� the conditional mean component based on the

parameter estimates. Rather, the bootstrap samples fy(0)t g have constant (zero) mean and
are serially independent, conditional on the data. Using a recursive scheme leads to tests

with lower power when the data contain an I(1) segment since the estimated persistence
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parameter converges to 1 at rate T so that the recursive bootstrap samples are e¤ectively

drawn from an autoregressive process with a root close to unity. This feature contributes to

an increase in the bootstrap critical values (relative to the non-recursive bootstrap) with an

adverse e¤ect on power; see Gulesserian and Kejriwal (2014) in the context of stationarity

testing based on the sieve bootstrap in the homoskedastic case. Simulations suggest notable

power gains from using the non-recursive form of the wild bootstrap for alternatives that

involve switches between I(1) and I(0) regimes (see Supplement C). Note that, in both cases,

step (4) constructs the bootstrap statistics from an AR(1) speci�cation. The bootstrap

residuals are then serially independent conditional on the data; hence, no need to control for

serial correlation through lagged di¤erences. Unreported simulations showed that an AR(1)

bootstrap speci�cation resulted in improved �nite sample properties (size and power).

Denote the bootstrap analogues of W1(k), Wmax1, G1(k) and UDmax1 by W �
1 (k),

Wmax�1, G
�
1(k) and UDmax

�
1, respectively, with associated p-values p

�
k;W1

, p�Wmax, p
�
k;G1

and

p�UDmax, omitting the dependence on T for ease of notation. Similarly, for a given signi�cance

level �, denote the bootstrap critical values by cv�w;k(�), cv
�
w;max(�), cv

�
g;k(�) and cv

�
g;max(�).

Our proposed statistics are the �hybrid�testsH�(k; �) = min[W1(k), [cv�w;k(�)=cv
�
g;k(�)]G1(k)]

and Hmax�1(�) = min[Wmax1; [cv
�
w;max(�)=cv

�
g;max(�)]UDmax1]. The following results state

that (a) the wild bootstrap versions of the tests can successfully replicate the �rst order

asymptotic distribution of the original tests; (b) for a given signi�cance level �, the statistics

H�
1 (k; �) and Hmax

�
1(�) have asymptotic size at most �; (c) the test statistics are consistent

when k = m changes in persistence are present.

Theorem 3 Under Assumption A with � w!p�denoting weak convergence in probability un-

der the bootstrap measure: a) under H(1)
0 : (i) W

�
1 (k)

w!p max[F
0
1a(k); F

0
1b(k)], Wmax

�
1

w!p

max1�k�A fmax[F 01a(k); F 01b(k)]g ; (ii) p�k;W1

w! U [0; 1], p�Wmax
w! U [0; 1], a uniform distribu-

tion. UnderH(0)
0 , (i) G

�
1(k)

w!p sup�2�k� G
0
1(�; k); UDmax

�
1
w!p max1�k�Afsup�2�k� G

0
1(�; k)g;

(ii) p�k;G1
w! U [0; 1], p�UDmax

w! U [0; 1]; b) Under H0; limT!1 P (H
�(k; �) > cv�w;k(�)) �

� and P (Hmax�1(�) > cv
�
w;max(�)) � �; c) With �0 2 �m� , then, under H

(1)
a;m; H

(1)
b;m and H

(0)
1;m,

we have p�m;W1

p! 0, p�Wmax

p! 0, p�m;G1
p! 0, p�UDmax

p! 0.

5.1 Estimating the Number of Breaks

A bootstrap procedure can be devised to estimate the number of breaks based on a sequential

test of l versus l+1 breaks, following Kejriwal (2019) who assumed conditional homoskedas-

ticity. Heteroskedasticity precludes using critical values obtained using the full sample when

9



testing stability in each segment. Hence, we propose a new bootstrap sequential procedure.

We �rst apply a sequential test of the null hypothesis of l (� 1) breaks against the alterna-
tive of (l + 1) breaks. We partition the sample into (l + 1) segments using the l estimated

break dates (T̂1; :::; T̂l) obtained by minimizing the unrestricted SSR. The one break KPZ

and BP statistics are then applied to all estimated (l+1) regimes with the statistics denoted

by W (i)
1 (1) and G

(i)
1 (1), respectively, for i = 1; :::; l + 1. The parameter estimates in the

(l + 1) regimes are used to generate the regime-speci�c I(1) and I(0) bootstrap samples,

which are used to compute the bootstrap p-values of the statistics W (i)
1 (1) and G

(i)
1 (1), de-

noted by p�;(i)1;W1
and p�;(i)1;G1

. For a given signi�cance level �; we reject the null of l breaks in favor

of (l + 1) breaks if min1�i�l+1fp�i g < �l+1 (decision rule), where p�i = maxfp
�;(i)
1;W1

; p
�;(i)
1;G1
g and

�l+1 = 1� (1� �)1=(l+1). As shown in Supplement A, this decision rule has asymptotic size
at most � under the null hypothesis of l breaks. The steps to implement the sequential pro-

cedure are the following: 1) test the null of no break (H0) against the alternative of at least

one break. For a given signi�cance level �; reject H0 if p�max = maxfp�Wmax; p
�
UDmaxg < � and

conclude in favor of at least one break; otherwise stop and the number of breaks selected is

0; 2) Upon a rejection, use the decision rule with l = 1 to determine if there is more than one

break. Repeat by increasing l sequentially until the test fails to reject the null hypothesis of

no additional break; 3) The estimate m̂ is obtained as the total number of rejections obtained

from steps 1 and 2. The probability of selecting the true number of breaks is then at least

(1� �) in large samples as stated in the following theorem.

Theorem 4 Under the conditions of Theorem 3, limT!1 P (m̂ = m) � 1� �:

6 Extensions

This section discusses extensions to deal with: (1) the presence of deterministic trends; (2)

distinguishing between a pure trend shifts process from one exhibiting shifts in persistence.

Deterministic Trends. We consider an extension of (1) that includes the possibility of
m breaks in the deterministic trend, so that:

yt = �0 + �0t+
Pm

j=1 �jDUjt +
Pm

j=1 �jDTjt + ut (t = T
0
i�1 + 1; :::; T

0
i ) (6)

for i = 1; :::;m + 1, with ut as de�ned by (1), where DUjt = I(t > T 0j ), DTjt = I(t >

T 0j )(t� T 0j ), j = 1; :::;m. We de�ne �0j = T 0j =T and for some generic break date �j = Tj=T
and �m� = f(�1; :::; �m) ; j�j+1 � �jj � " (j = 1; :::;m � 1); �1 � "; �m � 1 � "g, for some
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small " > 0. The DGP (and regression used) can be expressed as

yt = ci + bit+ �iyt�1 +
Pp�1

j=1 �ij�yt�j + et (7)

with ci = (1 � �i)f�0 +
Pi�1

j=1(�j � �jT 0j ) + uT 0i�1g + (�i �
Pp�1

j=1 �ij)f�0 +
Pi�1

j=1 �jg, bi =
(1� �i)(�0 +

Pi�1
j=1 �j). KPZ proposed tests of the null hypothesis eH(1)

0 : ci = c; �i = 1 for

all i. Note that under eH(1)
0 ; bi = 0 for all i so that the process follows a stable unit root

process with possible drift. Again, two models are consider depending on whether the initial

regime is trend or di¤erence stationary. In accordance with the notation in Section 3, the

test statistics are denoted by F2a(�; k); F2b(�; k); W2(k) andWmax2. The null hypothesis of

a stable trend stationary process is given eH(0)
0 : ci = c; bi = b; �i = � for all i where j�j < 1

and the test for a �xed number of m = k changes and known break dates is G2(�; k) =

[T � 3(k+1)](gSSR(0)0 � SSR(0)2;k)=[kSSR
(0)
2;k], where gSSR(0)0 denotes the SSR under eH(0)

0 , i.e.,

obtained from OLS estimation of (7) subject to the restrictions ci = c; bi = b; �i = � for all i,

and SSR(0)2;k denotes the unrestricted SSR. Since, in general the break dates are unknown, the

test statistic is de�ned asG2(k) = sup�2�m� G2(�; k). When the number of breaks is unknown,

the relevant test statistic is UDmax2 = max1�k�AG2(k). The limit distributions ofG2(:) and

UDmax2 under homoskedastic errors are derived in Kejriwal (2019). Under Assumption A,

the above test statistics are not asymptotically pivotal and depend on the sample path

of f�tg. We propose the following bootstrap algorithm that enables asymptotically valid

inference. As in Section 5, we generate both I(1) and I(0) bootstrap samples to ensure

that the procedure has correct asymptotic size under eH0 = eH(1)
0 [ eH(0)

0 . The algorithms

are exactly the same except that for the I(1) (resp., I(0)) case a constant (resp., a time

trend) is added included in the autoregression in step (1). The bootstrap analogues of

W2(k); Wmax2; G2(k) and UDmax2 and the associated p-values are obtained as described

in Section 5. The sequential procedure outlined in Section 5.1 is accordingly modi�ed. The

following result states the large sample validity of the proposed procedures.

Theorem 5 Under Assumption A, and using the tests and bootstrap procedures described
above: Theorem 3 holds with H0 replaced by eH0.
Disentangling Trend and Persistence Shifts. An important feature is that the statis-
tics test the null hypothesis that the persistence parameters and those of the trend function

are jointly stable. Hence, they can have power against processes driven by pure trend shifts

with no change in persistence. To distinguish between trend and persistence shifts, we can

adapt the three-step approach of Kejriwal (2019) for the homoskedastic case to the present
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context. Consider �rst the non-trending case. The �rst step entails determining the number

of breaks (em) using the sequential procedure described in Section 5.1 and the associated
breakpoint estimates (T̂1; :::; T̂m̂) obtained from the unrestricted model that allows all pa-

rameters including those of the lagged �rst di¤erences to change across regimes. Second,

using the estimated breakpoints, the Wald statistic for testing the null hypothesis of stable

I(0) persistence is constructed [i.e., constancy of �i over all i] while allowing all other para-

meters to vary across the (m̂+1) regimes. To account for nonstationary volatility, the Wald

statistic is computed using a heteroskedasticity-robust estimator of the variance-covariance

matrix (cf., Phillips and Xu, 2006). Third, the null hypothesis of stable I(0) persistence is

rejected if the Wald statistic is signi�cant using the critical value from a �2(m̂) distribution.

Otherwise, the null is not rejected and we conclude in favor of a model with pure level shifts.

The trending case is more complex since the process can be either I(1) (with a possibly

time-varying drift) or I(0) (around a broken deterministic trend). As above, we develop

tests separately for the I(1) and I(0) null and use the intersection of the critical regions

of the two tests. The three-step approach is implemented as follows. First, estimate the

number of breaks (say �m) applying our proposed sequential procedure and breakpoints from

the unrestricted speci�cation. Second, compute the Wald statistic (using heteroskedasticity

robust standard errors) to test the null of constant persistence allowing the parameters of

the trend and lagged di¤erences to change at the estimated breakpoints. In the I(0) case,

the statistic has a limiting �2(m), with �m used to obtain critical values. In the I(1) case,

apply a second wild bootstrap scheme based on residuals estimated under (3) allowing the

constant to change across regimes at the estimated breakpoints. The I(1) bootstrap samples

are obtained from a DGP that now includes the estimated regime-speci�c drift in step (3) of

the bootstrap algorithm. The bootstrap distribution and critical values of the Wald statistic

can then be approximated using simulations. Finally, the null hypothesis of stable [I(1) or

I(0)] persistence is rejected if the I(0) and I(1) Wald statistics are both signi�cant.

7 Summary of the Simulations

This section summarizes the results of simulation experiments designed to assess the �nite

sample performance of our procedures and to provide a comparison with existing approaches.

The full set of results is available in Supplements B-C. Following CT, we consider three spec-

i�cations for the volatility process: (i) single discrete break; (ii) deterministically trending

volatility; (iii) near-integrated stochastic volatility. Three types of error structures are con-

sidered: i.i.d., AR(1) and MA(1). While our theory does not formally allow for moving

12



average processes, we nevertheless include this case in our simulations as a robustness check.

The wild bootstrap is implemented using a two point distribution, i.e., vt 2 f�1; 1g with
equal probability. The trimming is set at � = :15, T 2 f200; 400g and 1000 replications
are used. We report results for the non-trending case only (those for the trending case are

qualitatively similar). The lag length in the KPZ and BP procedures is selected using BIC

with maximal value set to �ve. We report the performance of the tests H�(k; �); k = 1; 2 and

Hmax�1(�) = maxfH�(1; �); H�(2; �)g as well as their non-robust (homoskedasticity-based)
asymptotic counterparts H(k; �); k = 1; 2 and Hmax1(�) = maxfH(1; �); H(2; �)g. The
ratio-based bootstrap tests of CT are designed to test the I(0) null hypothesis while our

tests allow the process to be either I(1) or I(0) under the null. Further, while our tests are

based on a �nite order autoregressive model, the CT tests are non-parametric and based on

a mixing-type assumption for the innovations. Given that conducting a full and fair com-

parison of tests with di¤erent underlying models and null hypotheses is not possible, we did

not include the CT tests in our analysis. The main �ndings are summarized as follows:

Finite Sample Size. The asymptotic tests are considerably oversized indicating their lack
of robustness to nonstationary volatility, consistent with the large sample results in Section

4. In contrast, the proposed bootstrap tests are robust to I(1) or I(0) processes maintaining

empirical size close to the nominal 5% level across the di¤erent volatility speci�cations. The

same is generally true for the di¤erent error structures considered.

Finite Sample Power. We consider DGPs with one and two breaks involving switches
between I(1) and I(0) regimes as well as between I(0)-preserving regimes. In terms of size-

adjusted power, the bootstrap tests are broadly comparable to their asymptotic counterparts,

with neither class of tests uniformly dominating the other. The e¤ect of underspecifying the

number of breaks can be seen by comparing the power ofH�(1) andH�(2) for DGPs with two

breaks, where the former is generally less powerful than the latter, though not in all cases.

The Hmax�1 test often has power close to that of the more powerful test amongst H
�(1) and

H�(2); highlighting the practical advantage of using Hmax�1 to detect the presence of at

least one break. Further, the proposed tests have substantial power against I(0)-preserving

breaks, a feature that distinguishes these tests from most existing persistence change tests

(e.g., the ratio-based tests) that are designed to detect switches between I(1) and I(0)

regimes. Finally, the proposed tests are generally more powerful with deterministic rather

than stochastic volatility.

Number of Breaks. The sequential procedure is generally reliable in selecting the number
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of breaks in the stable and single break cases. Its performance deteriorates in the two breaks

case when the probability of underestimation can be non-negligible. For instance, with an

abrupt increase in volatility, the breakpoint estimate used to partition the sample is typically

close to the second true breakpoint, so that the �rst segment includes an I(0) to I(1) break

while the second is I(0). Whether a second break is selected depends on the power of the

single break test in the �rst segment, which is relatively low. A notable improvement is

observed as the magnitude of the volatility shift decreases and/or the shift occurs near the

second persistence break in the increasing volatility case and near the �rst break otherwise.

Disentangling Trend and Persistence Shifts. We consider DGPs with a single break
in persistence in addition to a DGP that involves a pure mean shift and apply the procedure

proposed in Section 6 to compute the probabilities of selecting the true model for each for

these DGPs. The performance is generally satisfactory and improves as T increases.

8 Empirical Application

This section undertakes a detailed empirical examination of the nature of in�ation persis-

tence for a set of OECD countries. Our analysis sheds light on whether persistent, though

stable, in�ation should be regarded as a metric for evaluating macroeconomic models or

if persistence varies across monetary policy regimes depending on the relative importance

accorded to in�ation in the monetary authority�s objective function. While early empirical

studies (e.g., Cogley and Sargent, 2001) on the stability of in�ation persistence assumed

constant volatility, subsequent work recognized the importance of allowing for time-varying

volatility. A substantial literature uses Bayesian methods in a time-varying parameter VAR

framework with stochastic volatility to study the stability of the persistence of the in�ation-

gap, de�ned as the deviation of in�ation from its target level. These studies typically assume

that the target level of in�ation evolves as a driftless random walk (see, e.g., Cogley et al.,

2010).1 Our proposed procedures complement this literature by examining the persistence

properties of in�ation itself without restricting it to be I(1) a priori as well as obviating the

need to specify prior distributions. Our approach also improves upon existing frequentist

analyses on the topic that either assume homoskedasticity or restrict the nature of the null

and alternative hypotheses allowed and thereby potentially overstate/understate the aggres-

siveness of the monetary policy stance towards combating in�ation. For instance, Bataa et

1An exception is Eo (2016) who considers the persistence of in�ation itself within a Markov-switching
framework with the noise driven by normally distributed innovations.
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al. (2014) used the BP approach to identify breaks in the mean, dynamics and volatility of

in�ation assuming it is an I(0) process under the null hypothesis of stability and regime-wise

I(0) in the presence of breaks, thereby ruling out I(1) regimes. Noriega et al. (2013) and

Kejriwal (2019) allowed for unit roots but assumed homoskedasticity.

Our empirical investigation is based on monthly CPI in�ation data for nineteen OECD

countries as used in Noriega et al. (2013) and Kejriwal (2019), thereby facilitating a direct

comparison with these studies. The data span the period 1960:1-2008:6 (T = 582), except

for Germany and Korea where the starting point is 1960:2. The in�ation rates are seasonally

unadjusted and computed as it = 1200(lnPt � lnPt�1), with Pt the CPI at time t.2 The

main results are reported in Table 1. The analysis proceeds in six steps. First, we apply

the sequential algorithm to estimate the number of breaks m̂ [column (2)] with A = 5; � =

:15 and � = :10. Second, conditional on m̂, the breakpoint estimates are obtained by

minimizing the unrestricted SSR [column (3)]. Third, to distinguish persistence shifts from

pure mean shifts, we conduct Wald tests (at the 10% level) of the null that it is subject

to m̂ mean shifts against the alternative of m̂ mean and persistence shifts [column (4)].

Here, a heteroskedasticity robust standard error estimate is used to construct the statistics

although a wild bootstrap approach could also be used (the results were nearly identical).

Fourth, based on the selected model, the largest (across regimes) estimated sum of the

autoregressive parameters is computed [column (5)] along with equal-tailed 90% con�dence

intervals [column (6)] based on the procedure of Andrews and Guggenberger (2014, AG

henceforth) uniformly valid over the stationary and non-stationary regions as robust to

conditional (though not unconditional) heteroskedasticity. We use the BIC to select the

number of lags within each regime with a maximum of 12 lags. Fifth, the results of the CT

procedure are included to highlight the di¤erences in terms of model selection [columns (7)

and (8)]. Sixth, unit root tests allowing for nonstationary volatility (Cavaliere and Taylor,

2009) are presented as a robustness check on the model selection [column (9)].

We now turn to a discussion of the results. Evidence of at least one break (m̂ > 0) is

obtained for seven countries, of which two (Austria, Korea) favor an I(0) process with a

single mean shift. The AG interval estimates are consistent with the presence of at least one

I(1) segment in fourteen countries of which three are subject to at least one persistence break.

Next, we provide a comparison between our results and those from the CT procedure. For the

latter, we �rst apply their test K4 (at the 10% level with 15% trimming) designed to detect

2We prefer to use seasonally unadjusted rates since commonly used adjustment procedures can have
adverse e¤ects on the power of structural change tests (see Ghysels and Perron, 1993).
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a single persistence change [I(1)-I(0) or I(0)-I(1)]. Upon a rejection, the p-values of their

K1 and K01 tests (designed to detect the I(0)-I(1) and I(0)-I(1) alternatives, respectively)
are computed and the direction of persistence change determined by the smaller of the

two p-values. If both p-values are (near)-zero, the evidence is not conclusive. Comparing

columns (7)-(8) shows that the procedures agree only for Luxembourg and Netherlands and

point to di¤erent models for all other countries. The CT approach is inconclusive in seven

cases. Further, for the eleven cases where the proposed approach decides in favor of a pure

I(1) process, the CT procedure suggests a break in persistence, consistent with the fact that

it is designed to test the null hypothesis of a stable I(0) process. In the two cases for which we

select a pure mean shift process, the CT approach again points to a persistence break, again

potentially explained by the non-robustness of their approach. Column (9) supplements our

analysis with unit root tests applied to the regime with the largest estimate of the sum of the

autoregressive coe¢ cients based on the selected model in column (7). We report the p-values

of the wild bootstrap ADF test proposed by Cavaliere and Taylor (2009) which is robust

to nonstationary volatility. The lag length in the ADF regression was selected using the

Modi�ed Akaike Information Criterion (MAIC) of Ng and Perron (2001) with the maximum

lag set at
�
12(T=100)1=4

�
. The �ndings match the model selection outcomes in column (7)

for fourteen of the nineteen countries, indicating a fair degree of consistency between the

two approaches.

Table 2 presents the regime-wise estimates for the countries that are subject to at least one

persistence break. Interestingly, for four of the �ve countries with persistence breaks, the �rst

break corresponds to an increase in persistence that occurs between the early and mid 70s, a

period often described as one of �the Great In�ation�and commonly believed to be associated

with both a high level and high degree of persistence. In contrast, for France and Germany

which experience two persistence breaks, the second break is associated with a persistence

decline occurring in the 80s and 90s. To justify the importance of allowing for nonstationary

volatility, Figure D-1 in Supplement D plots the volatility estimates obtained by �tting a

nonparametric regression to the squared residuals obtained by estimating the model selected

in column (7) of Table 1. As suggested by Xu and Phillips (2008), a Gaussian kernel is

used with the bandwidth chosen by cross validation, searching over bandwidths hi = ciT�0:4

(i = 1; :::; 4) with fc1; :::; c4g = f:25; :4; :6; :75g. The estimates show considerable variation
over time with di¤erent patterns across countries. While a smooth trend suggests itself for

some countries (e.g., France and Norway), more irregular movements are observed for others

(e.g., Belgium, UK, USA). A similar overall picture is obtained if one plots the estimated
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variance pro�le (Figure D-2) as suggested by Cavaliere and Taylor (2007) indicating that the

nonstationary behavior of the sample volatility paths is a key feature of the in�ation data,

which if ignored, might lead to misleading inferential results.

Finally, to evaluate the impact of nonstationary volatility on persistence change, it is

useful to compare our results with the asymptotic sequential procedure of Kejriwal (2019)

which assumes homoskedasticity. Using the same dataset, Kejriwal (2019) concludes in favor

of a persistence change model for six additional countries (Canada, Finland, Greece, Japan,

UK, USA) all of which are found to be pure I(1) processes according to our analysis that

accounts for nonstationary volatility. Interestingly, Kejriwal�s analysis for USA suggests a

shift from a high persistence I(0) regime to a low persistence I(0) regime, consistent with

the view (e.g., Sims, 2001) that the case for unstable persistence is weakened once allowance

is made for shifts in the variance of the innovations.3 Thus, evidence for persistence shifts

obtained using more restrictive methods might overstate the role of monetary policy, e.g., a

purported signi�cant decline in persistence may be attributed to a more aggressive stance

taken by the monetary authority towards in�ation.

9 Conclusion

We proposed wild bootstrap sup-Wald tests to detect persistence change in a time series

with nonstationary volatility. The set of alternative hypotheses considered include processes

exhibiting switches between I(1) and I(0) regimes or that remain I(0) in each regime. The

performance of the methods suggested was shown to be reliable in �nite samples and to have

better properties than existing tests. An application to in�ation rates further illustrates the

usefulness of the proposed approach in practice.

3Using the same dataset, Noriega et al. (2013) applies the doubly recursive test of Leybourne et al. (2007)
to conclude in favor of a stable I(0) process for 75% of the OECD countries analyzed here.
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Data Availability Statement The data are obtained from the IMF�s International
Financial Statistics (https://data.imf.org/) except for Germany and Korea, which were taken
from the OECD Main Economic Indicators, available at http://oecd-stats.ingenta.com.
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Supplement A: Proofs of the Theoretical Results

For a (d � 1) vector v, kvk = (
Pd

i=1 v
2
i )
1=2 denotes the standard Euclidean norm while

for a random variable v; kvkq = (E(jvjq)1=q denotes the Lq (q � 1) norm. For a matrix

B, kBk denotes the Frobenius norm, i.e., kBk =
p
tr(B0B) and MB = I � PB; PB =

B(B0B)�1B0. Let P � denote the bootstrap probability measure and E� the expectation with
respect to P �. De�ne the following quantities: (i) V (r) = diag(g2(r)Ip; g(r)); (ii) DT =
diag(a�2T T�1; a�1T T�1=2); (iii) For i = 1; :::; k + 1, Zi = (zTi�1+1; :::; zTi)

0 where zt = (yt�1; 1)0

for t = Ti�1 + 1; :::; Ti; Z = (z1; :::; zT )
0, Y�1 = (y0; :::; yT�1), �(T�1) = (1; :::; 1)0; (iv) �zi =

(Ti � Ti�1)
�1PTi

t=Ti�1+1
zt and �zi;�1 = (Ti � Ti�1)

�1PTi
t=Ti�1+1

zt�1, �z = T�1
PT

t=1 zt, �z�1 =

T�1
PT

t=1 zt�1. As a matter of notation, we will use C = C[0; 1] to denote the space of con-
tinuous functions on [0; 1] and D the space of right continuous with left limit processes on
[0; 1], �

p!�to denote convergence in probability, �w!�to denote weak convergence in the space
D endowed with the Skorohod metric, �w!p�to denote weak convergence in probability under
the bootstrap measure (Giné and Zinn, 1990), and b:c to denote the integer part of its argu-
ment. Further, B1(:) and B2(:) denote standard independent Brownian motions on [0; 1] and
B(:) = [B1(:); B2(:)]

0. For any stochastic process Z(:) de�ned over [0; 1], Z(i)(:) denotes
Z(:) demeaned over [�i�1; �i], i.e., Z(i)(r) = Z(r)�(�i��i�1)�1

R �i
�i�1

Z, r 2 [�i�1; �i]: Finally,
for ease of presentation, all integrals of the form

R b
a
f(r)dr are expressed as

R b
a
f . We �rst state

two lemmas that will be useful in developing the proofs of the main results.

�Corresponding Author. Krannert School of Management, Purdue University, 403 West State Street,
West Lafayette IN 47907 (mkejriwa@purdue.edu).

yKrannert School of Management, Purdue University, 403 West State Street, West Lafayette IN 47907
(yu656@purdue.edu).

zDepartment of Economics, Boston University, 270 Bay State Rd., Boston MA, 02215, USA (per-
ron@bu.edu).

A-1



Lemma A.1 [Xu, 2008] Suppose fytg is generated by the AR(p) model

yt = �+
Pp

j=1 �j(yt�j � �) + et

where all roots of �(L) = 1�
Pp

j=1 �jL
j are outside the unit circle and fetg satis�es Assump-

tions A(3-4). Let eyt�j = yt�j � �; y�p;t = (eyt�1; :::; eyt�p)0 and xt = (y0�p;t; 1)0. Also, de�ne
the [(p+ 1)� (p+ 1)] matrix �T = diag(T 1=2; :::; T 1=2; T 1=2a�1T ): Then

(a) y�p;t =
P1

j=1 bjet�j with bj = ( j�1; :::;  j�p) if j � 1;  j = 0 if j < 0; where
�(L)�1 =

P1
j=0  jL

j;  0 = 1;
P1

j=0 j
�� j�� <1.

(b) a�2T �
�1
T (
PT

t=1 xtx
0
t)�

�1
T

p! Q where Q =

0@ 

R
g2 0(p�1)

0(1�p) 1

1A and 
 =
P1

j=1 bjb
0
j.

(c) a�2T �
�1
T

PT
t=1 xtet

w!
R
V dBp+1; where Bp+1 = (B0

p; B1)
0 with Bp is a p-vector Brownian

motion with covariance matrix 
 and B1 is a standard Brownian motion independent of Bp.

Lemma A.2 Suppose fytg is generated by the AR(p) model with � = 1:

yt = �yt�1 +
Pp�1

j=1 �j�yt�j + et

where f�jg satis�es Assumption A(2) and fetg satis�es Assumptions A(3-4). Let e =
(e1; :::; eT )

0, vt = �yt, wt = (�yt�1; :::;�yt�p+1)0, W = (w1; :::; wT )
0, Wj = (wTj�1+1; :::; wTj)

0

(j = 1; :::; k + 1) and � = (�1; :::; �p�1)0. Then

(a) a�1T T�1=2
PbTrc

t=1 et
w!
R r
0
gdB1 � eg(1)Bg;1(r);

(b) a�1T T�1=2
PbTrc

t=1 vt
w! d(1)

R r
0
gdB1 � d(1)eg(1)Bg;1(r), if d(1) 6= 0, with vt = P1

j=0 djet�j
and

P1
j=0 j jdjj <1;

(c) a�2T T�1
PbTrc

t=1 yt�1et
w! (1=2)d(1)[eg(1)2B2

g;1(r)� eg(r)2];
(d)

(a�2T T�1W 0W )�1
 = Op(1);

(e) kDTZ
0
2iW2ik = Op(1);

(f)
a�2T T�1=2W 0e

 = Op(1);

(g)

ha�2T T�1W 0W � a�2T T�1
Pk=2

i=1W
0
2iZ2i(Z

0
2iZ2i)

�1Z 02iW2i

i�1 = Op(1).

Proof of Lemma A.2: (a) The result follows from Lemma 1 in Cavaliere and Taylor (2009).

(b) By Assumption A2, �yt = vt =
P1

j=0 djet�j with
P1

j=0 j jdjj < 1, where d(L) =P1
j=0 djL

j = �(L)�1. Then, with the additional restriction d(1) 6= 0; the sequence fvtg satis�es
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Assumption 1�in Cavaliere and Taylor (2009) and hence by their Theorem 3, a�1T T�1=2
PbTrc

t=1 vt
w! d(1)

R r
0
gdB1.

(c) Note that from the Beveridge-Nelson (1981) decomposition, we have T�1
PbTrc

t=1 yt�1et =

d(1)T�1
PbTrc

t=2 f
Pt�1

j=1 ejget + op(1). Next, using the fact that

T�1
PbTrc

t=2 f
Pt�1

j=1 ejget = (1=2)[(T�1=2
PbTrc

t=1 et)
2 � T�1

PbTrc
t=1 e

2
t ] + op(1)

the result follows from (a) since a�2T T�1
PbTrc

t=1 e
2
t
w!
R r
0
g(s)2 � eg(r)2.

(d) The entries in the matrix a�2T T�1W 0W are of the form T�1
PT

t=1�yt�j�yt�j0, j; j
0 2

f1; :::; p � 1g. When � = 1, f�ytg is an AR(p � 1) process with all roots outside the unit
circle. Then by Lemma A.1(b), T�1

PT
t=1�yt�j�yt�j0 = Op(1) and the result follows.

(e) We have a�1T T�1=2ybTrc = Op(1) uniformly in r 2 [0; 1]. For a �xed j 2 f1; :::; p� 1g,

a�1T T�1=2
PT2i

t=T2i�1+1
�yt�j = a�1T T�1=2yT2i�j � a�1T T�1=2yT2i�1+1�j

w! d(1)eg(1)fBg;1(�2i)�Bg;1(�2i�1)g = Op(1):

Further,

a�2T T�1
PT2i

t=T2i�1+1
yt�1�yt�j =

PT2i
t=T2i�1+1

(a�1T T�1=2yt�1)(a
�1
T T�1=2�yt�j)

w! (1=2)fd(1)2eg(1)2[B2
g;1(�2i)�B2

g;1(�2i�1)]

�(�2i � �2i�1)�0g+ (�2i � �2i�1)
�
�0 + �1 + :::+ �j�1

	
= Op(1)

where �j = E(�yt�yt�j) = eg(1)2P1
s=0 dsds+j. Hence, all entries in the matrix DTZ

0
2iW2i are

Op(1) and the result follows.

(f) The result follows by applying Lemma A.1(c) to the sequence f�ytg.

(g) First, observe that a�2T T�1W 0W = Op(1) by Lemma A.1(b). Next, we have

a2TDTZ
0
2iZ2iDT

w!

24d(1)2eg(1)2 R �2i�2i�1
B2
g;1 d(1)eg(1) R �2i

�2i�1
Bg;1

d(1)eg(1) R �2i
�2i�1

Bg;1 �2i � �2i�1

35 � W1;i

Denote the limit of DTZ
0
2iW2i by W2;i. Thus combining the results in (e),

T�1
Pk=2

i=1 [W
0
2iZ2iDT ]

�
(a2TDTZ

0
2iZ2iDT )

�1� [DTZ
0
2iW2i]

w! T�1
Pk=2

i=1W 0
2;iW�1

1;iW2;i = Op(T
�1)Op(1) = op(1)

and the result follows. N

Proof of Theorem 1: We prove the result for Model 1a and k even. The proofs for the
other tests are very similar and omitted. Let eE�i and Ê�i be the vector of residuals in the i-th
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regime under H(1)
0 and H(1)

a;k, respectively, for i = 1; :::; k+1. Denote ̂2i = (�̂2i� 1; ĉ2i)0, i =
1; :::; k=2; where �̂2i and ĉ2i are the OLS estimates obtained from regime 2i. Then we have

eE�i = �Yi �Wi
��;

Ê�2i = �Y2i �W2i�̂� Z2î2i;

Ê�2i+1 = �Y2i+1 �W2i+1�̂;

for i = 1; :::; k + 1

for i = 1; :::; k=2

for i = 0; :::; k=2

(A.1)

where ���� = (W 0W )�1W 0e underH(1)
0 . Further, �̂ and ̂2i satisfy the �rst order conditions

Z 02iÊ
�
2i = 0; for i = 1; :::; k=2 ; (A.2)Pk=2

i=1W2iÊ
�
2i +

Pk=2
i=0W2i+1Ê

�
2i+1 = 0: (A.3)

Under H(1)
0 , from (A:3), we have �̂ � � = (W 0W )�1(W 0e �

Pk=2
i=1W

0
2iZ2î2i). Next, from

(A:2),

a�2T D�1
T ̂2i = (a

2
TDTZ

0
2iZ2iDT )

�1
h
DTZ

0
2iW2i(�� �̂) +DTZ

0
2iE2i

i
(A.4)

for i = 1; :::; k=2, where E2i = (eT2i�1+1; :::; eT2i)
0. Solving for (�̂� �) we obtain

�̂�� = [W 0W �
Pk=2

i=1

�
W 0
2iZ2i(Z

0
2iZ2i)

�1Z 02iW2i

	
]�1[W 0e�

Pk=2
i=1

�
W 0
2iZ2i(Z

0
2iZ2i)

�1Z 02iE2i
	
]

(A.5)
so that using Lemma A.2, and noting that the limits of W 0

2iZ2iDT , a2TDTZ
0
2iZ2iDT and

DTZ
0
2iE2i are Op(1) uniformly in i,

jj�̂� �jj �
[W 0W �

Pk=2
i=1

�
W 0
2iZ2i(Z

0
2iZ2i)

�1Z 02iW2i

	
]�1
�h

kW 0ek+
Pk=2

i=1

�
kW 0

2iZ2iDTk
(DTZ

0
2iZ2iDT )

�1 kDTZ
0
2iE2ik

	i
= [Op(a

�2
T T�1)][Op(a

2
TT

1=2) + (k=2)fOp(1)Op(a2T )Op(1)g] = Op(T
�1=2)

Also,

jj(DTZ
0
2iZ2iDT )

�1DTZ
0
2iW2i(�� �̂)jj � jj(DTZ

0
2iZ2iDT )

�1jjjjDTZ
0
2iW2ijjjj(�� �̂)jj

= Op(a
2
T )Op(1)Op(T

�1=2) = Op(a
2
TT

�1=2) (A.6)

Using (A:6) in (A:4), we have

a�2T D�1
T ̂2i = (a

2
TDTZ

0
2iZ2iDT )

�1DTZ
0
2iE2i + op(1): (A.7)

Next, �̂� �� = �(W 0W )�1
Pk=2

i=1 fW 0
2iZ2î2ig so that

jj�̂� ��jj �
(W 0W )�1

Pk=2
i=1 kW 0

2iZ2iDTk
D�1

T ̂2i


= Op(a
�2
T T�1)(k=2)fOp(1)Op(a2T )g = Op(T

�1):
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We can write, from (A:1), for i = 1; :::; k=2, eE�2i = Ê�2i + Z2î2i + W2i(�̂ � ��) and for
i = 0; :::; k=2, eE�2i+1 = Ê�2i+1 +W2i+1(�̂� ��). Thus the numerator of the F statistic can be
written as

SSR
(1)
0 � SSR

(1)
1a;k =

Pk=2
i=1f eE�02i eE�2i � Ê�02iÊ

�
2ig+

Pk=2
i=0f eE�02i+1 eE�2i+1 � Ê�02i+1Ê

�
2i+1g (A.8)

=
Pk=2

i=1(D
�1
T ̂2i)

0(DTZ
0
2iZ2iDT )D

�1
T ̂2i

+(�̂� ��)0
Pk=2

i=1(W
0
2iZ2iDT )(D

�1
T ̂2i)+(�̂� ��)0(W 0W )(�̂� ��)

where

jj(�̂� ��)0
Pk=2

i=1(W
0
2iZ2iDT )(D

�1
T ̂2i)jj � jj�̂� ��jj

Pk=2
i=1 k(W 0

2iZ2iDT )k
(D�1

T ̂2i)


= Op(T
�1)(k=2)fOp(1)Op(a2T )g = Op(a

2
TT

�1)

and

jj(�̂� ��)0(W 0W )(�̂� ��)jj � jj�̂� ��jj kW 0Wk jj�̂� ��jj
= Op(T

�1)Op(a
2
TT )Op(T

�1) = Op(a
2
TT

�1)

Then, using (A:7) in (A:8), we have

a�2T (SSR
(1)
0 � SSR

(1)
1a;k) =

Pk=2
i=1

�
E 02iZ2iDT (a

2
TDTZ

0
2iZ2iDT )

�1DTZ
0
2iE2i

	
+ op(1)

=
k=2P
i=1

[
fa�2T T�1

PT2i
t=T2i�1+1

(yt�1 � �y2i;�1)etg2

a�2T T�2
PT2i

t=T2i�1+1
(yt�1 � �y2i;�1)2

(A.9)

+
T

T2i � T2i�1
fa�1T T�1=2

PT2i
t=T2i�1+1

etg2]

Using Lemma A.2(a,c) in (A:9), we have

a�2T (SSR
(1)
0 � SSR

(1)
1a;k)

w! eg(1)2 k=2P
i=1

2664
�n
B
(2i)
g;1 (�2i)

o2
�
n
B
(2i)
g;1 (�2i�1)

o2
�eg(1)�2feg(�2i)2�eg(�2i�1)2g�2

4
R �2i
�2i�1

h
B
(2i)
g;1 (r)

i2
dr

+ 1
�2i��2i�1 fBg;1(�2i)�Bg;1(�2i�1)g2

3775
Finally, noting that a�2T (T � k)�1SSR

(1)
1a;k

p!
R 1
0
g2 � eg(1)2, the result follows.N

Proof of Theorem 2: We can write

SSR
(0)
0 � SSR

(0)
1;k = DR(1; k + 1)�

Pk+1
i=1 D

U(i; i)

where DU(i; j) [DU(i; j), resp.,] is the sum of squared residuals from the unrestricted (re-
stricted, resp.,) regression using data from segments i to j (inclusively). Let Y(�1)1;i, Z1;i,W1;i,
and E1;i denote the vectors or matrices containing elements of Y�1, Z,W and e, respectively,
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belonging to the partition from segment 1 to i (inclusively), for i = 1; :::; k + 1. Further,
de�ne Si = Z 01;iE1;i, Hi = Z 01;iZ1;i, Ki = Z 01;iW1;i, Li = W 0

1;iW1;i and Mj = W 0
1;iE1;i for

i = 1; :::; k+1. Finally, let AT = (W 0MZW )
�1W 0MZe and �AT = (W 0M �ZW )

�1W 0M �Ze, where
�Z = diag(Z1; :::; Zk+1). Then, from Bai and Perron (1998, eq. (39) and (41), pg. 73-74),

SSR
(0)
0 � SSR

(0)
1;k =

Pk
i=1 FT;i +DR(1; 1)�DU(1; 1)

where

FT;i =
�
�S 0i+1H�1

i+1Si+1 + S 0iH
�1
i Si + (Si+1 � Si)[Hi+1 �Hi]

�1(Si+1 � Si)
�

+
�
2S 0i+1H

�1
i+1Ki+1AT � 2S 0iH�1

i KiAT � 2(Si+1 � Si)
0[Hi+1 �Hi]

�1(Ki+1 �Ki) �AT
�

+
�
2(Mi+1 �Mi)

0( �AT � AT ) + ( �AT � AT )
0(Li+1 � Li)( �AT � AT )

�
= T1 + T2 + T3 (A.10)

We now analyze each of the terms T1-T3 in (A:10). For T1:

T1 = �S 0i+1H�1
i+1Si+1 + S 0iH

�1
i Si + (Si+1 � Si)

0[Hi+1 �Hi]
�1(Si+1 � Si)

= ���1i+1[fT�1=2
PTi+1

t=1 etg2 + fT�1
PTi+1

t=1 ey2t�1g�1fT�1=2PTi+1
t=1 eyt�1etg2]

+��1i [fT�1=2
PTi

t=1 etg2 + fT�1
PTi

t=1 ey2t�1g�1fT�1=2PTi
t=1 eyt�1etg2]

+(�i+1 � �i)
�1[fT�1=2

PTi+1
t=Ti+1

etg2 + fT�1
PTi+1

t=Ti+1
ey2t�1g�1fT�1=2PTi+1

t=Ti+1
eyt�1etg2]

+op(a
2
T )

using Lemma A.1(b) where eyt�j = yt�j � �. Then, from Lemma A.1, we have

a�2T T1
w! eg(1)2 ����1i+1B2

g;1(�i+1) + ��1i B2
g;1(�i) + (�i+1 � �i)

�1[Bg;1(�i+1)�Bg;1(�i)]
2
�

+eg(1)2
24 �feg2(�i+1)g�1B2

g;2(�i+1) + feg2(�i)g�1B2
g;2(�i)+

feg2(�i+1)� eg2(�i)g�1 [Bg;2(�i+1)�Bg;2(�i)]
2

35
� eg(1)2 "f�iBg;1(�i+1)� �i+1Bg;1(�i)g2

�i�i+1(�i+1 � �i)
+
feg(�i)2Bg;2(�i+1)� eg(�i+1)2Bg;2(�i)g2eg(�i)2eg(�i+1)2 feg(�i+1)2 � eg(�i)2g

#
:

For T2:

T2 = 2(T�1=2Si+1)
0(T�1Hi+1)

�1T�1Ki+1T
1=2AT � 2(T�1=2Si)0(T�1Hi)

�1T�1KiT
1=2AT

�2[T�1=2(Si+1 � Si)]
0[T�1(Hi+1 �Hi)]

�1T�1(Ki+1 �Ki)T
1=2 �AT :

De�ne e
p�1 = (
11 � 
12;
12 � 
13; :::;
1(p�1) � 
1p)0, where 
ij is the (i; j) element of

 de�ned in Lemma A.1. Then, using Lemma A.1(a)-(c), we have

a�2T (T
�1=2Si+1)

0(T�1Hi+1)
�1T�1Ki+1

w! (1=
11)
1=2Bg;2(�i+1)e
0p�1;

a�2T (T
�1=2Si)

0(T�1Hi)
�1T�1Ki

w! (1=
11)
1=2Bg;2(�i)e
0p�1;

a�2T [T
�1=2(Si+1 � Si)]

0[T�1(Hi+1 �Hi)]
�1T�1(Ki+1 �Ki)

w! (1=
11)
1=2[Bg;2(�i+1)�Bg;2(�i)]e
0p�1:
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Using Lemma A.1, it can further be shown that

T�1W 0PZW
p! 
�111

e
p�1e
0p�1eg2(1); T�1W 0P �ZW
p! 
�111

e
p�1e
0p�1eg2(1);
T�1=2W 0PZe

w! (1=
11)
1=2e
p�1Bg;2(1); T�1=2W 0P �Ze

w! (1=
11)
1=2e
p�1Bg;2(1);

so that �AT � AT
p! 0. Hence, a�2T T2 = op(1). For T3:

a�2T T3 = a�2T [2(Mi+1 �Mi)
0( �AT � AT ) + ( �AT � AT )

0(Li+1 � Li)( �AT � AT )]
p! 0

since �AT � AT
p! 0. From (A:10), we then obtain

a�2T FT;i
w! eg(1)2 "f�iBg;1(�i+1)� �i+1Bg;1(�i)g2

�i�i+1(�i+1 � �i)
+
feg(�i)2Bg;2(�i+1)� eg(�i+1)2Bg;2(�i)g2eg(�i)2eg(�i+1)2 feg(�i+1)2 � eg(�i)2g

#

The result follows noting that [T � 2(k + 1)]�1a�2T SSR
(0)
1;k

p! eg(1)2.N
Proof of Theorem 3(a): We will prove the theorem for the bootstrap test based on
F1a(�; k) for k even. The bootstrap statistic is given by

F �1a(�; k) = (T � k)(SSR
�;(1)
0 � SSR

�;(1)
1a;k )=[kSSR

�;(1)
1a;k ]

where

SSR
�;(1)
0 =

PT
t=1(y

(1)
t � y

(1)
t�1)

2 (A.11)

SSR
�;(1)
1a;k =

Pk=2
i=1

PT2i
t=T2i�1+1

(y
(1)
t � �y(1)2i � �̂

(1)
2i (y

(1)
t�1 � �y

(1)
2i;�1))

2 (A.12)

+
Pk=2

i=0

PT2i+1
t=T2i+1

(y
(1)
t � y

(1)
t�1)

2

In (A:12), �̂(1)2i denotes the slope estimate from an OLS regression of y(1)t on a constant and

y
(1)
t�1 (t = T2i�1 + 1; :::; T2i; i = 1; :::; k=2). Since y

(1)
t = y

(1)
t�1 + e

(1)
t for t � T; we have

a�2T (SSR
�;(1)
0 � SSR

�;(1)
1a;k )

=

k=2X
i=1

"
(T2i � T2i�1)[a

�1
T �e

(1)
2i ]

2 +
[a�2T T�1

PT2i
t=T2i�1+1

f(y(1)t�1 � �y
(1)
2i;�1)e

(1)
t g]2

a�2T T�2
PT2i

t=T2i�1+1
(y
(1)
t�1 � �y

(1)
2i;�1)

2

#
(A.13)

Next, we establish an invariance principle for the sequence fa�1T e
(1)
t ; t = 1; :::; Tg. To this end,

let F�
t be the �-�eld generated by fvs; s � tg. Since e(1)t = �etvt, fa�1T e

(1)
t ;F�

t g is a martingale
di¤erence array. Further, uniformly over r 2 [0; 1],

a�2T T�1
PbTrc

t=1 [e
(1)
t ]

2 � a�2T T�1
PbTrc

t=1 �e
2
t

p�! 0
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since

E�fa�2T T�1
PbTrc

t=1 ([e
(1)
t ]

2 � �e2t )g2 = E�fa�2T T�1
PbTrc

t=1

�
�e2t (v

2
t � 1

�
g2

� CT�2
PbTrc

t=1 (a
�1
T �e

2
t )
4 = op(1);

(where C is a positive constant), using the fact that under H(1)
0 , a

�1
T �et = a�1T et + a

�1
T w0t(��

��) = a�1T et+Op(T
�1=2). Also, a�2T T�1

PbTrc
t=1t �e

2
t

p!
R r
0
g2 uniformly over r 2 [0; 1] (by Lemma

2 in Cavaliere and Taylor, 2008(a)). Then, applying Theorem 2.1 in Hansen (1992) with
ST (:) = T�1=2

P[T:]
t=1 vt, we obtain

T�1=2
PbTrc

t=1 a
�1
T e

(1)
t = a�1T

R r
0
�ebTscdST (s)

w!p

R r
0
g(s)dB1(s) = eg(1)Bg;1(r): (A.14)

Using (A:14), we have

a�2T T�2
T2iX

t=T2i�1+1

(y
(1)
t�1 � �y

(1)
2i;�1)

2 w!p eg(1)2 Z �2i

�2i�1

[B
(2i)
g;1 (s)]

2

a�2T T�1
T2iX

t=T2i�1+1

f(y(1)t�1 � �y
(1)
2i;�1)e

(1)
t g

w!p (1=2)eg(1)2
24 fB(2i)

g;1 (�2i)g2 � fB
(2i)
g;1 (�2i�1)g2

�eg(1)�2 feg(�2i)2 � eg(�2i�1)2g
35

a�1T T 1=2�e
(1)
2i

w!p (�2i � �2i�1)
�1eg(1)[Bg;1(�2i)�Bg;1(�2i�1)] (A.15)

Substituting (A:15) in (A:13) and noting that (T � k)�1SSR
�;(1)
1a;k

p! eg(1)2, F �1a(�; k) w!p

F 01a(�; k), where F
0
1a(�; k) is the weak limit of F1a(�; k) as stated in Theorem 1. The rest of

the proof follows from the proof of Theorem 5 in Hansen (2000). The bootstrap BP test for
k breaks is given by

G�1(k) = [T � 2(k + 1)](SSR
�;(0)
0 � SSR

�;(0)
1;k )=[kSSR

�;(0)
1;k ]

where

SSR
�;(0)
0 =

PT
t=1(e

(0)
t � �e(0) � e�(0)(e(0)t�1 � �e(0)�1))2 (A.16)

SSR
�;(0)
1;k =

Pk+1
i=1

PTi
t=Ti�1+1

(e
(0)
t � �e(0)i � �̂

(0)
i (e

(0)
t�1 � �e

(0)
i;�1))

2 (A.17)

In (A:16) (resp., A:17), e�(0) (resp., �̂(0)i ) denotes the slope estimate from an OLS regression
of e(0)t on a constant and e(0)t�1 (t = 1; :::; T ) (resp., e(0)t�1 (t = Ti�1 + 1; :::; Ti)). After some
algebra, we have

a�2T (SSR
�;(0)
0 � SSR

�;(0)
1;k ) = �T

�
a�1T �e

(0)
�2 � [a�2T T�1=2

PT
t=1f(e

(0)
t�1 � �e

(0)
i;�1)e

(0)
t g]2

a�2T T�1
PT

t=1(e
(0)
t�1 � �e

(0)
i;�1)

2

+
k+1X
i=1

"
(Ti � Ti�1)[a

�1
T �e

(0)
i ]

2 +
[a�2T T�1=2

PTi
t=Ti�1+1

f(e(0)t�1 � �e
(0)
i;�1)e

(0)
t g]2

a�2T T�1
PTi

t=Ti�1+1
(e
(0)
t�1 � �e

(0)
i;�1)

2

#
: (A.18)
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Next, we establish an invariance principle for the sequence fa�1T e
(0)
t ; t = 1; :::; Tg. In partic-

ular, we will show that for r 2 [0; 1],

T�1=2
PbTrc

t=1 a
�1
T e

(0)
t

w!p

R r
0
g(s)dB1(s): (A.19)

To this end, let F�
t be the �-�eld generated by fvs; s � tg. Since e(0)t = eetvt, f a�1T e

(0)
t ;F�

t g is
a martingale di¤erence array. Further, uniformly over r 2 [0; 1],

a�2T T�1
PbTrc

t=1 [e
(0)
t ]

2 � a�2T T�1
PbTrc

t=1 ee2t p�! 0

since

E�fa�2T T�1
PbTrc

t=1 ([e
(0)
t ]

2 � ee2t )g2 = E�fa�2T T�1
PbTrc

t=1

�ee2t (v2t � 1�g2
� CT�2

PbTrc
t=1 (a

�1
T eet)4 = op(1)

using the fact that a�1T eet = a�1T et+Op(T
�1=2) [eq. (A.7) in Xu, 2008]. Also, a�2T T�1

PbTrc
t=1 ee2t p!R r

0
g2. Then, again applying Theorem 2.1 in Hansen (1992) with ST (:) = T�1=2

P[T:]
t=1 vt, we

have
T�1=2

PbTrc
t=1 a

�1
T e

(0)
t = a�1T

R r
0
eebTscdST (s) w!p

R r
0
g(s)dB1(s):

Noting that fa�2T e
(0)
t e

(0)
t�1;F�

t g is a martingale di¤erence array, we can show, using similar
arguments as above, that

T�1=2
bTrcX
t=1

a�2T e
(0)
t e

(0)
t�1

w!p

Z r

0

g2(s)dB2(s) (A.20)

for r 2 [0; 1], where B2(:) is independent of B1(:). Finally, since a�2T T�1SSR
�;(0)
1;k

p! eg(1)2,
G�1(�; k)

w!p G
0
1(�; k) using (A:19) and (A:20) in (A:18), where G

0
1(�; k) is the weak limit

of G1(�; k) as de�ned in Theorem 2. Hence, following the proof of Theorem 5 in Hansen
(2000), p�k;G1

w! U [0; 1], p�UDmax
w! U [0; 1].N

Proof of Theorem 3(b): The proof of this result follows directly from part (a) and is
hence omitted.

Proof of Theorem 3(c):We will prove p�m;W1

p! 0 and p�m;G1
p! 0 under H(1)

a;m with m even.

Consequently, p�Wmax

p! 0 and p�UDmax
p! 0. The proofs for the alternatives H(1)

b;m and

H
(0)
1;m can be established using similar arguments. The proof proceeds in two steps: (i) we

�rst show that the bootstrap counterparts F �1a(m), F
�
1b(m) and G

�
1(m) of F1a(m), F1b(m) and

G1(m), respectively, are each Op(1) under H
(1)
a;m; (ii) F1a(m) (hence W1(m)) and G1(m) both

diverge with T . For (i), �rst note that for s 2 [0; 1],

a�1T �ebTsc = a�1T ebTsc + a�1T
Pm=2

i=1 (�2i � 1)hbTsc�1I(bTsc 2 [T 02i�1 + 1; T 02i]) +Op(T
�1=2)
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so that

a�2T T�1
PbTrc

t=1 �e
2
t = a�2T T�1

PbTrc
t=1 e

2
t+a

�2
T T�1

PbTrc
t=1

Pm=2
i=1 (�2i�1)2h2t�1I(t 2 [T 02i�1+1; T 02i])+op(1)

p!
R r
0
g2 +

Pm=2
i=1 (�2i � 1)2(


(2i)
11 )

R r
0
g(s)2I(s 2 [�02i�1; �02i])ds � �V (r) (A.21)

where a�2T T�1
PbTsc

t=T 02i�1+1
h2t�1

p! 

(2i)
11

R s
�02i�1

g2 if s 2 [�02i�1; �02i] and 

(2i)
11 is the (1; 1) element

of 
(2i) with 
(2i) de�ned analogously to 
 in Lemma A.1 but now speci�c to regime 2i.
Therefore, we have for r 2 [0; 1],

a�1T T�1=2
PbTrc

t=1 e
(1)
t = a�1T

R r
0
�ebTscdST (s)

w!p

R r
0
g1(s)dB1(s) � �Bg;1(r) (A.22)

where g1(s) = g(s)[1 +
Pm=2

i=1 (�2i � 1)2(

(2i)
11 )I(s 2 [�02i�1; �02i])ds]1=2. Note that

R r
0
g1(s)

2 =
�V (r). Then, the results stated in (A:15) all hold with Bg;1(:) replaced by �Bg;1(:). Further,
(T � k)�1SSR

�;(1)
1a;k

w!p

R 1
0
g1(s)

2 = �V (1). Thus, F �1a(m) = Op(1). Entirely analogous argu-
ments can be used to establish F �1b(m) = Op(1). Next, we show that G�1(m) is stochastically
bounded under H(1)

a;m. First, note that we can write

eet = yt � �y � e�(yt�1 � �y�1)� (wt � �w)0e�
where T (e�� 1) = Op(1) since H

(1)
a;m involves a mix of I(1) and I(0) regimes. Further,

�y � e��y�1 = �y � �y�1 � (e�� 1)�y�1 = T�1(yT � y0)� (e�� 1)�y�1
= Op(aTT

�1=2)�Op(aTT
�1=2) = Op(aTT

�1=2):

Thus, in an I(1) regime, i.e., t 2 [T2i + 1; :::; T2i+1], i = 0; :::;m=2, we have

a�1T eet = a�1T et + a�1T (1� e�)yt�1 +Op(T
�1=2) = a�1T et +Op(T

�1)Op(T
1=2) +Op(T

�1=2)

= a�1T et +Op(T
�1=2): (A.23)

In an I(0) regime, i.e., t 2 [T2i�1 + 1; :::; T2i], i = 1; :::;m=2, we have

a�1T eet = a�1T et + (�2i � 1)a�1T ht�1 +Op(T
�1=2): (A.24)

Combining (A:23) and (A:24), we have for t = 1; :::; T ,

a�1T eet = a�1T et +
Pm=2

i=1 (�2i � 1)a�1T ht�1I(t 2 [T 02i�1 + 1; :::; T 02i])

so that for r 2 [0; 1],

a�2T T�1
PbTrc

t=1 ee2t = a�2T T�1
PbTrc

t=1 e
2
t

+a�2T T�1
PbTrc

t=1

Pm=2
i=1 (�2i � 1)2h2t�1I(t 2 [T 02i�1 + 1; T 02i]) + op(1)

p! �V (r)
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where �V (r) is de�ned in (A:21). Hence, a�1T T�1=2
PbTrc

t=1 e
(0)
t = a�1T

R r
0
eebTscdST (s) w!p

�Bg;1(r)

and the limits in (A:19) and (A:20) now hold with g(:) replaced by g1(:). Also, a�2T T�1SSR
�;(0)
1;k

p! �V (1). Thus, G�1(m) = Op(1).
To show step (ii), note that since �0 2 �m� and F1a(m) = sup�2�m� F1a(�;m), it is su¢ cient

to show that F1a(�
0;m) = Op(T ): De�ne

�� = (
PT

t=1wtw
0
t)
�1PT

t=1wt�yte�2i = �2i + yT 02i�1 � �2i�1; i = 1; :::;m=2:

Then, ht�1 = yt�1 � e�2i; t 2 [T 02i�1 + 1; T 02i]. We have
SSR

(1)
0 =

PT
t=1(�yt � w0t ��)

2 =
Pm=2

i=0

PT 02i+1
t=T 02i+1

fw0t(�� ��) + etg2

+
Pm=2

i=1

PT 02i
t=T 02i�1+1

f(�2i � 1)ht�1 + w0t(�� ��) + etg2

=
PT

t=1 e
2
t +

Pm=2
i=1 (�2i � 1)2(

PT 02i
t=T 02i�1+1

h2t�1)

+2(�� ��)0
Pm=2

i=1 (�2i � 1)(
PT 02i

t=T 02i�1+1
ht�1wt)

+(�� ��)0(W 0W )(�� ��) + 2(�� ��)0W 0e+ 2
Pm=2

i=1 (�2i � 1)(
PT 02i

t=T 02i�1+1
ht�1et):

Let �Z(1) = diag( eZ(1)1 ; :::; eZ(1)m+1), where eZ(1)i is the �rst column of eZi = (hT 02i�1 ; :::; hT 02i�1) and
the [(m+1)�1] vector 1 = (0; �2�1; 0; �4�1; ::; 0)0. Noting that ���� = (W 0W )�1W 0e+

(W 0W )�1
Pm=2

i=1 (�2i � 1)
PT 02i

t=T 02i�1+1
ht�1wt,

SSR
(1)
0 =

PT
t=1 e

2
t + 01

�Z(1)0MW
�Z(1)1 � e0W (W 0W )�1W 0e+ 201

�Z(1)0e: (A.25)

Using (i) e0W (W 0W )�1W 0e = a2T [a
�2
T T�1=2e0W (a�2T T�1W 0W )�1a�2T T�1=2W 0e] = a2TOp(1) =

Op(a
2
T ); (ii) 

0
1
�Z(1)0e = Op(a

2
TT

1=2), we have from (A:25)

a�2T SSR
(1)
0 = a�2T

PT
t=1 e

2
t + a�2T 01 �Z

(1)0MW
�Z(1)1 +Op(T

1=2):

Next, we have (with �̂ denoting the estimate of � under the alternative),

SSR
(1)
1a;m =

m=2X
i=0

T 02i+1X
t=T 02i+1

fw0t(�� �̂) + etg2 +
m=2X
i=1

T 02iX
t=T 02i�1+1

8<: (�2i � �̂2i)(yt�1 � �y2i;�1)

+(wt � �w2i)
0(�� �̂) + et

9=;
2

:

Then, noting that

�̂� � = (W 0W )�1[
Pm=2

i=1 (�2i � �̂2i)
PT 02i

t=T 02i�1+1
wt(yt�1 � �y2i;�1) +W 0e]

= [Op(a
�2
T T�1)][Op(a

2
TT

1=2) +Op(a
2
TT

1=2)] = Op(T
�1=2)
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we can show, after some simpli�cations,

a�2T SSR
(1)
1a;m = a�2T

PT
t=1 e

2
t +Op(1): (A.26)

Combining (A:25) and (A:26),

a�2T (SSR
(1)
0 � SSR

(1)
1a;m) = a�2T 01

�Z(1)0MW
�Z(1)1 +Op(T

1=2): (A.27)

Now, since regime 2i (i = 1; :::;m=2) is I(0), a�2T 01
�Z(1)0MW

�Z(1)1 = a�2T Op(a
2
TT ) = Op(T ).

Since this term is positive and dominant in (A:27), F1a(�
0;m) diverges to positive in�nity

at rate T . Entirely analogous arguments can be used to show the divergence of G1(m) at
rate T . The details are omitted.N

Proof of Theorem 4: To prove this result, it is su¢ cient to show that

lim
T!1

P ( min
1�i�l+1

fp�i g < �l+1) � � (A.28)

as the rest of the proof follows the same arguments as in the proof of Theorem 2 in Kejriwal
(2019). First, note that

P ( min
1�i�l+1

fp�i g < �l+1) = 1� P ( min
1�i�l+1

fp�i g � �l+1)

= 1� �l+1i=1

�
P (p�i � �l+1)

�
= 1� �l+1i=1

h
1� P (fp�;(i)1;W1

< �l+1g \ fp
�;(i)
1;G1

< �l+1g)
i

(A.29)

where the second equality follows from the independence of the test statistics across segments
and the third from the fact that p�i = maxfp�;(i)1;W1

; p
�;(i)
1;G1
g. Next, from Theorem 3(a,b), it

follows that under the null hypothesis of l breaks, we have for any segment i 2 f1; :::; l+1g,

P (fp�;(i)1;W1
< �l+1g \ fp

�;(i)
1;G1

< �l+1g) � P (fp�;(i)1;W1
< �l+1g)! �l+1 if i is I(1);

P (fp�;(i)1;W1
< �l+1g \ fp

�;(i)
1;G1

< �l+1g) � P (fp�;(i)1;G1
< �l+1g)! �l+1 if i is I(0): (A.30)

Thus, using (A:30) in (A:29), we have

lim
T!1

P ( min
1�i�l+1

fp�i g < �l+1) � 1�
�
1� �l+1

�l+1
= �

which proves (A:28).N

Proof of Theorem 5: The proof uses arguments very similar to those used in proving
Theorems 3-4 and is hence omitted.
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Supplement B: Detailed Simulation Results

Supplement B presents detailed simulation results to assess the �nite sample performance
our procedures and to provide a comparison with existing approaches. Following Cavaliere
and Taylor (2008b, CT henceforth), we consider the following three speci�cations for the
volatility process: Model 1 (Single Volatility Break): �t = ��0 + (�

�
1 � ��0)I(t � 0:5T ); Model

2 (Trending Volatility): �t = ��0+(�
�
1���0)(t�1=(T�1)); Model 3 (Near-Integrated Stochastic

Volatility): �t = ��0 exp(0:5�bt=
p
T ), bt = (1� c=T )bt�1 + kt, kt � i:i:d: N(0; 1), b0 = 0. We

set ��0 = 1 in all cases, � := ��0=�
�
1 2 f1; 1=3; 3g for Models 1 and 2, � = 5 and c 2 f0; 10g for

Model 3. Next, we generate an ARMA(1,1) process fztgTt=1 as: zt = �zt�1+et��et�1, z0 = 0,
et = �t"t with "t � i:i:d: N(0; 1). While our theory does not formally allow for moving
average processes, we nevertheless include this case in our simulations as a robustness check.
The wild bootstrap is implemented using a two point distribution, i.e., vt 2 f�1; 1g with
equal probability. We also experimented with the standard normal distribution for vt but
found that our tests perform noticeably better when using the two-point distribution relative
to the normal. The level of trimming is set at � = :15, T 2 f200; 400g and 1000 replications
are used. We report results for the non-trending case only (those for the trending case are
qualitatively similar). The lag length in the KPZ and BP procedures is selected using BIC
with maximal value set to �ve.1 We report the performance of the testsH�(k; �); k = 1; 2 and
Hmax�1(�) = maxfH�(1; �); H�(2; �)g as well as their non-robust (homoskedasticity-based)
asymptotic counterparts H(k; �); k = 1; 2 and Hmax1(�) = maxfH(1; �); H(2; �)g. The
ratio-based bootstrap tests of CT are designed to test the I(0) null hypothesis while our
tests allow the process to be either I(1) or I(0) under the null. Further, while our tests are
based on a �nite order autoregressive model, the CT tests are non-parametric and based
on a mixing-type assumption for the innovations. Given that conducting a full and fair
comparison of tests with di¤erent underlying models and null hypotheses is not possible, we
did not include the CT tests in our analysis.

Finite Sample Size. With no persistence change, fytg is generated by DGP-0: yt =

�yt�1 + zt, y0 = 0. Table B-1 reports the empirical size of 5% asymptotic and bootstrap
tests. The asymptotic tests are considerably oversized indicating their lack of robustness to
nonstationary volatility, consistent with the large sample results in Section 4. In contrast, the
proposed bootstrap tests are robust to I(1) or I(0) processes maintaining empirical size close
to the nominal 5% level across the di¤erent volatility speci�cations. The same is generally
true for the di¤erent error structures considered. The H� tests are more accurately sized
when � 2 f:5; 1g but less so when � = :7, since the tests are a hybrid of the KPZ and
BP tests which each have size close to 5% when � = 1 and � = :5; respectively. When

1We also experimented with larger values and found that they yielded comparable size but lower power,
especially for the multiple break and sequential tests. The BIC was computed under the null model for each
test. No qualitative di¤erences were observed if the lag selection was implemented under the alternative
model. The modi�ed information proposed by Cavaliere et al. (2015) yielded no improvement in our setup.
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� = :7, the BP tests are mildly over-sized while the KPZ tests diverge at rate T , hence the
mild size distortions. Similar reasoning explains the slightly higher sizes for the hybrid tests
when T increases, especially when � = :7 and with MA(1) errors.

Finite Sample Power. We consider DGPs with one and two breaks. The results are re-
ported only for the case � = � = 0 and are brie�y summarized for the other cases. The DGPs
in the one break case are DGP-1: yt= �yt�1+zt if t � [T�01], yt= yt�1+zt otherwise; DGP-2:
yt= yt�1+zt if t � [T�01], yt�y[T�01]= �(yt�1�y[T�01]) + zt, otherwise; DGP-3: yt= �1yt�1+zt
if t � [T�01], yt= �2yt�1+zt, otherwise. For DGP-1 and DGP-2, � 2 f:5; :7g and for DGP-
3, �1; �2 2 f:2; :9g. We de�ne � = �2 � �1. The break fraction is �

0
1 = :5. Table B-2

reports the size-adjusted power of the tests. Several features are worth noting. First, the
bootstrap tests are broadly comparable to their asymptotic counterparts, with neither class
of tests uniformly dominating the other. Second, the proposed tests are generally powerful
against the di¤erent persistence change alternatives; an exception being the case of an I(1)
regime with high volatility (e.g., DGP-1 with � = 1=3 and DGP-2 with � = 3). This occurs
since the process is dominated by the I(1) regime and the tests behave as with a stable
I(1) process. In Table B-3, we show that power improves considerably if the I(0) regime is
longer and/or the volatility shift is less prominent. Third, the proposed tests have substan-
tial power against I(0)-preserving breaks (DGP-3), a feature that distinguishes these tests
from most existing persistence change tests (e.g., the ratio-based tests) that only have trivial
power against such breaks given that the latter tests are designed to detect changes between
I(1) and I(0) regimes. Hence, using the KPZ tests to control size in the I(1) case causes little
power loss relative to using the BP tests in isolation. Fourth, the hybrid tests are generally
more powerful with deterministic (Models 1 and 2) rather than stochastic volatility (Model
3). With serially correlated errors, the results (Tables B-4 and B-5) are qualitatively similar
except that power is lower for all the tests relative to � = � = 0. With two breaks, the DGPs
are speci�ed as follows:

For t � [T�01] For [T�01] + 1 � t � [T�02] For t � [T�02] + 1

DGP-4 yt= yt�1+zt yt�y[T�01]= �(yt�1�y[T�01]) + zt yt= yt�1+zt

DGP-5 yt= �yt�1+zt yt= yt�1+zt yt�y[T�02]= �(yt�1�y[T�02]) + zt

DGP-6 yt= �1yt�1+zt yt= �2yt�1+zt yt= �1yt�1+zt

The true break fractions are (�01; �
0
2) = (:3; :8). The results reported in Table B-6 are

broadly similar to the one break case. The e¤ect of underspecifying the number of breaks
can be seen by comparing the power of H�(1) and H�(2) for DGPs with two breaks, where
the former is generally less powerful than the latter, though not in all cases. Interestingly,
when the �rst regime has lower persistence relative to the second, H�(1) has higher power
than H�(2) even though the former is based on a misspeci�ed model. However, Hmax�1 has
adequate power in most cases, often close to that of the most powerful test amongstH�(1) and
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H�(2). This highlights the practical advantage of using Hmax�1 to detect the presence of
at least one break. Tables B-7 and B-8 provide results with serial correlation showing the
results to be qualitatively similar.

Number of Breaks. We assess the adequacy of the sequential algorithm to estimate the
number of breaks with data generated by DGP 0-6. We set A = 2 and � = :10. The
results are in Table B-9, with Pc and Po denoting the probability of correct selection and
over-estimation, respectively. The procedure is generally reliable in the stable case (DGP-0)
or with a single break (DGP 1-3). Its performance deteriorates in the two breaks case when
the probability of underestimation can be non-negligible. For instance, in DGP-5 with an
abrupt increase in volatility (model 1, � = 1=3), the breakpoint estimate used to partition
the sample is typically close to the second true breakpoint, so that the �rst segment includes
an I(0) to I(1) break while the second is I(0). Whether a second break is selected depends
on the power of the single break test in the �rst segment, which is relatively low (Table
B-2). Similarly, with decreasing volatility, the breakpoint is estimated near the �rst true
date so that selecting an additional break depends on the power of the single break test
in the I(1)-I(0) case. Results reported in Table B-10 show a notable improvement as the
magnitude of the volatility shift decreases and/or the volatility shift occurs near the second
persistence break in the increasing volatility case and near the �rst break otherwise. Further
re�nement of the algorithm is a potentially interesting topic for future research.

Disentangling Trend and Persistence Shifts. Table B-11 reports the probabilities of
selecting the true model based on the procedure proposed in Section 6 for disentangling
mean shifts and persistence breaks. In addition to DGPs 1-3, a DGP with a pure mean
shift, denoted DGP-0�; is considered where the data are generated as: yt = (��)I(t >
[T�01]) +�yt�1 + et; where et = �t"t; "t � i:i:d: N(0; 1) and the same three speci�cations for
�t (Models 1-3) are used. The �ndings indicate that performance is generally satisfactory
and improves as T increases.
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Notes to Tables

1. Table B-1 reports the empirical size of asymptotic and bootstrap tests with nominal
size 5%. The tests H1; H2; Hmax are the tests of Kejriwal et al. (2013) and the tests
H�
1 ; H

�
2 ; H

�
max are their bootstrap counterparts.

2. Table B-2 reports the size-adjusted power of 5% bootstrap tests in the single break
case with breakpoint �01 = :5 and serially uncorrelated errors (� = � = 0).

3. Table B-3 reports the size-adjusted power of 5% bootstrap tests under di¤erent change
points and volatility intensity in the single break case with breakpoint �01 = :5 and
serially uncorrelated errors (� = � = 0) with abrupt volatility change (Model 1).

4. Table B-4 reports the size-adjusted power of 5% bootstrap tests in the single break
case with breakpoint �01 = :5 and AR(1) errors (� = :5; � = 0).

5. Table B-5 reports the size-adjusted power of 5% bootstrap tests in the single break
case with breakpoint �01 = :5 and MA(1) errors (� = 0; � = :5).

6. Table B-6 reports the size-adjusted power of 5% bootstrap tests in the two breaks case
with breakpoint vector (�01; �

0
2) = (:3; :8) and serially uncorrelated errors (� = � = 0).

7. Table B-7 reports the size-adjusted power of 5% bootstrap tests in the two breaks case
with breakpoint vector (�01; �

0
2) = (:3; :8) and AR(1) errors (� = :5; � = 0).

8. Table B-8 reports the size-adjusted power of 5% bootstrap tests in the two breaks case
with breakpoint vector (�01; �

0
2) = (:3; :8) and MA(1) errors (� = 0; � = :5).

9. Table B-9 reports the probabilities of selecting the true number of breaks from the
sequential procedure with serially uncorrelated errors (� = � = 0) and level � = :10.

10. Table B-10 reports the probabilities of selecting the true number of breaks from the
sequential procedure under di¤erent abrupt volatility break points and intensities in
the two breaks case with breakpoint vector (�01; �

0
2) = (:3; :8); serially uncorrelated

errors (� = � = 0) and level � = :10.

11. Table B-11 reports the probabilities of selecting the true model based on the procedure
proposed in Section 6 for disentangling mean shifts and persistence breaks.
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Table B-2: Size-adjusted power of bootstrap tests, [m = 1, � = � = 0, �01 = 0:5, 5%]

T DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 � = 0:7

200 1 H1 .97 .03 .84 .16 .96 .08 .35 .61 .04 .51 .04 .68 .04 .08

H2 .60 .03 .17 .15 .36 .04 .08 .16 .05 .12 .05 .14 .03 .04

Hmax .93 .03 .63 .11 .89 .04 .15 .41 .04 .27 .03 .47 .03 .05

H�
1 .97 .04 .84 .28 .95 .26 .53 .61 .04 .46 .06 .65 .10 .22

H�
2 .57 .05 .21 .25 .45 .10 .22 .16 .05 .12 .07 .18 .06 .08

H�
max .91 .05 .67 .23 .89 .19 .38 .43 .04 .30 .05 .48 .08 .13

2 H1 .99 .77 .22 .96 .69 .14 .56 .85 .45 .15 .70 .29 .07 .25

H2 .69 .29 .03 .74 .12 .07 .12 .28 .17 .04 .38 .06 .05 .06

Hmax .98 .68 .06 .94 .37 .08 .28 .73 .37 .05 .66 .11 .05 .10

H�
1 1.0 .77 .30 .94 .76 .32 .71 .85 .41 .21 .62 .39 .18 .42

H�
2 .71 .35 .06 .71 .23 .16 .31 .30 .18 .05 .36 .10 .09 .16

H�
max .98 .69 .10 .93 .53 .24 .58 .74 .35 .07 .57 .17 .13 .29

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 H1 1.0 .05 .86 .69 .99 .18 .65 1.0 .83 .33 .99 .93 .24 .75

H2 .93 .03 .19 .59 .67 .06 .15 .94 .30 .05 .90 .45 .08 .20

Hmax .99 .04 .76 .62 .98 .12 .41 1.0 .79 .11 .98 .81 .16 .53

H�
1 1.0 .06 .76 .69 .96 .31 .71 1.0 .78 .33 .95 .89 .35 .77

H�
2 .88 .04 .23 .60 .71 .15 .41 .93 .32 .06 .82 .59 .18 .46

H�
max .99 .03 .70 .67 .95 .24 .61 1.0 .72 .17 .95 .83 .28 .69

� = 0:5 � = 0:7

400 1 H1 1.0 .07 1.0 .94 1.0 .41 .84 1.0 .07 .96 .24 .99 .13 .49

H2 1.0 .03 .65 .75 .95 .12 .26 .75 .04 .44 .16 .64 .07 .12

Hmax 1.0 .03 1.0 .92 1.0 .27 .63 .99 .05 .88 .20 .97 .08 .24

H�
1 1.0 .07 1.0 .95 1.0 .51 .84 1.0 .05 .95 .33 .99 .31 .62

H�
2 .99 .05 .69 .78 .96 .32 .57 .69 .04 .45 .23 .67 .15 .28

H�
max 1.0 .06 1.0 .93 1.0 .42 .75 .99 .05 .87 .26 .98 .22 .43

2 H1 1.0 1.0 .44 1.0 .99 .45 .91 1.0 .94 .21 1.0 .74 .25 .70

H2 1.0 .74 .05 .99 .49 .14 .34 .84 .57 .04 .93 .14 .10 .17

Hmax 1.0 1.0 .13 1.0 .97 .32 .79 1.0 .90 .06 .99 .45 .17 .40

H�
1 1.0 1.0 .53 1.0 .99 .56 .92 1.0 .93 .31 .99 .78 .40 .78

H�
2 1.0 .78 .06 .99 .67 .39 .67 .83 .59 .05 .91 .24 .23 .41

H�
max 1.0 1.0 .20 1.0 .96 .48 .84 1.0 .90 .11 .99 .54 .29 .64

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 H1 1.0 .39 1.0 1.0 1.0 .45 .95 1.0 1.0 .83 1.0 1.0 .50 .97

H2 1.0 .09 .91 .99 1.0 .20 .62 1.0 .95 .15 1.0 .98 .24 .69

Hmax 1.0 .15 1.0 1.0 1.0 .39 .87 1.0 1.0 .42 1.0 1.0 .43 .94

H�
1 1.0 .45 1.0 1.0 1.0 .54 .93 1.0 1.0 .83 1.0 1.0 .56 .95

H�
2 1.0 .17 .91 .99 1.0 .42 .82 1.0 .92 .24 1.0 .98 .44 .84

H�
max 1.0 .27 1.0 1.0 1.0 .49 .90 1.0 1.0 .57 1.0 1.0 .52 .92
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Table B-3: Size-adjusted power of bootstrap tests under di¤erent change points and volatility intensity,
[Model 1, DGP 1, m = 1, � = � = 0, � = 0:5]

T �01 Test Model 1: �

1/5 1/3 1/2.5 1/1.5 1/1.1

200 0.2 H�
1 .05 .05 .04 .07 .28

H�
2 .04 .04 .04 .05 .09

H�
max .05 .04 .05 .06 .20

0.3 H�
1 .05 .04 .05 .15 .61

H�
2 .04 .04 .04 .08 .20

H�
max .04 .05 .04 .11 .46

0.5 H�
1 .04 .05 .06 .56 .94

H�
2 .04 .04 .04 .24 .55

H�
max .05 .04 .05 .44 .89

0.6 H�
1 .08 .17 .27 .87 .98

H�
2 .03 .04 .07 .41 .70

H�
max .04 .08 .12 .77 .95

0.7 H�
1 .33 .51 .61 .92 .96

H�
2 .19 .24 .27 .58 .77

H�
max .23 .32 .44 .86 .94

0.9 H�
1 .31 .39 .44 .58 .62

H�
2 .30 .31 .32 .43 .47

H�
max .29 .33 .37 .55 .60

400 0.2 H�
1 .06 .06 .06 .30 .88

H�
2 .05 .05 .05 .08 .38

H�
max .05 .05 .05 .16 .74

0.3 H�
1 .06 .06 .06 .73 1.0

H�
2 .05 .05 .05 .26 .73

H�
max .05 .05 .05 .55 .98

0.5 H�
1 .06 .08 .20 .99 1.0

H�
2 .05 .05 .06 .78 .99

H�
max .05 .05 .10 .97 1.0

0.6 H�
1 .58 .84 .94 1.0 1.0

H�
2 .07 .18 .31 .93 1.0

H�
max .30 .65 .83 1.0 1.0

0.7 H�
1 .96 .99 1.0 1.0 1.0

H�
2 .67 .75 .82 .98 1.0

H�
max .88 .96 .98 1.0 1.0

0.9 H�
1 .84 .88 .90 .93 .93

H�
2 .78 .79 .80 .84 .86

H�
max .80 .84 .87 .93 .93
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Table B-4: Size-adjusted power of bootstrap tests, [m = 1, � = 0:5, � = 0, �01 = 0:5]

T DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 � = 0:7

200 1 H1 .82 .06 .56 .09 .80 .06 .20 .39 .06 .33 .06 .48 .04 .07

H2 .35 .05 .11 .10 .21 .05 .07 .11 .05 .08 .05 .11 .03 .04

Hmax .67 .06 .29 .06 .62 .05 .09 .25 .05 .15 .04 .29 .03 .05

H�
1 .82 .06 .53 .15 .75 .16 .32 .39 .05 .25 .06 .43 .06 .13

H�
2 .30 .05 .10 .17 .26 .10 .16 .10 .05 .07 .08 .11 .06 .08

H�
max .63 .06 .29 .13 .59 .12 .22 .22 .05 .12 .07 .26 .05 .09

2 H1 .95 .40 .22 .81 .50 .10 .38 .74 .26 .17 .51 .26 .06 .21

H2 .45 .16 .04 .49 .10 .07 .10 .21 .11 .05 .28 .05 .05 .06

Hmax .90 .30 .06 .75 .21 .06 .17 .55 .20 .07 .45 .09 .05 .09

H�
1 .96 .41 .24 .75 .49 .24 .53 .70 .21 .18 .43 .28 .15 .33

H�
2 .46 .14 .05 .53 .16 .14 .27 .22 .09 .04 .28 .09 .09 .14

H�
max .89 .32 .08 .75 .29 .15 .40 .53 .16 .06 .42 .13 .10 .21

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 H1 .91 .04 .63 .29 .89 .07 .31 .99 .67 .38 .89 .81 .16 .55

H2 .44 .03 .22 .25 .31 .04 .09 .64 .34 .09 .66 .32 .08 .15

Hmax .78 .03 .53 .21 .81 .05 .15 .97 .62 .20 .88 .61 .11 .30

H�
1 .81 .03 .47 .29 .71 .16 .36 .95 .44 .40 .76 .76 .23 .57

H�
2 .34 .02 .14 .27 .27 .08 .16 .45 .17 .03 .48 .25 .13 .26

H�
max .69 .03 .38 .27 .64 .11 .23 .89 .42 .16 .75 .61 .17 .42

� = 0:5 � = 0:7

400 1 H1 1.0 .07 1.0 .64 1.0 .26 .70 .98 .08 .92 .13 .97 .09 .33

H2 .96 .04 .64 .41 .89 .10 .19 .49 .04 .37 .11 .46 .06 .10

Hmax 1.0 .05 .97 .57 1.0 .19 .42 .93 .05 .75 .11 .90 .07 .15

H�
1 1.0 .08 .99 .71 1.0 .43 .74 .96 .07 .90 .17 .96 .26 .48

H�
2 .91 .05 .63 .44 .89 .27 .45 .46 .05 .38 .15 .48 .14 .20

H�
max 1.0 .06 .97 .63 1.0 .35 .61 .89 .06 .76 .13 .92 .18 .30

2 H1 1.0 1.0 .34 1.0 .94 .34 .84 1.0 .90 .21 .98 .55 .20 .58

H2 .96 .67 .05 .98 .29 .12 .27 .64 .45 .04 .78 .12 .08 .13

Hmax 1.0 .98 .12 1.0 .80 .21 .61 .99 .81 .07 .98 .29 .12 .25

H�
1 1.0 .99 .37 1.0 .92 .50 .87 .99 .87 .25 .97 .62 .34 .68

H�
2 .96 .68 .06 .97 .41 .33 .55 .63 .39 .05 .76 .16 .19 .34

H�
max 1.0 .97 .14 1.0 .83 .41 .76 .98 .77 .09 .96 .37 .25 .52

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 H1 1.0 .15 .99 .99 1.0 .33 .88 1.0 .98 .68 1.0 1.0 .41 .94

H2 1.0 .05 .86 .93 .99 .12 .36 1.0 .92 .17 1.0 .89 .19 .47

Hmax 1.0 .07 .99 .98 1.0 .26 .70 1.0 .98 .38 1.0 1.0 .35 .83

H�
1 1.0 .15 .97 .97 .99 .44 .84 1.0 .95 .72 1.0 1.0 .52 .92

H�
2 .99 .05 .81 .89 .98 .31 .63 .99 .81 .19 .99 .90 .36 .73

H�
max 1.0 .07 .95 .96 .99 .39 .78 1.0 .94 .47 1.0 .99 .45 .87
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Table B-5: Size-adjusted power of bootstrap tests, [m = 1, � = 0, � = 0:5, �01 = 0:5]

T DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 � = 0:7

200 1 H1 .84 .03 .85 .12 .90 .07 .26 .53 .03 .51 .03 .63 .03 .08

H2 .35 .02 .07 .13 .14 .03 .04 .13 .03 .05 .08 .07 .01 .01

Hmax .71 .02 .56 .09 .73 .04 .10 .37 .04 .23 .03 .39 .02 .03

H�
1 .83 .04 .83 .21 .89 .24 .45 .49 .04 .45 .08 .60 .12 .22

H�
2 .34 .04 .12 .20 .31 .09 .20 .11 .04 .07 .08 .10 .05 .09

H�
max .69 .03 .65 .18 .80 .16 .31 .33 .04 .30 .06 .46 .07 .14

2 H1 .93 .75 .15 .87 .48 .08 .40 .74 .44 .14 .58 .23 .05 .21

H2 .47 .12 .02 .47 .10 .04 .06 .23 .07 .03 .25 .05 .04 .04

Hmax .85 .63 .03 .82 .27 .04 .19 .59 .33 .04 .52 .09 .04 .07

H�
1 .91 .77 .19 .86 .56 .28 .58 .66 .41 .12 .53 .29 .16 .34

H�
2 .49 .18 .05 .43 .23 .13 .26 .23 .09 .04 .20 .10 .07 .15

H�
max .84 .66 .09 .83 .41 .20 .47 .56 .33 .05 .49 .19 .10 .24

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 H1 .95 .03 .70 .40 .95 .12 .47 .97 .64 .15 .93 .69 .13 .56

H2 .72 .01 .07 .44 .39 .04 .07 .77 .10 .01 .69 .27 .04 .08

Hmax .90 .02 .60 .35 .90 .07 .25 .94 .57 .04 .91 .48 .08 .30

H�
1 .93 .04 .48 .41 .87 .25 .58 .95 .44 .11 .82 .66 .26 .60

H�
2 .61 .01 .11 .37 .45 .09 .29 .70 .08 .03 .51 .39 .12 .34

H�
max .86 .02 .40 .40 .83 .18 .48 .91 .41 .05 .81 .58 .20 .52

� = 0:5 � = 0:7

400 1 H1 1.0 .05 1.0 .64 1.0 .37 .68 .97 .05 .97 .19 .99 .14 .39

H2 .90 .02 .51 .46 .85 .07 .14 .55 .03 .22 .16 .39 .04 .06

Hmax .99 .03 1.0 .61 1.0 .26 .45 .90 .03 .90 .17 .94 .07 .17

H�
1 1.0 .06 1.0 .69 1.0 .48 .74 .94 .05 .93 .27 .98 .31 .50

H�
2 .84 .04 .61 .54 .84 .27 .41 .44 .05 .25 .20 .47 .14 .20

H�
max .99 .03 1.0 .65 1.0 .41 .62 .88 .03 .86 .23 .94 .22 .35

2 H1 1.0 1.0 .28 1.0 .87 .38 .84 .99 .96 .16 .99 .54 .21 .56

H2 .95 .60 .04 .95 .32 .09 .19 .70 .31 .02 .73 .13 .06 .10

Hmax 1.0 1.0 .08 1.0 .70 .26 .61 .97 .90 .04 .98 .32 .13 .27

H�
1 1.0 1.0 .37 1.0 .90 .54 .85 .98 .92 .21 .98 .59 .36 .66

H�
2 .93 .66 .04 .94 .51 .34 .55 .63 .36 .04 .74 .19 .20 .33

H�
max 1.0 1.0 .13 1.0 .80 .46 .75 .95 .87 .07 .97 .40 .28 .52

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 H1 1.0 .19 .99 .95 1.0 .38 .87 1.0 .99 .49 1.0 .98 .39 .92

H2 1.0 .05 .90 .93 .98 .12 .38 1.0 .89 .06 1.0 .87 .14 .42

Hmax 1.0 .08 .99 .94 1.0 .31 .72 1.0 .99 .17 1.0 .95 .29 .79

H�
1 1.0 .23 .97 .95 1.0 .44 .86 1.0 .95 .47 1.0 .98 .49 .93

H�
2 .99 .10 .82 .92 .98 .34 .67 1.0 .78 .11 .99 .91 .36 .73

H�
max 1.0 .11 .97 .94 1.0 .41 .80 1.0 .95 .23 1.0 .96 .44 .87
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Table B-6: Size-adjusted power of bootstrap tests, [m = 2, � = � = 0, �01 = 0:3, �
0
2 = 0:8]

T DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 � = 0:7

200 4 H1 .38 .12 .43 .14 .38 .05 .13 .27 .02 .26 .07 .24 .04 .07

H2 .96 .69 .59 .91 .81 .14 .34 .73 .24 .25 .51 .37 .06 .12

Hmax .95 .54 .56 .72 .74 .07 .31 .66 .15 .23 .24 .32 .04 .11

H�
1 .36 .11 .42 .16 .44 .13 .20 .25 .03 .25 .07 .29 .08 .12

H�
2 .95 .62 .61 .89 .83 .26 .57 .68 .22 .25 .42 .44 .11 .25

H�
max .94 .51 .58 .73 .77 .21 .51 .63 .12 .24 .22 .40 .09 .21

5 H1 .68 .64 .79 .73 .85 .13 .24 .34 .34 .38 .40 .43 .07 .11

H2 .46 .05 .06 .40 .14 .05 .04 .08 .04 .03 .11 .04 .02 .03

Hmax .53 .51 .47 .65 .63 .09 .11 .15 .23 .13 .34 .24 .05 .06

H�
1 .73 .65 .82 .72 .87 .28 .41 .34 .35 .38 .40 .45 .15 .22

H�
2 .60 .17 .10 .54 .26 .15 .26 .16 .06 .04 .18 .08 .07 .11

H�
max .65 .59 .52 .68 .68 .23 .31 .23 .28 .17 .35 .25 .11 .15

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

6 H1 .83 .78 .91 .82 .92 .24 .33 .65 .46 .79 .41 .72 .13 .32

H2 .86 .25 .21 .78 .49 .03 .07 .99 .85 .79 .95 .92 .25 .60

Hmax .84 .69 .77 .79 .83 .16 .15 .98 .74 .81 .83 .88 .17 .55

H�
1 .77 .74 .88 .75 .90 .29 .44 .50 .38 .69 .34 .64 .20 .27

H�
2 .85 .40 .26 .76 .58 .20 .38 .95 .65 .62 .85 .83 .27 .64

H�
max .81 .70 .78 .74 .84 .25 .37 .91 .56 .70 .68 .75 .21 .51

� = 0:5 � = 0:7

400 4 H1 .49 .30 .60 .26 .50 .17 .19 .46 .20 .44 .22 .43 .09 .15

H2 1.0 .99 .97 1.0 1.0 .42 .80 .99 .85 .75 .97 .93 .19 .46

Hmax 1.0 .98 .97 1.0 1.0 .35 .77 .98 .75 .74 .89 .91 .13 .39

H�
1 .46 .27 .59 .28 .54 .22 .26 .44 .19 .48 .22 .46 .14 .22

H�
2 1.0 .99 .96 1.0 1.0 .56 .91 .99 .79 .73 .95 .94 .33 .69

H�
max 1.0 .99 .97 1.0 .99 .45 .85 .98 .71 .71 .87 .89 .24 .57

5 H1 1.0 .99 1.0 .99 1.0 .47 .64 .89 .86 .92 .91 .94 .22 .35

H2 .99 .28 .47 .94 .86 .07 .16 .68 .05 .11 .50 .30 .04 .04

Hmax .99 .94 .96 .99 1.0 .34 .33 .76 .64 .67 .86 .84 .14 .15

H�
1 .99 .98 1.0 .99 1.0 .66 .77 .91 .84 .92 .89 .95 .41 .51

H�
2 .98 .51 .49 .95 .82 .44 .52 .70 .13 .14 .58 .34 .22 .27

H�
max .99 .96 .97 .98 .99 .55 .61 .77 .71 .68 .86 .84 .31 .34

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

6 H1 1.0 1.0 1.0 1.0 1.0 .59 .79 .90 .94 .99 .86 .97 .35 .59

H2 1.0 .82 .91 1.0 1.0 .19 .48 1.0 1.0 1.0 1.0 1.0 .54 .95

Hmax 1.0 .99 1.0 1.0 1.0 .51 .59 1.0 1.0 1.0 1.0 1.0 .47 .93

H�
1 1.0 .99 1.0 1.0 1.0 .70 .84 .79 .88 .96 .73 .91 .46 .60

H�
2 1.0 .89 .88 1.0 .99 .53 .72 1.0 1.0 .98 1.0 1.0 .61 .93

H�
max 1.0 .99 1.0 1.0 1.0 .64 .77 1.0 .98 .98 1.0 .99 .55 .87
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Table B-7: Size-adjusted power of bootstrap tests, [m = 2, � = 0:5, � = 0, �01 = 0:3, �
0
2 = 0:8]

T DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 � = 0:7

200 4 H1 .22 .04 .31 .08 .29 .04 .08 .19 .04 .19 .06 .19 .06 .06

H2 .89 .43 .49 .74 .65 .10 .22 .58 .20 .23 .36 .32 .06 .09

Hmax .85 .31 .45 .46 .58 .07 .19 .51 .12 .21 .15 .28 .06 .08

H�
1 .21 .05 .29 .08 .28 .09 .11 .16 .03 .17 .06 .20 .06 .08

H�
2 .86 .37 .42 .74 .69 .19 .41 .48 .15 .18 .31 .32 .10 .20

H�
max .80 .30 .38 .49 .56 .13 .29 .40 .10 .15 .14 .26 .07 .14

5 H1 .51 .51 .56 .58 .67 .11 .19 .28 .30 .29 .35 .33 .07 .12

H2 .24 .08 .06 .23 .10 .05 .05 .05 .06 .06 .09 .04 .03 .04

Hmax .31 .40 .26 .51 .44 .08 .10 .10 .21 .12 .27 .16 .05 .07

H�
1 .54 .48 .56 .54 .62 .24 .30 .29 .29 .27 .30 .30 .15 .17

H�
2 .26 .12 .08 .34 .14 .15 .20 .10 .07 .05 .14 .06 .07 .10

H�
max .35 .42 .27 .54 .41 .19 .23 .15 .24 .11 .30 .16 .11 .12

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

6 H1 .68 .68 .67 .71 .72 .18 .25 .36 .07 .62 .07 .51 .07 .14

H2 .45 .19 .06 .43 .18 .04 .05 .93 .47 .69 .76 .80 .15 .35

Hmax .52 .59 .33 .65 .53 .13 .12 .90 .32 .67 .46 .72 .09 .30

H�
1 .50 .52 .53 .53 .60 .21 .26 .21 .03 .45 .05 .40 .11 .11

H�
2 .41 .18 .07 .41 .23 .14 .18 .67 .26 .42 .54 .63 .17 .38

H�
max .41 .48 .34 .53 .46 .16 .18 .63 .17 .44 .33 .53 .12 .22

� = 0:5 � = 0:7

400 4 H1 .33 .14 .42 .14 .35 .12 .13 .33 .08 .36 .14 .32 .07 .10

H2 1.0 .96 .94 1.0 .99 .29 .64 .97 .62 .63 .92 .86 .13 .31

Hmax 1.0 .92 .93 .98 .99 .24 .59 .96 .51 .62 .74 .80 .11 .27

H�
1 .28 .12 .40 .15 .38 .19 .18 .29 .09 .35 .12 .34 .12 .16

H�
2 1.0 .94 .94 1.0 .99 .50 .83 .97 .53 .62 .88 .84 .27 .53

H�
max 1.0 .91 .90 .98 .97 .38 .72 .94 .45 .59 .66 .74 .21 .42

5 H1 .98 .96 .98 .97 .99 .37 .53 .75 .76 .77 .79 .84 .19 .28

H2 .93 .16 .29 .76 .68 .06 .11 .39 .06 .07 .28 .17 .05 .04

Hmax .95 .86 .89 .96 .97 .25 .28 .53 .54 .44 .74 .65 .11 .11

H�
1 .97 .94 .99 .97 1.0 .58 .68 .75 .75 .76 .79 .82 .36 .43

H�
2 .89 .26 .34 .80 .64 .38 .43 .43 .10 .10 .34 .21 .20 .23

H�
max .92 .85 .90 .95 .97 .48 .53 .54 .54 .50 .74 .65 .28 .29

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

6 H1 1.0 1.0 1.0 .99 1.0 .50 .69 .59 .55 .92 .41 .81 .21 .31

H2 .99 .59 .56 .97 .87 .13 .20 1.0 .98 .99 1.0 1.0 .40 .86

Hmax .99 .98 .97 .99 1.0 .40 .42 1.0 .93 .99 .99 1.0 .33 .80

H�
1 .99 .98 .99 .98 1.0 .63 .75 .38 .43 .83 .27 .68 .31 .31

H�
2 .97 .63 .58 .92 .88 .43 .55 1.0 .92 .95 .99 .99 .52 .86

H�
max .98 .96 .96 .98 .99 .55 .62 1.0 .77 .92 .91 .95 .44 .72
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Table B-8: Size-adjusted power of bootstrap tests, [m = 2, � = 0, � = 0:5, �01 = 0:3, �
0
2 = 0:8]

T DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 � = 0:7

200 4 H1 .40 .15 .38 .15 .37 .05 .13 .34 .06 .23 .11 .24 .03 .08

H2 .89 .47 .36 .77 .60 .09 .24 .63 .18 .16 .46 .28 .05 .09

Hmax .86 .38 .36 .56 .54 .05 .21 .61 .13 .16 .26 .25 .03 .08

H�
1 .40 .14 .39 .18 .46 .13 .20 .27 .06 .23 .09 .27 .07 .13

H�
2 .87 .47 .46 .77 .73 .20 .48 .55 .17 .18 .36 .35 .09 .21

H�
max .86 .36 .42 .65 .69 .15 .38 .51 .11 .18 .23 .33 .06 .16

5 H1 .27 .33 .56 .33 .57 .08 .13 .15 .20 .33 .20 .29 .04 .06

H2 .26 .03 .02 .22 .07 .02 .02 .06 .02 .02 .07 .03 .02 .01

Hmax .25 .22 .28 .27 .31 .04 .05 .08 .12 .11 .15 .11 .03 .02

H�
1 .26 .35 .55 .31 .56 .17 .19 .15 .22 .31 .18 .30 .10 .13

H�
2 .34 .09 .07 .33 .16 .13 .21 .13 .05 .03 .14 .06 .07 .10

H�
max .30 .30 .34 .29 .40 .13 .16 .14 .16 .17 .16 .18 .08 .09

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

6 H1 .35 .40 .71 .37 .69 .11 .13 .75 .51 .70 .50 .70 .11 .32

H2 .54 .11 .11 .46 .24 .02 .03 .95 .64 .54 .86 .76 .15 .35

Hmax .50 .31 .46 .33 .49 .07 .06 .93 .57 .56 .71 .75 .10 .32

H�
1 .25 .28 .53 .22 .56 .16 .17 .51 .37 .54 .36 .58 .17 .30

H�
2 .54 .16 .16 .40 .29 .11 .26 .80 .38 .39 .61 .53 .17 .45

H�
max .40 .25 .43 .24 .46 .13 .18 .71 .40 .46 .50 .59 .17 .39

� = 0:5 � = 0:7

400 4 H1 .52 .35 .59 .29 .53 .16 .21 .47 .24 .44 .23 .44 .08 .16

H2 1.0 .94 .85 .99 .97 .31 .63 .98 .63 .53 .91 .81 .14 .34

Hmax 1.0 .91 .86 .98 .96 .23 .59 .96 .56 .53 .80 .78 .10 .30

H�
1 .47 .34 .60 .31 .57 .26 .30 .38 .21 .40 .23 .42 .17 .23

H�
2 1.0 .92 .88 .99 .98 .51 .82 .94 .59 .53 .87 .78 .31 .58

H�
max 1.0 .89 .86 .98 .96 .42 .74 .90 .49 .46 .73 .69 .25 .47

5 H1 .77 .80 .95 .80 .95 .37 .37 .53 .57 .79 .62 .77 .20 .21

H2 .85 .09 .24 .68 .54 .04 .07 .42 .02 .05 .28 .15 .03 .03

Hmax .85 .63 .82 .77 .88 .25 .17 .43 .36 .49 .54 .55 .11 .07

H�
1 .71 .82 .93 .82 .94 .52 .46 .46 .59 .76 .58 .76 .33 .30

H�
2 .81 .25 .28 .77 .59 .38 .41 .40 .08 .07 .42 .21 .21 .25

H�
max .81 .68 .81 .80 .87 .47 .41 .42 .42 .47 .55 .59 .27 .22

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

6 H1 .89 .91 .99 .87 .98 .42 .41 .97 .96 .98 .91 .98 .33 .69

H2 .98 .50 .68 .93 .92 .09 .23 1.0 .99 .96 1.0 .99 .42 .84

Hmax .98 .82 .96 .89 .97 .33 .29 1.0 .98 .97 .99 .99 .36 .82

H�
1 .80 .88 .97 .82 .98 .49 .53 .82 .89 .94 .83 .92 .46 .64

H�
2 .98 .63 .68 .95 .93 .42 .57 1.0 .94 .90 .99 .97 .52 .87

H�
max .96 .80 .94 .87 .97 .45 .54 .99 .92 .93 .96 .96 .49 .79
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Table B-9: Break selection probabilities, [� = � = 0, � = :10]

T m �01=�
0
1; �

0
2 DGP �/(�1; �2) Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10

400 0 0 1 Pc .91 .91 .91 .92 .90 .90 .91

Po .09 .09 .09 .08 .10 .10 .10

0.5 Pc .86 .91 .90 .88 .89 .91 .90

Po .14 .09 .10 .12 .11 .10 .10

1 �01 = 0:5 1 0.5 Pc .90 .07 .91 .82 .89 .39 .68

Po .10 .04 .09 .14 .11 .15 .14

2 0.5 Pc .88 .87 .21 .88 .79 .47 .73

Po .12 .12 .12 .12 .20 .14 .15

3 (0.2, 0.9) Pc .89 .42 .87 .88 .89 .46 .80

Po .11 .08 .13 .12 .11 .13 .13

(0.9, 0.2) Pc .88 .82 .62 .88 .85 .48 .81

Po .12 .18 .14 .12 .15 .13 .12

2 �01 = 0:3; �
0
2 = 0:8 4 0.5 Pc .86 .70 .46 .85 .70 .27 .59

Po .10 .17 .16 .11 .13 .11 .14

5 0.5 Pc .83 .07 .08 .39 .28 .18 .36

Po .15 .08 .06 .12 .18 .09 .10

6 (0.2, 0.9) Pc .89 .08 .11 .84 .73 .24 .57

Po .12 .07 .09 .12 .16 .09 .11

(0.9, 0.2) Pc .90 .72 .62 .89 .84 .32 .75

Po .09 .23 .20 .10 .12 .12 .11

600 0 0 1 Pc .89 .88 .89 .89 .89 .88 .89

Po .11 .12 .11 .11 .11 .12 .11

0.5 Pc .87 .89 .88 .88 .88 .91 .89

Po .13 .11 .12 .12 .12 .09 .11

1 �01 = 0:5 1 0.5 Pc .88 .11 .89 .87 .89 .49 .80

Po .12 .05 .11 .13 .11 .17 .11

2 0.5 Pc .89 .88 .37 .89 .86 .51 .79

Po .11 .12 .21 .11 .14 .17 .15

3 (0.2, 0.9) Pc .85 .71 .84 .85 .85 .56 .86

Po .15 .17 .17 .15 .15 .12 .11

(0.9, 0.2) Pc .83 .82 .75 .86 .82 .55 .85

Po .17 .18 .22 .14 .18 .14 .12

2 �01 = 0:3; �
0
2 = 0:8 4 0.5 Pc .86 .76 .64 .86 .78 .34 .69

Po .11 .20 .15 .12 .12 .14 .16

5 0.5 Pc .87 .05 .08 .76 .53 .27 .51

Po .13 .07 .08 .13 .22 .10 .13

6 (0.2, 0.9) Pc .86 .33 .30 .85 .84 .33 .69

Po .14 .12 .13 .15 .16 .11 .13

(0.9, 0.2) Pc .90 .83 .78 .91 .89 .38 .81

Po .10 .17 .18 .09 .11 .14 .13
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Table B-10: Break selection probabilities [Model 1, DGP 5 and 6, m = 2, � = � = 0]

T DGP �/(�1; �2) � Model 1: �

1/3 1/2.5 1/1.5 1/1.1 1 1.1 1.5 2.5 3

400 5 0.5 0.2 Pc .47 .54 .76 .83 .84 .84 .84 .63 .44

Po .13 .15 .17 .16 .15 .14 .14 .30 .45

0.3 Pc .11 .11 .62 .83 .84 .85 .80 .50 .35

Po .06 .07 .14 .15 .14 .14 .16 .37 .46

0.5 Pc .07 .06 .66 .84 .84 .82 .66 .08 .08

Po .08 .10 .14 .14 .15 .16 .17 .08 .06

0.8 Pc .68 .77 .87 .86 .84 .80 .61 .18 .15

Po .15 .13 .12 .13 .15 .17 .19 .08 .06

0.9 Pc .89 .88 .87 .85 .84 .83 .78 .69 .66

Po .09 .11 .12 .14 .15 .15 .17 .17 .16

6 (0.2, 0.9) 0.2 Pc .86 .85 .89 .89 .90 .90 .89 .72 .55

Po .12 .14 .11 .11 .11 .10 .11 .27 .42

0.3 Pc .18 .41 .88 .89 .89 .90 .88 .67 .50

Po .07 .09 .11 .11 .11 .10 .12 .29 .40

0.5 Pc .08 .28 .88 .88 .90 .89 .88 .31 .11

Po .07 .09 .12 .12 .10 .11 .11 .12 .09

0.8 Pc .80 .86 .88 .89 .88 .89 .86 .46 .32

Po .14 .12 .12 .11 .12 .11 .12 .12 .08

0.9 Pc .90 .90 .90 .89 .89 .88 .88 .86 .86

Po .09 .10 .10 .11 .11 .12 .12 .13 .13

600 5 0.5 0.2 Pc .78 .80 .85 .86 .87 .87 .88 .74 .58

Po .15 .16 .15 .14 .13 .13 .12 .25 .41

0.3 Pc .09 .12 .83 .86 .87 .87 .88 .71 .54

Po .05 .06 .15 .14 .13 .13 .12 .27 .40

0.5 Pc .05 .07 .86 .88 .86 .85 .83 .13 .07

Po .07 .08 .13 .12 .14 .15 .16 .10 .08

0.8 Pc .82 .86 .87 .87 .86 .86 .76 .25 .18

Po .15 .13 .13 .14 .14 .14 .21 .13 .09

0.9 Pc .88 .89 .88 .86 .87 .87 .85 .81 .81

Po .12 .11 .12 .14 .14 .14 .15 .18 .18

6 (0.2, 0.9) 0.2 Pc .84 .85 .86 .85 .86 .86 .86 .80 .67

Po .16 .15 .15 .15 .14 .14 .14 .20 .33

0.3 Pc .57 .76 .86 .86 .86 .86 .87 .79 .67

Po .12 .15 .14 .14 .14 .14 .13 .21 .32

0.5 Pc .32 .68 .85 .86 .85 .86 .88 .64 .30

Po .11 .15 .15 .14 .15 .14 .12 .14 .13

0.8 Pc .84 .85 .86 .86 .86 .87 .86 .74 .56

Po .16 .16 .14 .14 .14 .14 .14 .15 .12

0.9 Pc .86 .86 .86 .86 .85 .86 .86 .87 .85

Po .14 .14 .14 .14 .15 .14 .14 .14 .15
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Table B-11: Model selection probabilities between pure mean shift and persistence break [� = :10]

T DGP ��=�=�1 ; �2 Model 1: � Model 2: � Model 3: c

1 1/3 3 1/3 3 0 10

200 0� �� = 1 .87 .32 .83 .38 .84 .31 .63

�� = 3 .86 .84 .86 .88 .84 .48 .77

1 � = 0:5 .97 .05 .94 .35 .98 .33 .62

2 � = 0:5 .98 .94 .26 .99 .68 .42 .78

3 �1 = 0:2; �2 = 0:9 1.00 .12 .93 .89 .99 .47 .86

�1 = 0:9; �2 = 0:2 1.00 .93 .48 .99 .96 .51 .91

400 0� �� = 1 .87 .62 .87 .74 .89 .48 .82

�� = 3 .89 .86 .87 .89 .86 .63 .88

1 � = 0:5 1.00 .06 1.00 .96 1.00 .59 .87

2 � = 0:5 1.00 1.00 .54 1.00 .99 .64 .95

3 �1 = 0:2; �2 = 0:9 1.00 .65 1.00 1.00 1.00 .62 .97

�1 = 0:9; �2 = 0:2 1.00 1.00 .96 1.00 1.00 .61 .99

600 0� �� = 1 .90 .75 .88 .84 .90 .51 .87

�� = 3 .90 .87 .87 .87 .89 .69 .89

1 � = 0:5 1.00 .15 1.00 1.00 1.00 .64 .93

2 � = 0:5 1.00 1.00 .85 1.00 1.00 .70 .98

3 �1 = 0:2; �2 = 0:9 1.00 .99 1.00 1.00 1.00 .70 .98

�1 = 0:9; �2 = 0:2 1.00 1.00 1.00 1.00 1.00 .69 1.00
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Supplement C: Comparison with the Recursive Bootstrap

In order to highlight the advantages of employing the proposed bootstrap schemes A and
B, we now provide a comparison with the fully recursive bootstrap schemes. The recursive
counterpart of scheme A entails replacing step 3 in scheme A with the recursion

y
(1)
t = y

(1)
t�1 +

P�lT
j=1 ��j�y

(1)
t�j + u

(1)
t ; t = �lT + 2; :::; T

y
(1)
t = yt; t = 1; :::; �lT + 1 (C.1)

while the recursive counterpart of scheme B involves replacing step 3 in scheme B with the
recursion

y
(0)
t = ec+ e�y(0)t�1 +PelT

j=1 e�j�y(0)t�j + u
(0)
t ; t = �lT + 2; :::; T

y
(0)
t = 0; t = 1; :::;elT + 1 (C.2)

Since the bootstrap data obtained from (C:1) and (C:2) are serially correlated, conditional
on the original data, the bootstrap statistics will now need to be adjusted by including lagged
�rst di¤erences in the estimated regression as in the construction of the statistics based on
the original data fytg. The lag length is again chosen using the BIC. Table C-1 reports
the empirical size and size-adjusted power (only in the single break case, for brevity) of the
recursive bootstrap tests (denoted with a superscript �r�) for � = � = 0. The procedure has
accurate size in general with a tendency to under-reject in some cases. A power comparison
with Table B-2 reveals that the recursive bootstrap tests are generally less powerful than the
hybrid tests for DGP-1 and DGP-2 which contain an I(1) segment, in accordance with the
discussion in Section 5. For DGP-3, the two approaches yield comparable power. The power
gains are even more transparent if one were to a priori rule out the I(1) null hypothesis and
hence apply the BP tests in isolation (see Tables C-2 and C-3). Overall, these �ndings favor
the use of the proposed scheme over the recursive scheme in terms of its relative ability in
detecting persistence change.
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Table C-1: Size and size-adjusted power of bootstrap recursive tests, [� = � = 0, �01 = 0:5, 5%]

T DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 1 � = 0:5

200 0 Hr
1 .03 .05 .04 .05 .03 .06 .06 .04 .03 .04 .04 .03 .03 .03

Hr
2 .02 .02 .03 .02 .02 .05 .03 .03 .02 .01 .04 .02 .03 .03

Hr
max .02 .04 .02 .05 .02 .05 .04 .04 .02 .02 .04 .02 .03 .03

� = 0:5 � = 0:7

1 Hr
1 .95 .05 .74 .26 .92 .25 .51 .57 .04 .36 .06 .54 .08 .20

Hr
2 .53 .04 .18 .25 .38 .11 .21 .15 .04 .07 .06 .14 .05 .07

Hr
max .89 .04 .59 .21 .84 .17 .37 .41 .04 .22 .05 .42 .07 .11

2 Hr
1 .99 .74 .26 .92 .70 .30 .69 .79 .40 .16 .57 .28 .16 .39

Hr
2 .66 .29 .05 .65 .22 .14 .29 .26 .14 .04 .30 .09 .08 .12

Hr
max .97 .65 .10 .90 .50 .23 .57 .69 .31 .06 .53 .16 .12 .26

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 Hr
1 .99 .08 .82 .74 .97 .34 .72 1.0 .88 .33 .99 .91 .42 .82

Hr
2 .87 .05 .32 .64 .73 .19 .43 .93 .45 .06 .89 .59 .24 .51

Hr
max .99 .04 .77 .69 .97 .30 .64 1.0 .85 .17 .99 .85 .36 .73

� = 1 � = 0:5

400 0 Hr
1 .03 .04 .05 .04 .04 .05 .05 .05 .05 .04 .05 .05 .05 .06

Hr
2 .02 .03 .03 .02 .02 .04 .03 .06 .03 .03 .04 .04 .03 .04

Hr
max .02 .02 .02 .04 .02 .05 .03 .05 .04 .04 .05 .04 .05 .05

� = 0:5 � = 0:7

1 Hr
1 1.0 .07 1.0 .94 1.0 .50 .85 1.0 .06 .91 .31 .98 .31 .61

Hr
2 .99 .03 .72 .77 .95 .30 .59 .68 .03 .42 .22 .60 .14 .28

Hr
max 1.0 .04 1.0 .91 1.0 .41 .76 .98 .03 .83 .23 .96 .22 .42

2 Hr
1 1.0 1.0 .48 1.0 .99 .58 .93 1.0 .92 .25 .99 .74 .39 .78

Hr
2 .99 .77 .06 .99 .65 .39 .68 .82 .54 .05 .88 .22 .22 .40

Hr
max 1.0 1.0 .20 1.0 .96 .50 .85 1.0 .89 .10 .99 .54 .29 .63

�1 = 0:2; �2 = 0:9; � = 0:7 �1 = 0:9; �2 = 0:2; � = �0:7

3 Hr
1 1.0 .47 1.0 1.0 1.0 .55 .94 1.0 1.0 .82 1.0 1.0 .60 .97

Hr
2 1.0 .16 .96 .99 1.0 .46 .85 1.0 .96 .26 1.0 .98 .48 .87

Hr
max 1.0 .30 1.0 1.0 1.0 .52 .92 1.0 1.0 .55 1.0 1.0 .55 .93
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Table C-2: Empirical power of bootstrap recursive and non-recursive G1 tests, [m = 1, � = 0, �01 = 0:5]

T � DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 /�1 = 0:2; �2 = 0:9 � = 0:7/�1 = 0:9; �2 = 0:2

200 0.5 1 Gr1 .89 .20 .60 .42 .82 .37 .62 .57 .16 .31 .23 .48 .27 .37

G�1 .98 .72 .86 .88 .97 .63 .88 .90 .66 .64 .71 .83 .52 .73

2 Gr1 .94 .50 .43 .76 .66 .44 .72 .68 .26 .35 .45 .42 .32 .51

G�1 .99 .82 .83 .96 .92 .65 .91 .93 .61 .74 .83 .79 .55 .79

3 Gr1 .90 .14 .63 .56 .83 .37 .65 .98 .60 .59 .87 .88 .49 .82

G�1 .97 .42 .74 .85 .92 .48 .78 .99 .77 .78 .95 .96 .56 .90

0.8 1 Gr1 .62 .20 .36 .34 .55 .31 .45 .40 .17 .17 .24 .29 .23 .29

G�1 .94 .74 .80 .81 .90 .61 .79 .83 .70 .62 .71 .77 .53 .67

2 Gr1 .74 .28 .40 .54 .49 .37 .55 .53 .15 .36 .29 .38 .27 .40

G�1 .96 .75 .82 .91 .86 .62 .85 .91 .55 .78 .77 .77 .54 .76

3 Gr1 .64 .10 .37 .21 .58 .26 .44 .90 .38 .72 .74 .74 .43 .72

G�1 .87 .38 .57 .60 .82 .43 .63 .96 .65 .84 .92 .88 .56 .83

� = 0:5 /�1 = 0:2; �2 = 0:9 � = 0:7/�1 = 0:9; �2 = 0:2

400 0.5 1 Gr1 1.0 .24 .99 .86 1.0 .57 .86 .97 .16 .89 .40 .96 .42 .70

G�1 1.0 .81 1.0 .99 1.0 .78 .97 .99 .70 .96 .91 .99 .67 .91

2 Gr1 1.0 .99 .61 1.0 .97 .68 .95 .99 .84 .47 .95 .72 .53 .82

G�1 1.0 1.0 .95 1.0 1.0 .79 .98 1.0 .95 .87 .99 .95 .71 .94

3 Gr1 1.0 .36 .98 .99 1.0 .58 .95 1.0 .98 .85 1.0 1.0 .64 .97

G�1 1.0 .75 .99 1.0 1.0 .63 .97 1.0 .99 .94 1.0 1.0 .67 .98

0.8 1 Gr1 .94 .20 .89 .47 .95 .45 .72 .74 .16 .62 .28 .74 .32 .50

G�1 1.0 .75 .99 .93 1.0 .72 .92 .98 .70 .90 .80 .96 .64 .82

2 Gr1 .99 .83 .48 .96 .74 .53 .81 .90 .51 .41 .76 .53 .42 .65

G�1 1.0 .98 .88 1.0 .97 .74 .95 .99 .87 .83 .97 .90 .65 .89

3 Gr1 .99 .11 .85 .60 .97 .44 .78 1.0 .84 .76 .98 .93 .54 .89

G�1 1.0 .36 .93 .91 .99 .53 .85 1.0 .94 .87 .99 .98 .63 .92
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Table C-3: Empirical power of bootstrap recursive and non-recursive G1 tests, [m = 1, � = 0, �01 = 0:5]

T � DGP Test Model 1: � Model 2: � Model 3: c Model 1: � Model 2: � Model 3: c

�=c 1 1=3 3 1=3 3 0 10 1 1=3 3 1=3 3 0 10

� = 0:5 /�1 = 0:2; �2 = 0:9 � = 0:7/�1 = 0:9; �2 = 0:2

200 0.5 1 Gr1 .92 .32 .84 .63 .91 .45 .75 .76 .28 .53 .44 .68 .33 .56

G�1 .99 .74 .95 .90 .99 .64 .90 .93 .69 .74 .79 .88 .55 .82

2 Gr1 .95 .89 .46 .93 .70 .54 .82 .77 .62 .38 .72 .50 .41 .64

G�1 .99 .96 .81 .98 .90 .66 .92 .93 .82 .72 .90 .77 .56 .80

3 Gr1 .97 .32 .79 .80 .95 .45 .80 .99 .78 .37 .96 .81 .45 .87

G�1 .99 .51 .81 .91 .97 .49 .87 1.0 .78 .55 .97 .92 .50 .90

0.8 1 Gr1 .88 .58 .75 .75 .85 .54 .76 .82 .55 .56 .69 .77 .45 .71

G�1 .96 .81 .75 .89 .91 .61 .86 .93 .77 .61 .83 .86 .54 .80

2 Gr1 .89 .87 .60 .90 .72 .54 .81 .83 .78 .54 .82 .61 .48 .71

G�1 .96 .87 .78 .93 .87 .61 .87 .93 .83 .74 .88 .79 .54 .80

3 Gr1 .83 .37 .39 .69 .62 .31 .60 .80 .19 .35 .47 .66 .29 .56

G�1 .82 .41 .37 .70 .59 .31 .60 .80 .17 .38 .46 .68 .31 .56

� = 0:5 /�1 = 0:2; �2 = 0:9 � = 0:7/�1 = 0:9; �2 = 0:2

400 0.5 1 Gr1 1.0 .34 1.0 .90 1.0 .63 .89 .97 .22 .93 .59 .97 .53 .78

G�1 1.0 .82 1.0 .99 1.0 .78 .97 1.0 .73 .97 .94 .99 .70 .91

2 Gr1 1.0 1.0 .64 1.0 .96 .71 .97 .99 .95 .49 .99 .77 .60 .86

G�1 1.0 1.0 .93 1.0 .99 .79 .98 1.0 .97 .85 1.0 .95 .70 .94

3 Gr1 1.0 .62 .99 .99 1.0 .61 .96 1.0 1.0 .75 1.0 .99 .62 .97

G�1 1.0 .77 .99 1.0 1.0 .64 .97 1.0 1.0 .83 1.0 1.0 .64 .97

0.8 1 Gr1 .98 .53 .98 .83 .99 .67 .89 .94 .50 .91 .71 .96 .61 .83

G�1 .99 .81 .97 .95 1.0 .74 .95 .98 .77 .91 .87 .98 .69 .89

2 Gr1 .99 .98 .66 1.0 .87 .70 .93 .94 .96 .60 .98 .73 .62 .86

G�1 1.0 .98 .86 .99 .94 .75 .95 .98 .96 .80 .98 .87 .68 .90

3 Gr1 .99 .60 .82 .96 .96 .48 .85 .99 .68 .58 .95 .95 .47 .85

G�1 .99 .65 .80 .96 .95 .48 .85 .99 .66 .65 .95 .95 .47 .84
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Supplement D: Additional Empirical Results
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Figure D-1: Nonparametric volatility estimates (% of the total) of OECD in�ation rates.
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Figure D-2: Estimated variance pro�le of OECD in�ation rates.
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