# Testing jointly for structural changes in the error variance and coefficients of a linear regression model<sup>\*</sup>

Pierre Perron<sup>†</sup>

Yohei Yamamoto<sup>‡</sup>

Boston University

Hitotsubashi University

Jing  $Zhou$ <sup>§</sup>

Seeking Sense Investment Management Co., Ltd.

April 16, 2019; revised February 12, 2020

#### Abstract

We provide a comprehensive treatment for the problem of testing jointly for structural changes in both the regression coefficients and the variance of the errors in a single equation system involving stationary regressors. Our framework is quite general in that we allow for general mixing-type regressors and the assumptions on the errors are quite mild. Their distribution can be non-normal and conditional heteroskedasticity is permitted. Extensions to the case with serially correlated errors are also treated. We provide the required tools to address the following testing problems, among others: a) testing for given numbers of changes in regression coefficients and variance of the errors; b) testing for some unknown number of changes within some pre-specified max- $\lim_{\epsilon}$ ; c) testing for changes in variance (regression coefficients) allowing for a given number of changes in the regression coefficients (variance);  $d$ ) a sequential procedure to estimate the number of changes present. These testing problems are important for practical applications as witnessed by interests in macroeconomics and Önance where documenting structural changes in the variability of shocks to simple autoregressions or Vector Autoregressive Models has been a concern.

**JEL Classification:** C22; **Keywords:** Change-point; Variance shift; Conditional heteroskedasticity; Likelihood ratio tests.

<sup>\*</sup>Perron acknowledges financial support from the National Science Foundation under Grant SES-0649350. We are grateful to Zhongjun Qu for comments and for pointing out an error in a previous draft.

<sup>&</sup>lt;sup>†</sup>Department of Economics, Boston University, 270 Bay State Rd., Boston, MA, 02215 (perron@bu.edu). <sup>z</sup>Department of Economics, Hitotsubashi University, 2-1 Naka Kunitachi, Tokyo, 186-8601 Japan (yohei.yamamoto@econ.hit-u.ac.jp).

 $\S$ Seeking Sense (Shanghai) Investment Management Co., Ltd., Taiping Finance Tower, 488 Middle Yincheng Road, Shanghai, China 200120 (zhoujing112@foxmail.com)

## 1 Introduction

Both the statistics and econometrics literature contain a vast amount of work on issues related to structural changes with unknown break dates, most of it designed for a single change (for an extensive review, see Perron, 2006 and Casini and Perron, 2019b). The problem of multiple structural changes has received attention mostly in the context of a single regression. Bai and Perron (1998, 2003a) provide a comprehensive treatment: consistency of estimates of the break dates, tests for structural changes, confidence intervals for the break dates, methods to select the number of breaks and efficient algorithms to compute the estimates; see also Hawkins (1976). Perron and Qu (2006) extend this analysis to the case where arbitrary linear restrictions are imposed on the coefficients of the model. Also, Kurozumi and Tuvaandorj (2011) propose an information criterion for the selection of the number of changes; see also Liu, Wu and Zidek (1997). Bai, Lumsdaine and Stock (1998) consider asymptotically valid inference for the estimate of a single break date in multivariate time series allowing stationary or integrated regressors as well as trends with estimation carried using a quasi maximum likelihood (QML) procedure. Also, Bai (2000) considers a segmented stationary VAR model estimated again by QML when the break can occur in the parameters of the conditional mean, the variance of the error term or both. Kejriwal and Perron (2008, 2010) deal with multiple structural changes in a single equation cointegrated model. Perron and Yamamoto (2014) derive the limit distribution of the estimates of the break dates in models with endogenous regressors estimated via an instrumental variable method, while they argue in Perron and Yamamoto (2015) that using standard least-squares methods is preferable both for estimation and testing. Casini and Perron (2019a) provides a limit distribution of the least-squares estimate of the break date in a linear model based on a continuous-time asymptotic framework, which delivers substantial improvements with respect to inference using the concept of highest density regions.

With respect to testing for changes in the variance of the regression error, the results are quite sparse. Horvath (1993) considers a change in the mean and variance (occurring at the same time) of a sequence of i.i.d. random variables with moments corresponding to those of a normal distribution. Davis, Huang, and Yao (1995) extend the analysis to an autoregressive process under similar conditions. Aue et al. (2009) propose non-parametric tests for changes in the variances or autocovariances of multivariate linear or non-linear time series models. Deng and Perron (2008) extended the CUSUM of squares (or CUSQ) test of Brown, Durbin and Evans (1975) allowing general conditions on the regressors and the errors

(as suggested by Inclán and Tiao,  $1994$ , for normally distributed time series). Xu (2013) provides a further extension with a robust estimate of the long-run variance of the squared errors of closer relevance to our objectives. Andrews (1993) considers a one-time structural change under a Generalized Method of Moment (GMM) setting, thereby allowing for changes in both coefficients and variance though occurring at the same date; see McConnell and Pérez-Quirós (2000) for a related application. Qu and Perron (2007a) consider a multivariate system estimated by quasi maximum likelihood which provides methods to estimate models with structural changes in both the regression coefficients and the covariance matrix of the errors. They provide a limit distribution theory for inference about the break dates and also consider testing for multiple structural changes, though restricted to normally distributed errors and breaks in coefficients and variance occurring at different dates.

We build on Qu and Perron (2007a) to provide a comprehensive treatment of testing jointly for structural changes in both the regression coefficients and the variance of the errors in a single equation involving stationary regressors, allowing the break dates to be different or overlap. Our framework is general and allows for general mixing-type regressors. The assumptions on the errors are mild; their distribution can be non-normal and conditional heteroskedasticity is permitted. Extensions to the case with serially correlated errors are also treated. We provide the required tools to address the following testing problems, among others: a) testing for given numbers of changes in regression coefficients and variance of the errors; b) testing for some unknown number of changes within some pre-specified maximum; c) testing for changes in variance (regression coefficients) allowing for a given number of changes in the regression coefficients (variance); d) sequential procedures to estimate the number of changes present. Note that we adopt a QML approach instead of one based on GMM. Either could be used in principle. The main advantage of using the QML approach based on normal errors is Örst that it allows a natural extension of Bai and Perron (1998) widely used in practice. Second, and more importantly perhaps, we can use the efficient algorithm developed in Qu and Perron (2007a). This is especially important in the current context since even only two breaks in coefficients and variance implies four possible break dates. Hence a computationally efficient method to estimate the break dates is needed.

These testing problems are important for practical applications; e.g., documenting structural changes in the variability of shocks in autoregressive models; see Blanchard and Simon  $(2001)$ , Herrera and Pesavento  $(2005)$ , Kim and Nelson  $(1999)$ , McConnell and Pérez-Quirós (2000), Sensier and van Dijk (2004) and Stock and Watson (2002). Given the lack of proper testing procedures, a common approach is to apply a sup-Wald type tests (e.g., Andrews,

1993, Bai and Perron, 1998) for changes in the mean of the absolute value of the estimated residuals, a rather ad hoc procedure. To test for a change in variance only (imposing no change in the regression coefficients), only can apply a CUSUM of squares test to the estimated residuals, which is adequate only if no change in coefficient is present. Often, changes in both coefficients and variance occur at possibly different dates. A common method is to first test for changes in the regression coefficients and conditioning on the break dates found, then test for changes in variance. This is clearly inappropriate as in the first step the tests suffers for severe size distortions. Also, neglecting changes in regression coefficients when testing for changes in variance induces both size distortions and a loss of power; e.g., Perron and Yamamoto (2019a) and Pitarakis (2004). Hence, what is needed is a joint approach. To do so, our testing procedures are based on quasi likelihood ratio tests using a likelihood function for identically and independently distributed normal errors. We then apply corrections to have limit distributions free of nuisance parameters with non-normal distribution and conditional heteroskedasticity. We also consider extensions that allow for serial correlation.

The empirical usefulness of our proposed procedure is perhaps best explained via applications related to changes in the variance of many macroeconomic variables (i.e., the great moderation); see Gadea et al. (2018) and Perron and Yamamoto (2019b). The testing issues of interest are, among others: a) testing for a change in variance in 1984 (the commonly accepted date for the start of the great moderation); b) testing for an additional change in variance, say following the great recession of 2007; c) estimating the total number of changes; d) testing whether any changes are present; e) performing all these tests allowing for changes in the parameters of a conditional regression model (e.g., a change in slope in 1973 for GDP as argued in Perron, 1989); f) performing all the corresponding tests when testing for changes in the regression parameters allowing for changes in the variance of the errors. For instance, an issue of interest in macroeconomics is whether the great moderation was due to changes in the persistence parameters (the sum of the autoregressive coefficients) as suggested by the "improved policy" hypothesis or in the error variance as suggested by the "good luck" hypothesis or in both. Our tests allow to disentangle these effects, including cases with multiple breaks. Section 7 provides empirical examples related to ináation and real interest rate series. To reach the right conclusion about the number and nature of the changes, we use all tests proposed in this paper in a careful way. Obviously, the number of potential other applications abound. One could argue that it is sufficient to have tests for changes in parameters that are robust to unknown patterns of changes in variance. An example is the work of Górecki et al. (2018). However, their tests are based on a two step approach; first estimating the error process assuming no coefficient breaks and subsequently testing for changes in the coefficients using this estimate. Accordingly, the tests can suffer from severe power losses as the estimated error process can be contaminated when structural changes are actually present in the coefficients. Indeed, unreported simulations show their tests to have non-monotonic power, i.e., power that decreases as the magnitude of the change in the regression parameters increases. This testing problem is easily covered via our  $\sup LR_{3,T}$  and  $UD$  max  $LR_{3,T}$  tests, which maintain good power properties. Similarly, one could be content with only testing for a change in variance allowing for unspecified changes in the regression parameters. The only tests we know that tackle this issue are based on the  $\sup LR_{2,T}$  and  $UD$  max  $LR_{2,T}$  tests that we propose.

The paper is structured as follows. Section 2 presents the models and testing problems, with the quasi-likelihood tests stated in Section 3. Section 4 discusses the assumptions needed on the regressors and errors, derives the relevant limit distributions under the various null hypotheses and proposes corrected versions of the tests that have limit distributions free of nuisance parameters. Section 4.1 deals with the case of martingale difference errors, Section 4.2 extends the analysis to serially correlated errors, Section 4.3 covers the case with an unknown number of breaks. Section 4.4 discusses tests for an additional break in either the regression coefficients or the variance. Section 5 provides simulation results to assess the adequacy of the suggested procedures in terms of their Önite sample size and power and provides some practical guidelines. Section 6 discusses methods to estimate the number of breaks in the regression coefficients and the variance. Section 7 provides empirical applications and Section 8 brief concluding remarks. An appendix contains some technical derivations. An online supplement contains additional material.

## 2 Model and testing problems

We start with a description of the most general specification of the model considered where multiple breaks occur in both the coefficients of the conditional mean and the variance of the errors, at possibly different times. This will allow us to set up the notation used throughout the paper. The main framework of analysis can be described by the following multiple linear regression with m breaks (or  $m + 1$  regimes) in the conditional mean equation:

$$
y_t = x_t'\beta + z_t'\delta_j + u_t, \qquad t = T_{j-1}^c + 1, ..., T_j^c,
$$
\n(1)

for  $j = 1, ..., m + 1$ . In this model,  $y_t$  is the observed dependent variable at time t; both  $x_t$  ( $p \times 1$ ) and  $z_t$  ( $q \times 1$ ) are vectors of covariates and  $\beta$  and  $\delta_j$  ( $j = 1, ..., m + 1$ ) are

the corresponding vectors of coefficients;  $u_t$  is the disturbance at time t. The break dates  $(T_1^c, ..., T_m^c)$  are explicitly treated as unknown (with the convention  $T_0^c = 0$  and  $T_{m+1}^c = T$ used). This is a partial structural change model since the parameter vector  $\beta$  is not subject to shifts and is estimated using the entire sample. When  $p = 0$ , we obtain a pure structural change model when all coefficients are subject to change. We also allow for n breaks (or  $n+1$ regimes) for the variance of the errors occurring at unknown dates  $(T_1^v, ..., T_n^v)$ . Accordingly,  $E(u_t) = 0$  and  $E(u_t^2) = \sigma_i^2$  for  $T_{i-1}^v + 1 \le t \le T_i^v$   $(i = 1, ..., n + 1)$ , where again we use the convention that  $T_0^v = 0$  and  $T_{n+1}^v = T$ . We allow the breaks in the variance and in the regression coefficients to happen at different times, hence the m-vector  $(T_1^c, ..., T_m^c)$  and the *n*-vector  $(T_1^v)$  $(T_1^v, ..., T_n^v)$  can have all distinct elements or they can overlap partly or completely. We let K denote the total number of break dates and  $max[m, n] \leq K \leq m + n$ . When the the breaks overlap completely,  $m = n = K$ . The multiple linear regression system (1) may be expressed in matrix form as  $Y = X\beta + \overline{Z}\delta + U$ , where  $Y = (y_1, ..., y_T)$ ',  $X = (x_1, ..., x_T)$ ',  $U = (u_1, ..., u_T)^\prime$ ,  $\delta = (\delta_1^\prime, ..., \delta_{m+1}^\prime)^\prime$ , and  $\overline{Z}$  diagonally partitions  $Z$  at  $(T_1^c, ..., T_m^c)$ , i.e.,  $\bar{Z} = diag(Z_1, ..., Z_{m+1})$  with  $Z_j = (z_{T_{j-1}+1}, ..., z_{T_j}^c)'$ . The true value of the parameters are  $\delta^0 = (\delta_1^{0'}, \ldots, \delta_{m+1}^{0'}')'$  and  $(T_1^{c0}, \ldots, T_m^{c0})$  and  $\bar{Z}^0$  diagonally partitions Z at  $(T_1^{c0}, \ldots, T_m^{c0})$ . Hence, the data-generating process (DGP) is  $Y = X\beta^{0} + \bar{Z}^{0}\delta^{0} + U$  with  $E(UU') = \Omega^{0}$ , where the diagonal elements of  $\Omega^0$  are  $\sigma_{i0}^2$  for  $T_{i-1}^{v0} + 1 \le t \le T_i^{v0}$   $(i = 1, ..., n + 1)$ . We also consider cases with serial correlation in the errors for which the off-diagonal elements of  $\Omega^0$ need not be 0. This is a special case of the class of models considered by Qu and Perron (2007a). Their method of estimation is quasi maximum likelihood (QML) assuming serially uncorrelated Gaussian errors. They prove consistency of the estimates of the break fractions  $(\lambda_1^0)$  $\mathcal{L}_{1}^{0},...,\lambda_{K}^{0}) \equiv (T_{1}^{0}/T,...,T_{K}^{0}/T),$  where  $T_{i}^{0}$   $(i = 1,...,K)$  denotes the union of the elements of  $(T_1^{c0},...,T_m^{c0})$  and  $(T_1^{v0},...,T_n^{v0})$ . This is done under general conditions on the regressors and the errors; see Section 4. Importantly, from a practical perspective, they provide an efficient estimation algorithm, which we build upon.

The testing problems are the following: TP-1:  $H_0$ :  $\{m = n = 0\}$  versus  $H_1$ :  $\{m = 0,$  $n = n_a$ ; TP-2:  $H_0$ :  $\{m = m_a, n = 0\}$  versus  $H_1$ :  $\{m = m_a, n = n_a\}$ ; TP-3:  $H_0$ :  $\{m = n_a\}$  $0, n = n_a$ } versus  $H_1$ : { $m = m_a, n = n_a$ }; TP-4:  $H_0$ : { $m = n = 0$ } versus  $H_1$ : { $m = m_a$ ,  $n = n_a$ , where  $m_a$  and  $n_a$  are some positive numbers selected a priori. We shall also consider testing problems where the alternatives specify some unknown numbers of breaks, up to some maximum. These are: TP-5:  $H_0: \{m = n = 0\}$  versus  $H_1: \{m = 0, 1 \le n \le N\}$ ; TP-6:  $H_0: \{m = m_a, n = 0\}$  versus  $H_1: \{m = m_a, 1 \leq n \leq N\};$  TP-7:  $H_0: \{m = 0, n = n_a\}$ versus  $H_1: \{1 \le m \le M, n = n_a\};$  TP-8:  $H_0: \{m = n = 0\}$  versus  $H_1: \{1 \le m \le M,$ 

 $1 \leq n \leq N$ . We shall deal with: TP-9:  $\{m = m_a, n = n_a\}$  versus  $H_1 : \{m = m_a + 1,$  $n = n_a$ ; TP-10:  $\{m = m_a, n = n_a\}$  versus  $H_1$ :  $\{m = m_a, n = n_a + 1\}$ , where  $m_a$  and  $n_a$ non-negative integers. These are useful to assess the adequacy of a model with some number of breaks assessing whether including one more is warranted. In Section 6, we also consider sequential testing procedures that allow estimating the number of breaks in both  $\delta$  and  $\sigma^2$ .

#### 3 The quasi-likelihood ratio tests

We consider the likelihood ratio (LR) tests obtained assuming normally distributed and serially uncorrelated errors, for TP-1 to TP-4. We estimate the model using the quasimaximum likelihood estimation method (QMLE). Consider TP-1 with no change in  $\delta$  (m =  $q = 0$ ) and testing for  $n_a$  changes in  $\sigma^2$ . Under  $H_0$ , the log-likelihood function is:

$$
\log \widetilde{L}_T = -(T/2)(\log 2\pi + 1) - (T/2)\log \widetilde{\sigma}^2,\tag{2}
$$

where  $\tilde{\sigma}^2 = T^{-1} \sum_{t=1}^T (y_t - x_t \tilde{\beta})^2$  and  $\tilde{\beta} = (\sum_{t=1}^T x_t x_t')^{-1} (\sum_{t=1}^T x_t y_t)$ . Under  $H_1$ , for a given partition  $\{T_1^v, ..., T_n^v\}$ , the log-likelihood value is given by

$$
\log \hat{L}_T(T_1^v, ..., T_n^v) = -(T/2) \left( \log 2\pi + 1 \right) - \sum_{i=1}^{n_a+1} \left[ (T_i^v - T_{i-1}^v)/2 \right] \log \hat{\sigma}_i^2,\tag{3}
$$

where the QMLE jointly solves  $\hat{\beta} = (\sum_{i=1}^{n_a+1} \sum_{t=T_{i-1}^v+1}^{T_i^v} x_t x_t'/\hat{\sigma}_i^2)$  $\sum_{i=1}^{n} (-1)^{n} \sum_{i=1}^{n} \sum_{t=T_{i-1}^v+1}^{T_i^v} x_t y_t / \hat{\sigma}_i^2$  $\binom{2}{i}$ and  $\hat{\sigma}_i^2 = (T_i^v - T_{i-1}^v)^{-1} \sum_{t=T_{i-1}^v+1}^{T_i^v} (y_t - x_t^t \hat{\beta})^2$ , for  $i = 1, ..., n_a + 1$ . Hence, the Sup-LR test is

$$
\sup LR_{1,T} (n_a, \varepsilon | m = n = 0) = \sup_{(\lambda_1^v, ..., \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}} 2[\log \hat{L}_T (T_1^v, ..., T_{n_a}^v) - \log \tilde{L}_T]
$$
  
= 2[log  $\hat{L}_T (\hat{T}_1^v, ..., \hat{T}_{n_a}^v) - \log \tilde{L}_T]$ 

where  $(\hat{T}_1^v, ..., \hat{T}_{n_a}^v)$  are the QMLE obtained imposing the restriction of no change in the coefficients and  $\Lambda_{v,\varepsilon} = \{ \left( \lambda_1^v \right)$  $\left( \sum_{i=1}^{v},...,\lambda_{n_{a}}^{v}\right)$ ;  $\left| \lambda_{i+1}^{v}-\lambda_{i}^{v}\right|$  $\mathbb{E}_{i}^{v} \geq \varepsilon \ (i = 1, ..., n_{a} - 1), \lambda_{1}^{v} \geq \varepsilon, \lambda_{n_{a}}^{v} \leq 1 - \varepsilon \},$ with  $\varepsilon$  a truncation imposing a minimal length for each segment. For TP-2, there are  $m_a$ breaks in  $\delta$  under both  $H_0$  and  $H_1$ , so the test pertains to assess whether there are 0 or  $n_a$  breaks in variance. For a given partition  $\{T_1^c, ..., T_{m_a}^c\}$ , the likelihood function under  $H_0$  is  $\log \widetilde{L}_T(T_1^c, ..., T_{m_a}^c) = -(T/2) (\log 2\pi + 1) - (T/2) \log \widetilde{\sigma}^2$ , where  $\widetilde{\sigma}^2 = T^{-1} \sum_{t=1}^T (y_t - \widetilde{\sigma}^2)$  $x'_t\hat{\beta} - z'_t\delta_{t,j}$ ,  $\hat{\beta} = (X'M_{\bar{Z}}X)^{-1}X'M_{\bar{Z}}Y$  and  $\delta_{t,j} = (Z'_jZ_j)^{-1}Z_j(Y_j - X_j\hat{\beta})$  for  $T_{j-1}^c < t \le$  $T_j^c$ , with  $M_{\bar{Z}} = I - \bar{Z} (\bar{Z}' \bar{Z})^{-1} \bar{Z}'$ ,  $\bar{Z} = diag (Z_1, ..., Z_{m_a+1})$ , and  $Z_j = (z_{T_{j-1}^c+1}, ..., z_{T_j^c})'$ ,  $Y_j = (y_{T_{j-1}^c+1},...,y_{T_j^c})', X_j = (x_{T_{j-1}^c+1},...,x_{T_j^c})'$  for  $T_{j-1}^c < t \le T_j^c$   $(j = 1,...,m_a+1)$ . The log-likelihood value under  $H_1$  is, for given partitions  $\{T_1^c, ..., T_{m_a}^c\}$  and  $\{T_1^v, ..., T_{n_a}^v\}$ ,

$$
\log \hat{L}_T(T_1^c, ..., T_{m_a}^c; T_1^v, ..., T_{n_a}^v) = -(T/2) \left( \log 2\pi + 1 \right) - \sum_{i=1}^{n_a+1} \left[ (T_i^v - T_{i-1}^v)/2 \right] \log \hat{\sigma}_i^2, \quad (4)
$$

where the QMLE solves the following equations:  $\hat{\sigma}_i^2 = [T_i^v - T_{i-1}^v]^{-1} \sum_{t=T_{i-1}^v+1}^{T_i^v} (y_t - x_t^t) \hat{\beta}$  $(z_t^{\prime} \hat{\delta}_{t,j})^2$   $(i = 1, ..., n_a+1)$  and  $\hat{\beta} = (X^{\sigma \prime} M_{\bar{Z}_{\sigma}} X^{\sigma})^{-1} X^{\sigma \prime} M_{\bar{Z}_{\sigma}} Y^{\sigma}$ , where  $M_{\bar{Z}_{\sigma}} = I - \bar{Z}_{\sigma} (\bar{Z}_{\sigma}^{\prime} \bar{Z}_{\sigma})^{-1} \bar{Z}_{\sigma}^{\prime}$ with  $\bar{Z}_{\sigma} = diag(Z_1^{\sigma}, ..., Z_{m_a+1}^{\sigma}), Z_j^{\sigma} = (z_{T_{j-1}^c+1}^{\sigma}, ..., z_{T_j^c}^{\sigma})'$ , and  $z_i^{\sigma} = (z_t/\hat{\sigma}_i)$ , for  $T_{i-1}^v < t \le T_i^v$  $(i = 1, ..., n_a + 1)$ . Also,  $\hat{\delta}_{t,j} = (Z_j^{\sigma t} Z_j^{\sigma})^{-1} Z_j^{\sigma t} (Y_j^{\sigma} - X_j^{\sigma} \hat{\beta})$  for  $T_{j-1}^c < t \leq T_j^c$ , where  $Y_j^{\sigma} = (y_{T_{j-1}+1}^{\sigma},...,y_{T_j^c}^{\sigma})', X_j^{\sigma} = (x_{T_{j-1}+1}^{\sigma},...,x_{T_j^c}^{\sigma})'$  with  $x_t^{\sigma} = (x_t/\hat{\sigma}_i)$  and  $y_t^{\sigma} = (y_t/\hat{\sigma}_i)$ . Hence,

$$
\sup LR_{2,T}(m_a, n_a, \varepsilon | n = 0, m_a)
$$

 $= 2$ [ sup  $(\lambda_1^c,...,\lambda_{m_a}^c;\lambda_1^v,...,\lambda_{n_a}^v) \in \Lambda_{\varepsilon}$  $\log \hat{L}_T(T_1^c, ..., T_{m_a}^c; T_1^v, ..., T_{n_a}^v) - \sum_{\ell=1}^{\infty}$  $(\lambda_1^c,...,\lambda_{m_a}^c)\in \Lambda_{c,\varepsilon}$  $\log \widetilde{L}_T(T_1^c,...,T_{m_a}^c)]$  $= 2[\log \hat{L}_T(\tilde{T}_1^c, ..., \tilde{T}_{m_a}^c; \tilde{T}_1^v, ..., \tilde{T}_{n_a}^v) - \log \tilde{L}_T(\hat{T}_1^c, ..., \hat{T}_{m_a}^c)],$ 

where  $\Lambda_{c,\varepsilon} = \{(\lambda_1^c)$  $\chi_{1}^{c},...,\lambda_{m}^{c}$  ;  $\lambda_{j+1}^{c}-\lambda_{j}^{c}$  $\left| \xi_j^c \right| \geq \varepsilon \ (j = 1, ..., m_a - 1), \lambda_1^c \geq \varepsilon, \lambda_{m_a}^c \leq 1 - \varepsilon \}$  and

$$
\Lambda_{\varepsilon} = \{ (\lambda_1^c, ..., \lambda_m^c, \lambda_1^v, ..., \lambda_n^v) ; \text{ for } (\lambda_1, ..., \lambda_K) = (\lambda_1^c, ..., \lambda_m^c) \cup (\lambda_1^v, ..., \lambda_n^v) \qquad (5) |\lambda_{j+1} - \lambda_j| \ge \varepsilon (j = 1, ..., K - 1), \lambda_1 \ge \varepsilon, \lambda_K \le 1 - \varepsilon \}.
$$

Note that we denote the estimates of the break dates in coefficients and variance by a " $\sim$ " when these are obtained jointly, and by a " $\gamma$ " when obtained separately.

The set  $\Lambda_{\varepsilon}$  which defines the possible values of the break fractions in  $\delta$  ( $\lambda_1^c$ )  $_{1}^{c},...,\lambda_{m}^{c})$  and in  $\sigma^2$  ( $\lambda_1^v$  $\lambda_1^v, \ldots, \lambda_m^v$  allows them to have some (or all) common elements or be completely different. What is important is that each break fraction be separated by some  $\varepsilon > 0$ . This does complicate inference since many cases need to be considered. To illustrate, consider  $m_a = n_a = 1$ . We can have  $K = 1$ , a one break model with both  $\delta$  and  $\sigma^2$  changing at the same date. On the other hand, if  $K = 2$ , the break date for the change in  $\delta$  is different from that for the change in  $\sigma^2$ . This leads to two additional possible cases: a)  $\lambda_1^c \leq \lambda_1^v - \varepsilon$  (the break in  $\delta$  is before that in  $\sigma^2$ ), b)  $\lambda_1^c \geq \lambda_1^v + \varepsilon$  (the break in  $\delta$  is after that in  $\sigma^2$ ). The maximized likelihood function for these two cases can be evaluated using the algorithm of Qu and Perron (2007a) since it permits imposing restrictions. For example, if  $\lambda_1^c \leq \lambda_1^v - \varepsilon$ , we have a two break model and the restrictions are that the error variances in the first and second regimes are identical, and the coefficients are the same in the second and third regimes. Hence, for the case  $m_a = n_a = 1$ , there are three maximized likelihood values to construct and the test corresponds to the maximal value over these three cases. When  $m_a$ or  $n_a$  are greater than one, more cases need to be considered, but the principle is the same.

For TP-3,  $H_0$  specifies  $n_a$  breaks in  $\sigma^2$  and none in  $\delta$ . For a partition  $\{T_1^v, ..., T_n^v\}$ , the likelihood function is  $\log \widetilde{L}_T(T_1^v,...,T_{n_a}^v) = -(T/2) (\log 2\pi + 1) - \sum_{i=1}^{n_a+1} [(T_i^v - T_{i-1}^v/2)] \log \widetilde{\sigma}_i^2$ i , where  $\widetilde{\sigma}_i^2 = (T_i^v - T_{i-1}^v)^{-1} \sum_{t=T_{i-1}^v+1}^{T_i^v} (y_t - x_t^t \widetilde{\beta} - z_t^t \widetilde{\delta})^2$  for  $i = 1, ..., n_a + 1$ , with  $(\widetilde{\beta}', \widetilde{\delta}')' =$   $(W^{\sigma'}W^{\sigma})^{-1}W^{\sigma'}Y^{\sigma}, W^{\sigma} = (w_1^{\sigma}, ..., w_T^{\sigma})'$  and  $w_t^{\sigma} = (x_t^{\sigma'}, z_t^{\sigma'})'$ . Under  $H_1$ , there are  $m_a$  breaks in  $\delta$  and  $n_a$  breaks in  $\sigma^2$  and the likelihood function is (4). The sup-LR test is

$$
\sup LR_{3,T} (m_a, n_a, \varepsilon | m = 0, n_a)
$$
\n
$$
= 2[\sup_{(\lambda_1^c, ..., \lambda_{m_a}^c; \lambda_1^v, ..., \lambda_{n_a}^v) \in \Lambda_{\varepsilon}} \log \hat{L}_T(T_1^c, ..., T_{m_a}^c; T_1^v, ..., T_{n_a}^v) - \sup_{(\lambda_1^v, ..., \lambda_{m_a}^v) \in \Lambda_{v,\varepsilon}} \log \tilde{L}_T(T_1^v, ..., T_{n_a}^v)]
$$
\n
$$
= 2[\log \hat{L}_T(\tilde{T}_1^c, ..., \tilde{T}_{m_a}^c; \tilde{T}_1^v, ..., \tilde{T}_{n_a}^v) - \log \tilde{L}_T(\hat{T}_1^v, ..., \hat{T}_{n_a}^v)]
$$

For TP-4, under  $H_0$  we have no break and the log-likelihood function is (2).  $H_1$  specifies  $m_a$ breaks in  $\delta$  and  $n_a$  breaks in  $\sigma^2$  and the log likelihood is (4). Hence, the Sup-LR test is

$$
\sup LR_{4,T} (m_a, n_a, \varepsilon | n = m = 0)
$$
  
=  $2[\sup_{(\lambda_1^c, ..., \lambda_{ma}^c; \lambda_1^v, ..., \lambda_{na}^v) \in \Lambda_{\varepsilon}} \log \hat{L}_T (T_1^c, ..., T_{m_a}^c; T_1^v, ..., T_{n_a}^v) - \log \tilde{L}_T]$   
=  $2[\log \hat{L}_T(\tilde{T}_1^c, ..., \tilde{T}_{m_a}^c; \tilde{T}_1^v, ..., \tilde{T}_{n_a}^v) - \log \tilde{L}_T]$  (6)

## 4 The limiting distributions of the tests

The limit distribution of the tests for martingale difference errors is presented in Section 4.1 with extensions to serially correlated errors in 4.2. Section 4.3 deals with double maximum tests and 4.4 with tests for an additional break; " $\rightarrow_p$ " denotes convergence in probability,  $\Rightarrow$ " weak convergence under the Skorohod topology and  $|| \cdot ||$  is the Euclidean norm.

## 4.1 The case with martingale difference errors

When  $\sigma^2$  is constant under  $H_0$  but allowed to change under  $H_1$  (TP-1,2,4), we specify: • Assumption A1: The errors  $\{u_t\}$  form an array of martingale differences relative to  $\mathcal{F}_t = \sigma$  $field \{..., z_{t-1}, z_t, ..., x_{t-1}, x_t, ..., u_{t-2}, u_{t-1}\}, E(u_t^2) = \sigma_0^2$  for all t and  $T^{-1/2} \sum_{t=1}^{[Ts]} (u_t^2/\sigma_0^2 - 1) \Rightarrow$  $\psi W(s)$ , where  $W(s)$  is a Wiener process and  $\psi = \lim_{T \to \infty} var(T^{-1/2} \sum_{t=1}^{T} (u_t^2 / \sigma_0^2 - 1)).$ 

Assumption A1 rules out instability in the error process and states that a basic functional central limit theorem holds for the partial sums of the squared errors. When changes in the coefficients are tested (TP-3 and TP-4), we assume, with  $w_t = (x'_t, z'_t)'$ :

• Assumption A2: The errors  $\{u_t\}$  form an array of martingale differences relative to  $\mathcal{F}_t = \sigma$ field  $\{\ldots, z_{t-1}, z_t, \ldots, x_{t-1}, x_t, \ldots, u_{t-2}, u_{t-1}\}, T^{-1} \sum_{t=1}^{[Ts]} w_t w_t' \to_p sQ$ , uniformly in  $s \in [0,1],$ with Q some positive definite matrix and  $T^{-1/2} \sum_{t=1}^{[Ts]} z_t u_t \Rightarrow \sigma_0 Q^{1/2} W_q(s)$ , where  $W_q(s)$  is a q-vector of independent Wiener processes independent of  $W(s)$ .

The first part of Assumption A2 rules out trending regressors and requires the limit moment matrix of the regressors be homogeneous throughout the sample. Hence, we avoid changes in the marginal distribution of the regressors when the coefficients do not change (e.g., Hansen, 2000, Cavaliere and Georgiev, 2018). This follows from our basic premise that regimes are defined by changes in some coefficients. The second part of  $A2$  assumes no serial correlation in the errors  $u_t$  but this will be relaxed later. Since some testing problems imply a non-zero number of breaks under  $H_0$ , i.e. in TP-2 and TP-3, we need the following conditions to ensure that the estimates of the break fractions are consistent at a fast enough rate so that they do not affect the distributions of the parameters asymptotically. This problem was analyzed in Qu and Perron (2007a) and we simply use the same set of assumptions:

Assumption A3: The conditions stated in Assumptions A1-A9 of Qu and Perron (2007a) are assumed to hold with the segments defined for  $T_i^0$   $(i = 1, ..., K)$ . However, A6 is replaced by (for  $j = 1, ..., m$  and  $i = 1, ..., n$ ):  $\delta_{j+1}^0 - \delta_j^0 = v_T^{\delta} \delta_j^*$  and  $\sigma_{i+1,0} - \sigma_{i,0} = v_T \sigma_{i,0}^*$ , where  $(\delta_j^*, \sigma_{i,0}^*) \neq 0$  and are independent of T. Moreover,  $v_T^{\delta}$  is either a positive number independent of T or a sequence of positive numbers satisfying  $v_T^{\delta} \to 0$  and  $T^{1/2} v_T^{\delta}/(\log T)^2 \to \infty$ , while  $v_T$  is a sequence of positive numbers satisfying  $v_T \to 0$  and  $T^{1/2} v_T / (\log T)^2 \to \infty$ .

The main difference is that we require the changes in the variance of the errors to decrease to 0 at a slow enough rate as  $T$  increases, while the changes in the coefficients can be fixed or decreasing. Both cases ensure that the estimates of the break fractions are consistent and that the limit distribution of the parameter estimates are the same as when the true break dates are known. The requirement that the change in variance must decrease as T increases is to ensure that A2 holds when changes in variance are permitted under the null hypothesis, in particular if lagged dependent variables are present. Otherwise the limit distribution of the test for TP-3 is not invariant to nuisance parameters. This is not constraining in practice since the rate of decrease can be as slow as desired. We will show via simulations that the exact size of the test is close to the nominal level whether the changes in variance are small or large. To see why this is needed to ensure that A2 is satisfied, let  $z_t u_t^{\sigma} = z_t u_t / \sigma_{i0}$ . Then,

$$
T^{-1/2} \sum_{t=1}^{[Ts]} z_t u_t = T^{-1/2} \sigma_0 \sum_{t=1}^{[Ts]} z_t u_t^{\sigma} + \sum_{i=1}^{n_a+1} \left( \frac{\sigma_{i0} - \sigma_0}{\sigma_{i0}} \right) \left( T^{-1/2} \sum_{t=T_{i-1}^{v0}+1}^{T_i^{v0}} z_t u_t \right) \Rightarrow \sigma_0 Q^{1/2} W_q(s) \,,
$$

where  $\sigma_0 = \sigma_{10}$  without loss of generality. The result follows since  $[(\sigma_{i0}-\sigma_0)/\sigma_{i0}] = O_p(v_T)$ ,  $v_T \to 0$  and  $T^{-1/2} \sum_{t=T_{i-1}^{(0)}+1}^{T_i^{(0)}} z_t u_t = O_p(1)$ . The same applies to the requirement that  $T^{-1} \sum_{t=1}^{[Ts]} w_t w'_t \rightarrow_p sQ$  uniformly in s. To see that this holds when lagged dependent variables are present, consider a simple AR(1) model  $y_t = \beta y_{t-1} + u_t$  in which  $\sigma^2$  has n breaks and  $|\beta|$  < 1. Using the variance adjusted series  $y_t^{\sigma} = \beta y_{t-1}^{\sigma} + u_t^{\sigma}$  where  $u_t^{\sigma} = u_t / \sigma_{i0}$ , we have:

$$
T^{-1} \sum_{t=1}^{[Ts]} z_t z_t' = T^{-1} \sum_{t=1}^{[Ts]} y_{t-1}^2 = T^{-1} \sigma_0^2 \sum_{t=1}^{[Ts]} y_{t-1}^{\sigma_2} + O_p(v_T) \xrightarrow{p} sQ,
$$
 (7)

where  $Q = \sigma_0^2/(1 - \beta^2)$  (see Supplement A). Why  $v_T^{\delta}$  can remain fixed when  $\delta$  changes is because such breaks do not affect the moments of the errors, and when lagged dependent variables are present changes in  $\delta$  imply changes in the marginal distribution of the regressors (e.g., the lagged dependent variables) occurring at the same times, which is allowed. The limiting distributions of the LR tests under  $H_0$ , are stated in the following Theorem.

**Theorem 1** Under the relevant null  $H_0$ , we have, as  $T \rightarrow \infty$ : a) For TP-1, under A1:

$$
\sup LR_{1,T}(n_a, \varepsilon | m = n = 0) \Rightarrow \sup_{\left(\lambda_1^v, \dots, \lambda_{n_a}^v\right) \in \Lambda_{v,\varepsilon}} \frac{\psi}{2} \sum_{i=1}^{n_a} \frac{\left(\lambda_i^v W\left(\lambda_{i+1}^v\right) - \lambda_{i+1}^v W\left(\lambda_i^v\right)\right)^2}{\lambda_{i+1}^v \lambda_i^v \left(\lambda_{i+1}^v - \lambda_i^v\right)}
$$

b) For TP-2, under A1 and A3,

$$
\sup LR_{2,T}(m_a, n_a, \varepsilon | n = 0, m_a) \Rightarrow \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}^c} \frac{\psi}{2} \sum_{i=1}^{n_a} \frac{\left(\lambda_i^v W\left(\lambda_{i+1}^v\right) - \lambda_{i+1}^v W\left(\lambda_i^v\right)\right)^2}{\lambda_{i+1}^v \lambda_i^v \left(\lambda_{i+1}^v - \lambda_i^v\right)}
$$
  

$$
\leq \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}} \frac{\psi}{2} \sum_{i=1}^{n_a} \frac{\left(\lambda_i^v W\left(\lambda_{i+1}^v\right) - \lambda_{i+1}^v W\left(\lambda_i^v\right)\right)^2}{\lambda_{i+1}^v \lambda_i^v \left(\lambda_{i+1}^v - \lambda_i^v\right)}
$$

where  $\Lambda_{v,\varepsilon}^c = \{(\lambda_1^v)$  $\left( \chi_{1}^{v},...,\lambda_{n}^{v}\right)$ ; for  $\left( \lambda_{1},...,\lambda_{K}\right) =\left( \lambda_{1}^{c0}\right)$  $_{1}^{c0},...,\lambda_{m}^{c0})\cup(\lambda_{1}^{v}% ,\lambda_{m}^{c0})$  $\vert v_1^v, ..., v_n^v \rangle, \, \vert \lambda_{j+1} - \lambda_j \vert \geq \varepsilon \, (j =$  $1, ..., K - 1$ ,  $\lambda_1 \ge \varepsilon$ ,  $\lambda_K \le 1 - \varepsilon$ . c) For TP-3, under A2 and A3:

$$
\sup LR_{3,T}(m_a, n_a, \varepsilon | m = 0, n_a) \Rightarrow \sup_{\substack{(\lambda_1^c, \dots, \lambda_{m_a}^c) \in \Lambda_{c,\varepsilon}^v \ j = 1}} \sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}
$$
  

$$
\leq \sup_{\substack{(\lambda_1^c, \dots, \lambda_{m_a}^c) \in \Lambda_{c,\varepsilon} \ j = 1}} \sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}
$$

where  $\Lambda_{c,\varepsilon}^v = \{(\lambda_1^c)$  $\left( \begin{array}{c} c \\ 1, \ldots, \lambda_m^c \end{array} \right);$  for  $(\lambda_1, \ldots, \lambda_K) = (\lambda_1^c)$  $\lambda_1^c, ..., \lambda_m^c) \cup (\lambda_1^{v0})$  $\vert \sum_{1}^{v0},...,\lambda_{n}^{v0}\rangle, \vert \lambda_{j+1} - \lambda_{j}\vert \geq \varepsilon$  $(j = 1, ..., K - 1), \lambda_1 \geq \varepsilon, \lambda_K \leq 1 - \varepsilon$ . d) For TP-4, under A1 and A2:

$$
\sup LR_{4,T}(m_a, n_a, \varepsilon | n = m = 0) \Rightarrow \sup_{\substack{(\lambda_1^c, \dots, \lambda_{m_a}^c; \lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{\varepsilon} \\ \left(\lambda_1^c, \dots, \lambda_{m_a}^c; \lambda_1^v, \dots, \lambda_{n_a}^v\right) \in \Lambda_{\varepsilon}}} \left[\frac{\sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}}{\lambda_{j+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}\right]}{\sum_{j=1}^{m_a} \frac{(\lambda_i^v W(\lambda_{i+1}^c) - \lambda_{i+1}^c W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^c - \lambda_i^c)}}{\frac{\sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}}{\frac{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}\right]}
$$

where  $\Lambda_{cv,\varepsilon} = \left\{ \left( \lambda_1^c \right)$  $i_1^c, ..., \lambda_m^c; \lambda_1^v$  $\left( \sum_{i=1}^{v},...,\lambda_{n_{a}}^{v}\right)$  ;  $\left[ \lambda_{j+1}^{c}-\lambda_{j}^{c}\right]$  $\vert \sum_{j}^{c} \vert \geq \varepsilon$   $(j = 1, ..., m_a-1), \lambda_1^c \geq \varepsilon, \lambda_{m_a}^c \leq 1-\varepsilon,$  $\left|\lambda_{i+1}^v - \lambda_i^v\right|$  $\left| \begin{array}{c} v \\ i \end{array} \right| \geq \varepsilon \ (i = 1, ..., n_a - 1), \lambda_1^v \geq \varepsilon, \lambda_{n_a}^v \leq 1 - \varepsilon \}.$ 

Except for TP-1, the limit distributions depend on the interval between the break fractions for  $\delta$  and  $\sigma^2$  when they do not coincide. This imposes restrictions on the parameter space of the break fractions. Hence, the critical values are smaller than what is obtained from the standard limit distribution in Bai and Perron (1998). Although the computation of such limit distributions might be feasible, it is beyond the scope of this study. The results, however, show that these distributions are bounded by limit random variables which can easily be simulated. This follows since  $\Lambda_{v,\varepsilon}^c \subseteq \Lambda_{v,\varepsilon}$ ,  $\Lambda_{c,\varepsilon}^v \subseteq \Lambda_{c,\varepsilon}$  and  $\Lambda_{\varepsilon} \subseteq \Lambda_{cv,\varepsilon}$ . Hence, a conservative testing procedure is possible. As we shall see, the test is barely conservative if the trimming parameter  $\varepsilon$  is small, though as  $\varepsilon$  gets large (e.g. 0.20) the test will be somewhat undersized. The proof of this Theorem is given in the Appendix. For TP-3, the bound is the same as the limit distribution in Bai and Perron (1998, 2003b) and the critical values they provided can be used. For TP-1 and TP-2, the same limit distribution (for a one parameter change) applies except for the scaling factor  $(\psi/2)$ . This quantity can nevertheless still be consistently estimated. Consider the class of estimates:

$$
\hat{\psi} = T^{-1} \sum_{j=-(T-1)}^{T-1} \omega(j, b_T) \sum_{t=j+1}^{T} \hat{\eta}_t \hat{\eta}_{t-j}
$$
\n(8)

where  $\hat{\eta}_t = (\hat{u}_t^2/\hat{\sigma}^2) - 1$  and  $\hat{\sigma}^2 = T^{-1} \sum_{t=1}^T \hat{u}_t^2$  with  $\hat{u}_t$  the estimated residuals. Here  $\omega(j, b_T)$ is a weight function and  $b_T$  some selected bandwidth. The estimate  $\hat{\psi}$  will be consistent under some conditions on the choice of  $\omega(j, b_T)$  and the rate of increase of  $b_T$  as a function of T. Following Kejriwal (2009), see also Kejriwal and Perron (2010), we use the residuals under  $H_0$  to construct the sample autocovariances of  $\eta_t$  but the residuals under  $H_1$  to select the bandwidth parameter  $b_T$ ; see Supplement B for details. In our simulations and empirical applications, we use the Quadratic Spectral kernel and to select  $b_T$  we use the method of Andrews (1991) with an AR(1) approximation. If the errors are *i.i.d.*,  $\psi = \mu_4/\sigma^4 - 1$ , which can be consistently estimated using  $\hat{\psi} = \hat{\mu}_4/\hat{\sigma}^4 - 1$ , where  $\hat{\sigma}^2 = T^{-1} \sum_{t=1}^T \hat{u}_t^2$  and  $\hat{\mu}_4 = T^{-1} \sum_{t=1}^T \hat{u}_t^4$  with  $\hat{u}_t$  the residuals under the null or alternative hypotheses. Also, if the errors are normal as in Qu and Perron (2007a),  $\psi = 2$  so that no adjustment is necessary. We shall only consider a correction involving  $\hat{\psi}$  as defined by (8) for all cases; Supplement C shows that there is no loss in power in doing so and that the size remains adequate. The following corrected statistics then have nuisance parameter free limit distributions:

$$
\sup LR_{1,T}^* = (2/\hat{\psi}) \sup LR_{1,T} \Rightarrow \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}} \sum_{i=1}^{n_a} \frac{\left(\lambda_i^v W\left(\lambda_{i+1}^v\right) - \lambda_{i+1}^v W\left(\lambda_i^v\right)\right)^2}{\lambda_{i+1}^v \lambda_i^v \left(\lambda_{i+1}^v - \lambda_i^v\right)} \tag{9}
$$
\n
$$
\sup LR_{2,T}^* = (2/\hat{\psi}) \sup LR_{2,T} \Rightarrow \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}^c} \sum_{i=1}^{n_a} \frac{\left(\lambda_i^v W\left(\lambda_{i+1}^v\right) - \lambda_{i+1}^v W\left(\lambda_i^v\right)\right)^2}{\lambda_{i+1}^v \lambda_i^v \left(\lambda_{i+1}^v - \lambda_i^v\right)}
$$

$$
\leq \sup_{\left(\lambda^v_1,\dots,\lambda^v_{n_a}\right)\in\Lambda_{v,\varepsilon}}\sum_{i=1}^{n_a}\frac{\left(\lambda^v_iW\left(\lambda^v_{i+1}\right)-\lambda^v_{i+1}W\left(\lambda^v_i\right)\right)^2}{\lambda^v_{i+1}\lambda^v_i\left(\lambda^v_{i+1}-\lambda^v_i\right)}.
$$

For TP-4, it is possible to obtain a transformation with a limit distribution free of nuisance parameters but the procedure is more involved. It is given by

$$
\sup LR_{4,T}^* = \sup LR_{4,T} - [(\hat{\psi} - 2)/\hat{\psi}] LR_v,
$$
\n(10)

where  $LR_v$  is the LR test for 0 versus  $n_a$  breaks in variance evaluated at  $\{T_1^v, ..., T_{n_a}^v\}$  obtained by maximizing the likelihood function jointly allowing for  $m_a$  breaks in  $\delta$ , i.e.,

$$
LR_v = 2\left[\log \hat{L}_T(\widetilde{T}_1^v, ..., \widetilde{T}_{n_a}^v) - \log \widetilde{L}_T\right],\tag{11}
$$

where  $\log \hat{L}_T(\cdot)$  and  $\log \tilde{L}_T$  are defined by (3) and (2), respectively. Note that  $LR_v$  is not equivalent to  $LR_{1,T}$   $(n_a, \varepsilon | m = n = 0)$  which is based on the estimates of the break dates for the changes in variance assuming no break in coefficients. Since  $\{T_1^v/T, ..., T_{n_a}^v/T\}$  are consistent estimates of the break fractions whether  $m_a = 0$  or not, we have:

$$
LR_v \Rightarrow (\psi/2) \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_\varepsilon} \sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}
$$

and, hence,

$$
\sup LR_{4,T}^* \Rightarrow \sup_{(\lambda_1^c, \dots, \lambda_{m_a}^c; \lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{\varepsilon}} \left[ \frac{\sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}}{\sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)} \right]
$$
  

$$
\leq \sup_{(\lambda_1^c, \dots, \lambda_{m_a}^c; \lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{cv,\varepsilon}} \left[ \frac{\sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}}{\lambda_{i+1}^c \lambda_j^c (\lambda_{i+1}^c - \lambda_i^v)} \right].
$$
 (12)

The limit distribution (12) is new and we obtain the asymptotic critical values via simulations. The Wiener processes  $W_q(\lambda)$  and  $W(\lambda)$  are approximated by the partial sums  $T^{-1/2} \sum_{t=1}^{[T\lambda]} e_t$  and  $T^{-1/2} \sum_{t=1}^{[T\lambda]} \epsilon_t$  with  $e_t \sim i.i.d.N(0, I_q)$  and  $\epsilon_t \sim i.i.d.N(0, 1)$  which are mutually independent. The number of replications is  $10,000$  and  $T = 1,000$ . For each replication, a sum of the supremum of  $\sum_{j=1}^{m_a} (|| \lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c))$  $\sum_{j}^{c}$ )||<sup>2</sup>)/ $\lambda_{j+1}^{c} \lambda_{j}^{c}$  $_{j}^{c}(\lambda_{j+1}^{c}-\lambda_{j}^{c}% \lambda_{j+1}^{c}-\lambda_{j}^{c}-\lambda_{j}^{c})$  $_{j}^{c})$  with respect to  $(\lambda_1^c)$  $\lambda_{1}^{c},...,\lambda_{m_{a}}^{c}$ ) and that of  $\sum_{i=1}^{n_{a}}(\lambda_{i}^{v}W(\lambda_{i+1}^{v}) - \lambda_{i+1}^{v}W(\lambda_{i}^{v}))$  $\binom{v}{i})^2/\lambda_{i+1}^v\lambda_i^v$  $\sum_{i}^{v} \left( \lambda_{i+1}^{v} - \lambda_{i}^{v} \right)$  $i^{\nu}$ ) with respect to  $(\lambda_1^v)$  $\lambda_{1}^{v},...,\lambda_{n_{a}}^{v}$  is obtained via a dynamic programming algorithm. The critical values for tests of size  $1\%$ ,  $2.5\%$ ,  $5\%$  and  $10\%$  are presented in Table 1 for q between 1 and 5 and  $\varepsilon = 0.1, 0.15, 0.20$  and 0.25. For  $\varepsilon = 0.1, 0.15, 0.2, m_a = 1, 2$  and  $n_a = 1, 2$ . For  $\varepsilon = 0.25, m_a = 1$ , and  $n_a = 1$  given that  $\varepsilon = 0.25$  imposes a maximal number of 2 breaks.

## 4.2 Extensions to serially correlated errors

We now consider the case with serially correlated errors. For TP-1 and TP-2, the results are the same and the sup  $LR_{1,T}^*$  and sup  $LR_{2,T}^*$  statistics are asymptotically invariant to non-normal errors, serial correlation and conditional heteroskedasticity so that the limit distribution (9) still applies. For TP-3 and TP-4, things are more complex. For TP-3, the LR type test for changes in  $\delta$  depends on nuisance parameters. We suggest the following robust Wald type statistic:  $\sup_{(\lambda_1^c,...,\lambda_{m_a}^c)\in\Lambda_{\varepsilon}} W_{3,T}(m_a,n_a,\varepsilon|m=0,n_a)$ , where

$$
W_{3,T}(m_a, n_a, \varepsilon | m = 0, n_a) = T\hat{\delta}' R'(R\hat{V}(\hat{\delta})R')^{-1}R\hat{\delta}
$$
 (13)

with  $\hat{\delta} = (\hat{\delta}'_1)$  $\hat{\delta}'_{m_a+1}$ ' the QMLE of  $\delta$  under a given partition of the sample, R is the conventional matrix such that  $(R\delta)' = (\delta'_1 - \delta'_2, ..., \delta'_{m_a} - \delta'_{m_a+1})$  and  $\hat{V}(\hat{\delta})$  is an estimate of the covariance matrix of  $\hat{\delta}$  robust to serial correlation and heteroskedasticity, i.e., a consistent estimate of  $V(\hat{\delta}) = \text{plim}_{T \to \infty} T (\bar{Z}_{\sigma}^{* \dagger} \bar{Z}_{\sigma}^{*})^{-1} \Omega_{\bar{Z}_{\sigma}^{*}} (\bar{Z}_{\sigma}^{* \dagger} \bar{Z}_{\sigma}^{*})^{-1}$ , where  $\bar{Z}_{\sigma}^{*} = M_{X_{\sigma}} \bar{Z}_{\sigma}$ ,  $\Omega_{\bar{Z}_{\sigma}^{*}} =$  $E(\bar{Z}_{\sigma}^{*U}U_{b}^{*}U_{b}^{*'}\bar{Z}_{\sigma}^{*}), U_{b}^{*} = M_{X_{\sigma}}U_{\sigma}, M_{X_{\sigma}} = I_{T} - X_{\sigma}(X_{\sigma}'X_{\sigma})^{-1}X_{\sigma}', \text{ with } \bar{Z}_{\sigma} = diag\left(Z_{1}^{\sigma},..., Z_{m_{a}+1}^{\sigma}\right),$  $Z_j^{\sigma} = (z_{T_{j-1}+1}^{\sigma},...,z_{T_j^c}^{\sigma})', U_{\sigma} = (u_1^{\sigma},...,u_T^{\sigma})', z_t^{\sigma} = (z_t/\hat{\sigma}_i)$  and  $u_t^{\sigma} = (u_t/\hat{\sigma}_i)$ , for  $T_{i-1}^{\nu 0} < t \leq T_i^{\nu 0}$  $(i = 1, ..., n_a + 1)$ . In practice, the computation of this test can be very involved. Following Bai and Perron (1998), we suggest first to use the dynamic programming algorithm to get the break points corresponding to the global maximizers of the likelihood function defined by  $(4)$ , then plug the estimates into  $(13)$  to construct the test. This will not affect the consistency of the test since the break fractions are consistently estimated.

For TP-4, potential serial correlations in both  $u_t$  and  $\eta_t$  must be accounted for. This can easily be achieved since  $\sup LR_{4,T}$  is asymptotically equivalent to  $\sup LR_{4,T}^* = \sup LR_{3,T} +$  $LR_v$ . Because of the block diagonality of the information matrix, corrections can be applied to each component separately. The first term is constructed as discussed above, namely  $W_{3,T}$  defined by (13), except that one can use  $z_t$  instead of  $z_t^{\sigma}$  since  $H_0$  specifies no break in variance. The second term  $LR_v$  is as defined by (11) with  $\hat{\psi}$  constructed by (8).

## 4.3 Double maximum tests

The tests discussed above need prior information about  $H_1$ , i.e., the number of breaks in  $\delta$  and in  $\sigma^2$ , which may be unknown. Hence the need for TP-5 to TP-8. Bai and Perron (1998) proposed double maximum tests to solve this problem with only breaks in  $\delta$ . They are tests of no break against an unknown number of breaks given some upper bound. We shall only consider their  $UD$  max test. The double maximum tests can play a significant role in testing for structural changes and it is arguably the most useful tests to apply when trying to determine if structural changes are present. While tests for one break are consistent against multiple changes, their power in finite samples can sometimes be poor. There are types of multiple structural changes that are difficult to detect with a test for a single change (e.g., two breaks with the Örst and third regimes the same). Also, tests for a particular number of changes may have non monotonic power when the number of changes is greater than specified. Furthermore, the simulations of Bai and Perron (2006) show, in the context of testing for changes in the regression coefficients, that the power of the double maximum tests is almost as high as the best power achievable using the test specified with the correct number of breaks. All these elements strongly point to their usefulness. For each testing problem, the tests and their limit distributions are presented in the following Theorem.

**Theorem 2** Under the relevant  $H_0$ , we have, as  $T \rightarrow \infty$ , a) For TP-5, under A1:

$$
UD \max LR_{1,T} = \max_{1 \le n_a \le N} n_a^{-1} \sup LR_{1,T}^* (n_a, \varepsilon | m = n = 0)
$$
  

$$
\Rightarrow \max_{1 \le n_a \le N} n_a^{-1} \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}} \sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}
$$

b) For TP-6, under A1 and A3:

$$
UD \max LR_{2,T} = \max_{1 \le n_a \le N} n_a^{-1} \sup LR_{2,T}^*(m_a, n_a, \varepsilon | n = 0, m_a)
$$
  
\n
$$
\Rightarrow \max_{1 \le n_a \le N} n_a^{-1} \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}^c} \sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}
$$
  
\n
$$
\le \max_{1 \le n_a \le N} n_a^{-1} \sup_{(\lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}} \sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}
$$

c) For TP-7, under A2 and A3:

$$
UD \max LR_{3,T} = \max_{1 \leq m_a \leq M} m_a^{-1} \sup LR_{3,T} (m_a, n_a, \varepsilon | m = 0, n_a)
$$
  
\n
$$
\Rightarrow \max_{1 \leq m_a \leq M} m_a^{-1} \sup_{\substack{\lambda_1^c, \dots, \lambda_{m_a}^c \in \Lambda_c^c, \\(\lambda_1^c, \dots, \lambda_{m_a}^c) \in \Lambda_{c,\varepsilon}^c, \\j=1}} \sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}
$$
  
\n
$$
\leq \max_{1 \leq m_a \leq M} m_a^{-1} \sup_{\substack{\lambda_1^c, \dots, \lambda_{m_a}^c \in \Lambda_{c,\varepsilon}^c, \\(\lambda_1^c, \dots, \lambda_{m_a}^c) \in \Lambda_{c,\varepsilon}^c, \\j=1}} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}
$$

d) For TP-8, under A1 and A2:

$$
UD \max LR_{4,T} = \max_{1 \le n_a \le N} \max_{1 \le m_a \le M} (n_a + m_a)^{-1} \sup LR_{4,T}^* (m_a, n_a, \varepsilon | n = m = 0)
$$

$$
\Rightarrow \max_{1 \leq n_a \leq N} \max_{1 \leq m_a \leq M} (n_a + m_a)^{-1} \sup_{\substack{(\lambda_1^c, \dots, \lambda_{m_a}^c; \lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{\epsilon}}} \left[ \begin{array}{c} \sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)} \\ + \sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)} \end{array} \right] \\ \leq \max_{1 \leq n_a \leq N} \max_{1 \leq m_a \leq M} (n_a + m_a)^{-1} \sup_{\substack{(\lambda_1^c, \dots, \lambda_{m_a}^c; \lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{cv,\epsilon}}} \left[ \begin{array}{c} \sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W(\lambda_i^v))^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)} \\ + \sum_{i=1}^{n_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^v)} \end{array} \right]
$$

For TP-5 to TP-7, the critical values of the limit distributions are available in Bai and Perron (1998, 2003b) for N or M equal to 5. For TP-5 and TP-6, the results are valid for martingale differences or serially correlated errors. This is not the case for TP-7 and TP-8 for reasons discussed above. We then consider the maximum of the Wald-type tests discussed Section 4.2. The limit distribution applicable to TP-8 is new. Table 1 presents critical values obtained using simulations as discussed above for the case of a fixed number of breaks under  $H_1$ , for  $\varepsilon = 0.1$ , 0.15, and 0.20, and values of M and N up to 2; see Perron and Yamamoto (2019b) for additional critical values with  $M, N = 2, 3, 4$ .

#### 4.4 Testing for an additional break

We now consider TP-9 and TP-10, which assess whether including an additional break is warranted. Let  $(\tilde{T}_1^c, ..., \tilde{T}_m^c; \tilde{T}_1^v, ..., \tilde{T}_n^v)$  be the estimates of the break dates in  $\delta$  and  $\sigma^2$  obtained jointly by maximizing the quasi-likelihood function assuming m breaks in  $\delta$  and n breaks in  $\sigma^2$ . For TP-9, the issue is whether an additional break in  $\delta$  is present. The test is

$$
\sup Seq_{9,T}(m+1,n|m,n) = \max_{1 \leq j \leq m+1} \sup_{\tau \in \Lambda_{j,\varepsilon}^c} \log \hat{L}_T(\widetilde{T}_1^c, ..., \widetilde{T}_{j-1}^c, \tau, \widetilde{T}_j^c, ..., \widetilde{T}_m^c; \widetilde{T}_1^v, ..., \widetilde{T}_n^v)
$$

$$
- \log \hat{L}_T(\widetilde{T}_1^c, ..., \widetilde{T}_m^c; \widetilde{T}_1^v, ..., \widetilde{T}_n^v)
$$

where  $\Lambda_{j,\varepsilon}^c = \{\tau; T_{j-1}^c + (T_j^c - T_{j-1}^c)\varepsilon \leq \tau \leq T_j^c - (T_j^c - T_{j-1}^c)\varepsilon\}.$  This amounts to performing  $m + 1$  tests for a single break in  $\delta$  for each of the  $m + 1$  regimes defined by the partition  $\{\tilde{T}_1^c,...,\tilde{T}_m^c\}$ . Note that there are different scenarios when allowing breaks in  $\delta$  and in  $\sigma^2$  to happen at different dates, since  $(\tilde{T}_1^c, ..., \tilde{T}_m^c)$  and  $(\tilde{T}_1^v, ..., \tilde{T}_n^v)$  can partly or completely overlap or be altogether different. This implies two possible cases: 1) if the *n* break dates in  $\sigma^2$ are a subset of the m break dates in  $\delta$ , there is no variance break between  $T_{j-1}^c$  and  $T_j^c$ ; 2) otherwise, there is one or more variance breaks between  $T_{j-1}^c$  and  $T_j^c$ . In either cases, one can appeal to the results of Theorem 1(c) with  $m_a = 1$  since any value of  $n_a$  is allowed, including 0. It is then easy to deduce that, in the case of martingale errors, the limit distribution of the test is, under Assumptions A2 and A3,  $\lim_{T\to\infty} P(\sup Seq_{9,T} (m+1, n|m, n) \leq x) =$ 

 $G_{q,\varepsilon}(x)^{m+1}$ , where  $G_{q,\varepsilon}(x)$  is the cumulative distribution function of the random variable  $\sup_{\lambda \in \Lambda_{1,\varepsilon}} || (W_q(\lambda) - \lambda W_q(1))^2 || / (\lambda (1 - \lambda)),$  where  $\Lambda_{1,\varepsilon} = {\lambda; \varepsilon < \lambda < 1 - \varepsilon}.$  The critical values of the distribution function  $G_{q,\varepsilon}(x)^{m+1}$  can be found in Bai and Perron (1998, 2003b). With serial correlation in the errors, the principle is the same except that the statistic is based on the robust Wald test sup  $F_{3,T}$  as defined by (13) applied for a one break test to each segment. For TP-10, similar considerations apply. Here the issue is whether an additional break in the variance is present. The test statistic is

$$
\sup Seq_{10,T}(m, n+1|m, n) = (2/\hat{\psi}) \max_{1 \leq i \leq n+1} \sup_{\tau \in \Lambda_{i,\varepsilon}^v} \log \hat{L}_T(\widetilde{T}_1^c, ..., \widetilde{T}_m^c; \widetilde{T}_1^v, ..., \widetilde{T}_{i-1}^v, \tau, \widetilde{T}_i^v, ..., \widetilde{T}_m^v)
$$

$$
- \log \hat{L}_T(\widetilde{T}_1^c, ..., \widetilde{T}_m^c; \widetilde{T}_1^v, ..., \widetilde{T}_n^v)
$$

where  $\Lambda_{i,\varepsilon}^v = \{ \tau; \widetilde{T}_{i-1}^v + (\widetilde{T}_{i}^v - \widetilde{T}_{i-1}^v)\varepsilon \leq \tau \leq \widetilde{T}_{i}^v - (\widetilde{T}_{i}^v - \widetilde{T}_{i-1}^v)\varepsilon \}.$  The correction factor  $(2/\hat{\psi})$ is needed to ensure that the limit distribution of the test is free of nuisance parameters when the errors are allowed to be non-normal, serially correlated and conditionally heteroskedastic. One can then use part (b) of Theorem 1 to deduce that, under A1 and A3 applied to each segments under  $H_0$ :  $\lim_{T\to\infty} P(\sup Seq_{10,T}(m, n+1|m, n) \leq x) = G_{1,\varepsilon}(x)^{n+1}$ .

#### 4.5 Local asymptotic power

Supplement D contains details about the local asymptotic power function of selected tests. We briefly summarize the relevant results. We consider model (1) focusing on the case of  $n = m = 1$  with the following assumptions.

• Assumption L1: Assumptions A1 and A3 hold with  $\sigma_{20} - \sigma_{10} = \sigma^* / \sqrt{T}$ . We also have  $T^{-1/2} \sum_{t=1}^{[Ts]} [(u_t^{\sigma})^2 - 1] \Rightarrow \psi W(s)$  with  $\psi = \lim_{T \to \infty} var(T^{-1/2} \sum_{t=1}^{T} [(u_t^{\sigma})^2 - 1])$  and  $T^{-1} \sum_{t=1}^{[Ts]} (u_t^{\sigma})^2 \stackrel{p}{\rightarrow} s$  uniformly in s.

• Assumption L2: Assumptions A2 and A3 hold with  $\delta_2^0 - \delta_1^0 = \delta^* / \sqrt{T}$ .

We derive the local asymptotic power of the tests sup  $LR_{2,T} (n = 1, m = 1, \varepsilon | n = 0, m = 1)$ and  $\sup LR_{3,T}(m=1,n=1,\varepsilon|m=0,n=1)$  and the corresponding tests with no nuisance breaks accounted for, i.e.,  $\sup LR_{1,T}$  and the standard  $\sup LR_T$  test. Lemma S.1 shows that the local asymptotic power of the sup  $LR_{2,T}$  test coincides with that of sup  $LR_{1,T}$  except that the set of permissible break dates  $\Lambda_{v,\epsilon}^c$  is smaller than  $\Lambda_{v,\epsilon}$ , which has no practical effect. Lemma S.2 shows that the local asymptotic power of the sup  $LR_{3,T}$  is the same as that of sup  $LR<sub>T</sub>$  derived in Andrews (1993, Theorem 4), again except that the set of permissible break dates is  $\Lambda_{c,\epsilon}^v$  instead of  $\Lambda_{c,\epsilon}$ . Hence, when testing for changes in variance (resp., coefficients) allowing for changes in coefficients (resp., variance), we have the same local asymptotic poser function as when testing for changes in variance (resp., coefficients) when no change in coefficient (resp., variance) is present. Hence, there is no loss in local asymptotic power adopting our more general approach.

We also derived the local asymptotic power function of the  $CUSQ$  test (see (14) below for its definition) and compared it to that of the sup  $LR_{1,T}$  and sup  $LR_{2,T}$  tests. Figure S.1 shows the asymptotic local power functions of the sup  $LR_{1,T}$  and  $CUSQ$  tests when a break in variance occurs at  $\lambda^{00} = 0.3$ , 0.5 and 0.7 and no break occurs in the coefficients. They show the local asymptotic power functions to be almost identical. Figure S.2 presents the local asymptotic power functions of the sup  $LR_{2,T}$  test when it accounts for a coefficient break at  $\lambda^{c0} = 0.3, 0.5$  or 0.7. It also shows, the local asymptotic power functions of the  $CUSQ$  test under the assumption of no break in the coefficients. This simulation design gives an advantage to the CUSQ. Indeed, the power of the sup  $LR_{2,T}$  test is slightly lower when the variance and the coefficient break dates coincide. This is because the permissible break dates around the true break date are not considered due to the concurrent nuisance break. However, the power loss of the sup  $LR_{2,T}$  test is very minor. The power of both tests are almost identical even though the sup  $LR_{2,T}$  test considers a single nuisance break when the two breaks are far apart. i.e., the case of  $(\lambda^{v0}, \lambda^{c0}) = (0.3, 0.7)$  and  $(0.7, 0.3)$ .

## 5 Monte Carlo experiments

We provide simulation results to assess the size and power properties of some tests proposed; Section 5.1 for variance breaks, 5.2 for conditional tests, 5.3 for the sup  $LR_{4,T}^*$  and  $UD$  max tests. Supplement E provides additional results for the sup  $LR_{1,T}$  and sup  $LR_{2,T}$  tests with non-normal errors. Following Bai and Ng  $(2005)$ , we use: (a) the t distribution with 5 degrees of freedom, (b) a mixture of two normal distributions:  $v_1I(z \leq 0.5) + v_2I(z > 0.5)$ , where  $z \sim U[0, 1], v_1 \sim N(-1, 1)$  and  $v_2 \sim N(1, 1)$  (c) the  $\chi^2$  distribution with 5 degrees of freedom and (d) an exponential distribution  $-\ln(v)$ ,  $v \sim U[0, 1]$ . The results show that the exact size of the tests is similarly close to the nominal size. As expected, power is lower for all distributions, though the extent of the power loss is minor and the tests remain informative. Our tests for changes in variance retain their power advantage over the CUSQ test.

## 5.1 Testing for variance breaks only

We now consider the case of testing only for variance breaks assuming no change in  $\delta$ . We investigate the properties of the following tests: the sup  $LR_{1,T}^*(n_a, \varepsilon | m = n = 0)$ , abbreviated  $\sup LR^*_{1,T}(n_a,\varepsilon)$  and the  $UD$  max  $LR_{1,T}$  for an unknown number of breaks up to  $N=5$ . We also consider a corrected version of the CUSUM of squares test of Brown, Durbin and Evans (1975), as extended by Deng and Perron (2008), given by

$$
CUSQ = \sup_{\lambda \in [0,1]} |T^{-1/2}[\sum_{t=1}^{[T\lambda]} \tilde{v}_t^2 - ([T\lambda] / T) \sum_{t=1}^T \tilde{v}_t^2]|/\hat{\varphi}_a^{1/2}
$$
(14)

with  $\hat{\varphi}_a = T^{-1} \sum_{j=-(T-1)}^{(T-1)} \omega(j, b_T) \sum_{t=j+1}^T \hat{\eta}_t \hat{\eta}_{t-j}$ , where  $\hat{\eta}_t = \tilde{v}_t^2 - \hat{\sigma}, \hat{\sigma}^2 = T^{-1} \sum_{t=1}^T \tilde{v}_t^2$  and  $\tilde{v}_t$  denotes the recursive residuals. Also  $\omega(j, b_T)$  is the Quadratic Spectral kernel and the bandwidth  $b_T$  is selected using Andrews' (1991) method with an AR(1) approximation. The aim of the design is to address the following issues: a) the size of the sup  $LR_{1,T}^*(n_a,\varepsilon)$  and  $UD$  max  $LR_{1,T}$  tests; b) the relative power of the three tests; c) the power losses obtained when under-specifying the number of breaks; d) the relative power of the  $UD$  max  $LR_{1,T}$ compared to sup  $LR_{1,T}^*(n_a, \varepsilon)$  with  $n_a$  specified to be the true number of breaks. We consider a dynamic model with GARCH errors, for which the DGP is given by  $y_t = c + \alpha y_{t-1} + e_t$ ,  $e_t = u_t \sqrt{h_t}$ ,  $u_t \sim i.i.d. N(0,1)$ ,  $h_t = \tau_1 + \tau_2 1 (t > [.5T]) + \gamma e_{t-1}^2 + \rho h_{t-1}$ , where we set  $h_0 = \tau_1/(1-\gamma-\rho)$ ,  $c = 0.5$ ,  $\tau_1 = 0.1$ , and  $\varepsilon = 0.15$ . We consider  $\alpha = 0.2$ , 0.7 and the GARCH(1,1) coefficients are set to  $\gamma = 0.1, 0.3, 0.5$  and  $\rho = 0.2$ . The size and power of 5% nominal size tests are evaluated at  $T = 100, 200$ . The magnitude of the change  $\tau_2$  varies between 0 (size) and 0.3. The results are presented in Table 2. The sup  $LR_{1,T}^*(1,\varepsilon)$  and UD max  $LR_{1,T}$  tests show size distortions when  $\gamma = 0.5$  with  $T = 100$  but the size is close to 5% when  $T = 200$ . The CUSQ test is slightly undersized. The UD max  $LR_{1,T}$  test has power close to that of  $\sup LR^*_{1,T}(1,\varepsilon)$ , despite having a broader range of alternatives. The power of the latter two tests dominates that of  $CUSQ$  especially when  $T = 100$ . Supplement F shows the results to be robust for a static mean model with normal errors.

We now turn to a case with two breaks in variance. The DGP is  $y_t = e_t$ ;  $e_t \sim i.i.d$ .  $N(0, 1 + \theta 1(T_1^v < t \le T_2^v))$ , i.e., the variance increases at  $T_1^v$  and returns to its original level at  $T_2^v$ . We consider two scenarios:  $\{T_1^v = [.3T], T_2^v = [.6T] \}$  and  $\{T_1^v = [.2T], T_2^v = [.8T] \}$ . We set  $T = 200$  and  $\varepsilon = 0.10, 0.15$ . The magnitude of the break in  $\sigma^2$  varies between  $\theta = 0$  (size) and  $\theta = 3$ . We again consider the UD max  $LR_{1,T}$  test with  $N = 5$  but include both the sup  $LR_{1,T}^*(1,\varepsilon)$  test for a single break and the sup  $LR_{1,T}^*(2,\varepsilon)$  test for two breaks to assess the extent of power gains when specifying the correct number of breaks. The results are presented in Table 3. Consider first the size of the tests. The sup  $LR_{1,T}^*(1,\varepsilon)$ , sup  $LR_{1,T}^*(2,\varepsilon)$ and  $UD$  max  $LR_{1,T}$  are slightly conservative and the  $CUSQ$  even more so with an exact size of 0.025. As expected, power increases as  $\varepsilon$  increases since the range of alternatives is smaller. When comparing the sup  $LR_{1,T}^*(1,\varepsilon)$  and sup  $LR_{1,T}^*(2,\varepsilon)$  tests, the latter is more powerful, indicating that allowing for the correct number of breaks improves power. The  $UD$  max  $LR_{1,T}$  has power between those of the sup  $LR_{1,T}^*(1,\varepsilon)$  and sup  $LR_{1,T}^*(2,\varepsilon)$  tests. These tests are considerably more powerful than the CUSQ, which has little power.

### 5.2 Conditional tests

We now consider the properties of the tests that condition on either breaks in coefficients (resp., variance) when testing for changes in variance (resp., coefficients). Consider first the size and power of sup  $LR_{2,T}^*(m_a, n_a, \varepsilon | n = 0, m_a)$  which tests for  $n_a$  changes in  $\sigma^2$  conditional on  $m_a$  changes in  $\delta$  with  $\varepsilon = 0.1, 0.2$ . We set  $m_a = n_a = 1$  and the DGP is a simple mean shift model with a change of magnitude  $\mu_2$  at mid-sample with *i.i.d.* normal errors having a change in variance of magnitude  $\theta$  (under  $H_1$ ) that occurs at [0.25T]. The results for size are presented in Table 4. The test is slightly conservative and more so as the trimming is larger. This is due to the fact that the limit distribution used is an upper bound. The results for power are presented in Table 5. It increases rapidly with the magnitude of the variance break  $\theta$  and with T. It also marginally increases with the value of the trimming  $\varepsilon$ .

We next investigate the size and power of  $\sup LR^*_{3,T}(m_a, n_a, \varepsilon | m = 0, n_a)$  which tests for  $m_a$  changes in  $\delta$  conditional on  $n_a$  changes in  $\sigma^2$  with  $\varepsilon = 0.1, 0.2$ . We again set  $m_a =$  $n_a = 1$  and consider the mean model in which  $\sigma^2$  changes at mid-sample. We also consider an AR(1) model  $y_t = c + \alpha y_{t-1} + e_t$  with  $c = 0.5$ ,  $\alpha = 0.5$  and  $e_t$  being *i.i.d.* normal errors having a change in variance at  $[0.5T]$  with magnitude  $\theta$ . This is done to investigate potential size distortions due to large variance changes. As discussed in Section 4.1, a change in variance induces a change in the marginal distribution of the regressors when lagged dependent variables are included. The results for the size of the tests are presented in Table 6. The size under the mean model is close to the nominal level but the test becomes conservative as  $\varepsilon$  increases since the limiting distribution used is a bound. The size under the AR(1) model is very similar with the distortions being even smaller. This indicates that the shrinking variance assumption is not binding. The results for power are presented in Table 7 for the mean model with a coefficient change at  $[0.25T]$ . The power quickly increases as the break magnitude  $\theta$  and T increase. The power again marginally increases with  $\varepsilon$ .

# 5.3 Size and power of the  $\sup LR^*_{4,T} \: \text{and} \: UD \max LR_{4,T} \: \text{tests}$

We now consider the sup  $LR_{4,T}^*$  and  $UD$  max  $LR_{4,T}$  (simply labelled  $UD$  max) tests. To this end, we use a model with GARCH(1,1) errors so that the DGP is  $y_t = e_t$  with  $e_t = u_t \sqrt{h_t}$ , where  $u_t \sim i.i.d. N(0, 1), h_t = \tau_1 + \gamma e_{t-1}^2 + \rho h_{t-1}, h_0 = \tau_1/(1 - \gamma - \rho), \tau_1 = 1, \rho = 0.2$  and  $\gamma$  takes values 0.1, 0.3, 0.5. Also,  $\varepsilon = 0.1$ , 0.2. For the UD max test,  $M = N = 2$  and for the  $\sup LR^*_{4,T}$  test, we consider the following combinations: a)  $m_a = n_a = 1$ , b)  $m_a = 1$ ,  $n_a = 2$ , c)  $m_a = 2$ ,  $n_a = 1$ . We set  $T = 100$ , 200. The results, presented in Table 8, show that the size is close to or slightly lower than the nominal 5% level (some cases have slight liberal size distortions when  $T = 100$ , which, however, decrease when  $T = 200$ . Supplement G shows that the tests have good sizes with i.i.d. normal errors.

We now consider the power of these tests. Since some partial results for the one break case are available in Tables S.6-S.7 for the sup  $LR_{4,T}^*$  test, we concentrate on the case with a different number of breaks in coefficients and in variance. We also only consider i.i.d. normal errors though the hybrid-type correction is still applied. Table 9 presents the results for the case with one break in coefficient and two breaks in variance, in which case the DGP is  $y_t = \mu_1 + \mu_2 1(t > T^c) + e_t$ ,  $e_t \sim i.i.d. N(0, 1 + \theta 1(T^v_1 < t \le T^v_2))$  with  $\mu_1 = 0$ ,  $\mu_2 = \theta$ and  $\varepsilon = 0.1$ . Five different configurations of break dates are considered. We analyze two forms of the sup  $LR_{4,T}^*$  test: a) one testing for a single break in both mean and variance, b) one correctly testing for two changes in variance and one change in mean. This is done to investigate the extent of the power differences when underspecifying the number of breaks. As expected, the power increases rapidly with  $\theta$  and with T. With the DGP used, the power is similar whether accounting for one or (correctly) two breaks in variance and the power of the  $UD$  max test is also similar to the power of both versions of the sup  $LR^*_{4,T}$  test. This may, however, be DGP specific. Table 10 presents the results for the case with two breaks in coefficient and one break in variance, with the DGP given by  $y_t = \mu_1 + \mu_2 1$  $(T_1^c < t \leq T_2^c) + e_t$ ,  $e_t \sim i.i.d. N(0, 1 + \theta 1(t > T^v))$  with  $\mu_1 = 0$  and  $\mu_2 = \theta$ . Again, we consider two forms of the sup  $LR_{4,T}^*$  test: one testing for a single break in both mean and variance, one correctly testing for two changes in mean and one change in variance. Table 10 shows that for given values of  $\theta$  and T, the power is lower than with one break in coefficient and two breaks in variance. Also, the UD max test now has power between that of the test correctly specifying the type and number of breaks and that underspecifying the number of changes in mean. The difference can be substantial and, as in Bai and Perron  $(2006)$ , the power of the  $UD$  max test is close to that attainable when the type and number of breaks is correctly specified

## 6 Estimating the numbers of breaks in coefficients and in variance

To select the number of breaks in regression coefficients or error variance, we suggest a specific to general procedure that uses the sequential tests proposed in Section 4.4. We determine the number of coefficients and variance breaks allowing for a given number of

breaks in the other component. When selecting the number of breaks in  $\delta$ , we consider TP-9 and the test sup  $Seq_{9,T}(m+1,N|m,N)$  is applied, starting with  $H_0: m = 0$  and  $H_1$ :  $m = 1$ , where N is some pre-specified maximum number of breaks in variance. Upon a rejection, we proceed to  $H_0$ :  $m = 1$  versus  $H_1$ :  $m = 2$ , and so on until the test stops rejecting. Since the number of breaks  $n$  in  $\sigma^2$  is unknown, contamination of the test statistics by unaccounted breaks in  $\sigma^2$  must be avoided. This can be achieved imposing a maximum number N throughout. Similarly, to select the number of breaks in  $\sigma^2$ , TP-10 is considered and the test sup  $Seq_{10,T}(M, n+1|M, n)$  is used for  $n = 0, 1, \dots$ , until a non-rejection occurs. Again, some maximum number of breaks in the coefficients  $M$  is imposed. We performed a simple simulation experiment with  $T = 200$ ,  $\varepsilon = 0.15$  and the DGP given by:

$$
y_t = \mu_1 + \mu_2 1(t > T^c) + e_t, e_t \sim i.i.d.
$$
  $N(0, 1 + \theta 1(t > T^v)),$ 

with  $\mu_1 = 0$  so that at most one break in either mean or variance occurs. We consider the following scenarios: a) no change in mean or variance, b) a change in mean only occurring at mid-sample, c) a change in variance only occurring at mid-sample, d) a change in both mean and variance occurring at a common date (mid-sample); e) a change in both mean and variance occurring at different but close dates  $(T<sup>c</sup> = [0.5T], T<sup>v</sup> = [0.7T])$  or f) at different and distant dates  $(T^c = [0.25T], T^v = [0.75T]).$  Different magnitudes of breaks are considered. The procedure is applied setting the maximum number of breaks to  $M = 2$  and  $N = 2$  (i.e., four breaks overall). We also considered a split-sample method discussed in Supplement H. The results are presented in Tables 11 and S.4. The procedures work quite well in selecting the correct number and type of breaks. There are cases, however, where the probability of correct selection is quite low with the split-sample method, e.g., when both changes in mean and variance are not large and occur at different dates, especially far apart. The specific to general approach tests for breaks in coefficients and variance separately allowing the other component to have unknown breaks, which can avoid segmentations and lead to power gains. The probabilities of selecting the correct number of each type of breaks are high with this approach (higher than with the split-sample method, see Table S.10) when the changes are not large and the break dates are different. Hence, we recommend this procedure in practice.

#### 7 Empirical examples

We investigate structural changes in the conditional mean and in the error variance of US inflation, quarterly from 1959:1 to 2018:4. For comparison purposes, we use Stock and Watson's (2002) transformation to achieve stationarity, i.e., we transform the GDP deflator  $(X_t)$ 

into annual changes of the quarterly inflation rate as  $Y_t = 100[\ln(X_t/X_{t-1}) - \ln(X_{t-4}/X_{t-5})].$ The resulting series is presented in Figure 1. We use a simple AR(4) model of the form  $Y_t = \mu + \sum_{j=1}^4 \phi_j Y_{t-j} + e_t$ . Using the sample from 1959:1 to 2002:3 and a two-step procedure, Stock and Watson (2002) found strong evidence of a structural change in the conditional mean but no or weak evidence of changes in the error variance. Table 12(a) reports the  $\sup LR_{4,T}$  and the  $UD \max LR_{4,T}$  tests. They suggest at least one change in either or both the coefficients and the variance. Table  $12(b)$  presents the results when testing for changes in the coefficients, allowing for changes in the variance. As in Stock and Watson  $(2002)$ , we obtain strong evidence of a change in the conditional mean coefficients if we assume no change in the error variance (sup  $LR_{3,T}$  with  $m_a = 1$  and  $UD$  max  $LR_{3,T}$  tests, both with  $n_a = 0$ ). The sequential procedure using the sup  $Seq_{9,T}$  test confirms that a one break specification is preferred with the break date estimated at 1982:1. However, any evidence of changes in the conditional mean disappears once we jointly consider structural changes in the error variance. To assess whether changes in variance are indeed present when accounting for potential changes in the regression coefficients, Table  $12(c)$  presents the results of the  $\sup LR_{2,T}$  and the  $UD \max LR_{2,T}$  tests. These suggest the presence of breaks in the variance. The sequential test sup  $Seq_{10,T}$  suggests 3 breaks at 1971:2, 1983:2 and 2006:3 when  $m_a = 0$ . Hence, contrary to Stock and Watson (2002), we conclude for 3 structural changes in the error variance and no change in the conditional mean. The changes are such that the variance went from 1.00 to 3.29 in 1971:2, then to 0.49 in 1983:1 and to 1.42 in 2006:3.

We now consider the US ex-post real interest rate and use the same quarterly series from 1961:1-1986:3 (see Figure 2), as in Garcia and Perron (1996) and Bai and Perron (2003a) since it is a widely used example involving important mean shifts, though variance shifts have not been investigated. We use a model with only a constant as regressor (i.e.,  $z_t = \{1\}$ ) and account for serial correlations in the errors term via a HAC variance estimator using the hybrid method. The estimate of the scaling factor  $\psi$ , see (8), also uses the hybrid method. Bai and Perron (2003a) found two large mean shifts in 1972:3 and 1980:3 and a small change in 1966:4 using the sequential procedure proposed in Bai and Perron (1998, 2003a), which allows for variance breaks occurring at the same time as the mean breaks, though not at different times. Here, the focus is on assessing whether changes in variances are present and if so whether and how the changes in mean present affect the results. Because they found three breaks in the mean, we use our tests with  $m_a$  up to 3 and  $n_a$  up to 2. The trimming parameter  $\varepsilon = 0.15$  is used. The critical values of both tests when  $M = 3$  are provided in Perron and Yamamoto (2019b). Table 13(a) presents the results for the sup  $LR_{4,T}$  and the  $UD$  max  $LR_{4,T}$ 

tests, which suggest clear rejections of the null hypothesis of no breaks. Table 13(b) presents the results when testing for mean breaks accounting for possible variance breaks using the sup  $LR_{3,T}$  and the  $UD$  max  $LR_{3,T}$  tests and also the sup  $Seq_{9,T}$  test to determine the number of breaks. We obtain evidence for two mean breaks in 1972:3 and 1980:3, irrespective of how many variance breaks are accounted for. However, we do not find evidence for a mean break in 1966:4. To investigate the presence of variance changes, Table 13(c) presents the results of the tests for variance breaks accounting for mean breaks. If we account for no mean breaks  $(m_a = 0)$ , two variance breaks are found in 1972:3 and 1981:2; the former is the same and the latter is close to the dates of the two large mean breaks. However, if one mean break is allowed  $(m_a = 1)$ , only one variance break is found in 1972:3, which suggests that the variance break in 1981:2 was a false rejection due to the ignored mean break. The next issue is whether the 1972:3 variance break is spurious. To see this, we account for two breaks in the mean  $(m_a = 2)$  and find again two breaks in the variance; one in 1972:3 and the other is in 1964:3. The variance break in 1964:3 is relatively small and was thereby masked when the two mean breaks were not accounted for. More importantly, we again obtain no evidence for a break around 1980:3 but rather one in 1972:3. Therefore, we conclude that both the mean and the variance changed in 1972:3 but only the mean changed in 1980:3, while only the variance changed in 1964:3. This latter change may be responsible for Bai and Perronís (2003a) Önding of an additional mean break in 1966:4 using tests that allow for variance changes, though at the same dates as the mean changes. The change are such that the mean went from 1.36 to -1.80 in 1972:3 and to 5.64 in 1980:3, while the variance changed from 1.09 to 1.87 in 1964:3 and then to 6.91 in 1972:3.

#### 8 Conclusion

This paper provided tools for testing for multiple structural breaks in the error variance in the linear regression model with or without the presence of breaks in the regression coefficients. An innovation is that we do not impose any restrictions on the break dates, i.e., the breaks in the regression coefficients and in the variance can happen at the same time or at different times. We proposed statistics with asymptotic distributions invariant to nuisance parameters and valid with non-normal errors and conditional heteroskedasticity, as well as serial correlation. Extensive simulations of the Önite sample properties show that our procedures perform well in terms of size and power. A specific to general procedure to estimate the number and type of breaks based on a proposed sequential test is shown to perform well in selecting the number and types of breaks.

## Appendix

Proof of Theorem 1: Part (a) follows from Qu and Perron (2007a, Theorem 5) under A1. For part (b),

$$
\sup LR_{2,T} (m_a, n_a, \varepsilon | n = 0, m_a)
$$
\n
$$
= 2[\log \hat{L}_T(\widetilde{T}_1^c, ..., \widetilde{T}_{m_a}^c; \widetilde{T}_1^v, ..., \widetilde{T}_{n_a}^v) - \log \widetilde{L}_T(\hat{T}_1^c, ..., \hat{T}_{m_a}^c)]
$$
\n
$$
= T \log \widetilde{\sigma}^2 - \sum_{i=1}^{n_a+1} (\widetilde{T}_i^v - \widetilde{T}_{i-1}^v) \log \widehat{\sigma}_i^2
$$
\n
$$
= \sum_{i=1}^{n_a} [\widetilde{T}_{i+1}^v \log \widetilde{\sigma}_{1,i+1}^2 - \widetilde{T}_i^v \log \widetilde{\sigma}_{1,i}^2 - (\widetilde{T}_{i+1}^v - \widetilde{T}_i^v) \log \widehat{\sigma}_{i+1}^2] + \widetilde{T}_1^v (\log \widetilde{\sigma}_{1,1}^2 - \log \widehat{\sigma}_1^2)
$$

where  $\tilde{\sigma}_{1,i}^2 = (\tilde{T}_i^v)^{-1} \sum_{t=1}^{\tilde{T}_i^v} (y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta}_{t,j})^2$  with  $\tilde{\delta}_{t,j} = \tilde{\delta}_j$  for  $\hat{T}_{j-1}^c \le t \le \hat{T}_j^c$  (also let  $\delta_{t,j}^0 = \delta_j^0$ j for  $T_{j-1}^{\text{c0}} < t \leq T_j^{\text{c0}}$   $(j = 1, ..., m_a + 1)$  and  $\hat{\sigma}_i^2 = (\tilde{T}_i^v - \tilde{T}_{i-1}^v)^{-1} \sum_{t=\tilde{T}_{i-1}^v+1}^{\tilde{T}_i^v} (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{t,j})^2$ . Applying a Taylor expansion to  $\log \tilde{\sigma}_{1,i+1}^2$ ,  $\log \tilde{\sigma}_{1,i}^2$  and  $\log \hat{\sigma}_{i+1}^2$  around  $\log \sigma_0^2$ , we obtain

$$
\sup LR_{2,T}(m_a, n_a, \varepsilon | n = 0, m_a) = \sum_{i=1}^{n_a} (F_{1,T}^i + F_{2,T}^i) + o_p(1)
$$

where

$$
F_{1,T}^{i} = (\sigma_0^2)^{-1} [\widetilde{T}_{i+1}^{v} \widetilde{\sigma}_{1,i+1}^2 - \widetilde{T}_{i}^{v} \widetilde{\sigma}_{1,i}^2 - (\widetilde{T}_{i+1}^{v} - \widetilde{T}_{i}^{v}) \widetilde{\sigma}_{i+1}^2]
$$
  
= 
$$
(\sigma_0^2)^{-1} \sum_{t=\widetilde{T}_{i}^{v}+1}^{\widetilde{T}_{i+1}^{v}} \left[ (y_t - x_t' \widetilde{\beta} - z_t' \widetilde{\delta}_{t,j})^2 - (y_t - x_t' \widetilde{\beta} - z_t' \widetilde{\delta}_{t,j})^2 \right]
$$

and

$$
F_{2,T}^{i} = -(1/2)[\widetilde{T}_{i+1}^{v}(\frac{\widetilde{\sigma}_{1,i+1}^{2} - \sigma_{0}^{2}}{\sigma_{0}^{2}})^{2} - \widetilde{T}_{i}^{v}(\frac{\widetilde{\sigma}_{1,i}^{2} - \sigma_{0}^{2}}{\sigma_{0}^{2}})^{2} - (\widetilde{T}_{i+1}^{v} - \widetilde{T}_{i}^{v})(\frac{\widetilde{\sigma}_{i+1}^{2} - \sigma_{0}^{2}}{\sigma_{0}^{2}})^{2}]
$$
  
= (1/2)(I + II + III). (A.1)

We first show that  $F_{1,T}^i = o_p(1)$ . We can express  $F_{1,T}^i$  as

$$
(\sigma_0^2)^{-1} \begin{bmatrix} (U_{i+1} + X_{i+1}(\beta^0 - \tilde{\beta}) \\ +Z_{i+1}(\delta_{t,j}^0 - \tilde{\delta}_{t,j}))'(U_{i+1} + X_{i+1}(\beta^0 - \tilde{\beta}) + Z_{i+1}(\delta_{t,j}^0 - \tilde{\delta}_{t,j})) \\ - (U_{i+1} + X_{i+1}(\beta^0 - \hat{\beta}) \\ + Z_{i+1}(\delta_{t,j}^0 - \hat{\delta}_{t,j}))'(U_{i+1} + X_{i+1}(\beta^0 - \hat{\beta}) + Z_{i+1}(\delta_{t,j}^0 - \hat{\delta}_{t,j})) \end{bmatrix}
$$
  
= 
$$
(\sigma_0^2)^{-1} \begin{bmatrix} (\hat{\beta} - \tilde{\beta})'X'_{i+1}X_{i+1}(\hat{\beta} - \tilde{\beta}) + (\hat{\delta}_{t,j} - \tilde{\delta}_{t,j})'Z'_{i+1}Z_{i+1}(\hat{\delta}_{t,j} - \tilde{\delta}_{t,j}) \\ + (\hat{\beta} - \tilde{\beta})'X'_{i+1}Z_{i+1}(\hat{\delta}_{t,j} - \tilde{\delta}_{t,j}) + 2(\beta - \hat{\beta})'X'_{i+1}X_{i+1}(\hat{\beta} - \tilde{\beta}) \\ + 2(\delta_{t,j}^0 - \hat{\delta}_{t,j})'Z'_{i+1}Z_{i+1}(\hat{\delta}_{t,j} - \tilde{\delta}_{t,j}) + 2(\hat{\beta} - \tilde{\beta})'X'_{i+1}Z_{i+1}(\delta_{t,j}^0 - \hat{\delta}_{t,j}) \\ + 2(\beta - \hat{\beta})'X'_{i+1}Z_{i+1}(\hat{\delta}_{t,j} - \tilde{\delta}_{t,j}) + 2(\hat{\beta} - \tilde{\beta})'X'_{i+1}U_{i+1} + 2(\hat{\delta}_{t,j} - \tilde{\delta}_{t,j})'Z'_{i+1}U_{i+1} \end{bmatrix}.
$$

The result follows using the facts that  $X'_{i+1}X_{i+1} = O_p(T)$ ,  $Z'_{i+1}Z_{i+1} = O_p(T)$ ,  $X'_{i+1}Z_{i+1} =$  $O_p(T)$ ,  $X'_{i+1}U_{i+1} = O_p(T^{1/2})$  and  $Z'_{i+1}U_{i+1} = O_p(T^{1/2})$ . Also, since under  $H_0$  with A1, the estimates of the break fractions converge to the true break fractions at a fast enough rate so that the estimates of the parameters of the models are consistent and have the same limit distribution as when the break dates are known, we have:  $\beta^0 - \hat{\beta} = O_p(T^{-1/2})$ ,  $\delta_{t,j}^0 - \hat{\delta}_{t,j} = O_p(T^{-1/2}), \hat{\beta} - \widetilde{\beta} = o_p(T^{-1/2})$  and  $\hat{\delta}_{t,j} - \widetilde{\delta}_{t,j} = o_p(T^{-1/2}).$  The last two quantities are  $o_p(T^{-1/2})$  since  $\sqrt{T}(\hat{\beta} - \beta^0)$  and  $\sqrt{T}(\tilde{\beta} - \beta^0)$  have the same limit distribution under  $H_0$ , and likewise for  $\sqrt{T}(\hat{\delta}_{t,j} - \delta_{t,j}^0)$  and  $\sqrt{T}(\check{\delta}_{t,j} - \delta_{t,j}^0)$ . For  $F_{2,T}^i$ ,

$$
\sqrt{I} = (\widetilde{T}_{i+1}^v)^{-1/2} \sum_{t=1}^{\widetilde{T}_{i+1}^v} [\{(y_t - x_t'\widetilde{\beta} - z_t'\widetilde{\delta}_{t,j})/\sigma_0\}^2 - 1] = (\widetilde{T}_{i+1}^v)^{-1/2} \sum_{t=1}^{\widetilde{T}_{i+1}^v} [(u_t/\sigma_0)^2 - 1] + o_p(1)
$$
  
\n
$$
\Rightarrow \sqrt{\psi} W(\lambda_{i+1}^v) / \sqrt{\lambda_{i+1}^v}
$$

by A1. Similarly,  $\sqrt{II} \Rightarrow \sqrt{\psi} W(\lambda_i^v)$  $\binom{v}{i}/\sqrt{\lambda_i^v}$  and

$$
\sqrt{III} = [(\widetilde{T}_{i+1}^v - \widetilde{T}_i^v)/T]^{-1/2} T^{-1/2} \sum_{t=T_i^v+1}^{T_{i+1}^v} [(u_t/\sigma_0)^2 - 1] + o_p(1)
$$
  
\n
$$
= [(\widetilde{T}_{i+1}^v - \widetilde{T}_i^v)/T]^{-1/2} \{T^{-1/2} \sum_{t=1}^{T_{i+1}^v} [(u_t/\sigma_0)^2 - 1] - T^{-1/2} \sum_{t=1}^{T_i^v} [(u_t/\sigma_0)^2 - 1] \} + o_p(1)
$$
  
\n
$$
\Rightarrow \sqrt{\psi} [W(\lambda_{i+1}^v) - W(\lambda_i^v)] / \sqrt{\lambda_{i+1}^v - \lambda_i^v}.
$$

Therefore,

$$
F_{2,T}^{i} \Rightarrow -(\psi/2) \left[ \frac{W^{2}(\lambda_{i+1}^{v})}{\lambda_{i+1}^{v}} - \frac{W^{2}(\lambda_{i}^{v})}{\lambda_{i}^{v}} - \frac{(W(\lambda_{i+1}^{v}) - W(\lambda_{i}^{v}))^{2}}{\lambda_{i+1}^{v}} \right]
$$
  
=  $(\psi/2) \frac{(\lambda_{i}^{v} W(\lambda_{i+1}^{v}) - \lambda_{i+1}^{v} W(\lambda_{i}^{v}))^{2}}{\lambda_{i+1}^{v} \lambda_{i}^{v} (\lambda_{i+1}^{v} - \lambda_{i}^{v})}.$ 

This yields

$$
\sup LR_{2,T}(m_a, n_a, \varepsilon | n = 0, m_a) \Rightarrow \sup_{(\lambda_1^v, ..., \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}^c} \sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}
$$
  

$$
\leq \sup_{(\lambda_1^v, ..., \lambda_{n_a}^v) \in \Lambda_{v,\varepsilon}} \sum_{i=1}^{n_a} \frac{(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v))^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)}
$$

because  $\Lambda_{v,\varepsilon}^c \subseteq \Lambda_{v,\varepsilon}$ . For part (c),

$$
\sup LR_{3,T} (m_a, n_a, \varepsilon | m = 0, n_a)
$$
  
=  $2[\log \hat{L}_T(\tilde{T}_1^c, ..., \tilde{T}_{m_a}^c; \tilde{T}_1^v, ..., \tilde{T}_{n_a}^v) - \log \tilde{L}_T(\hat{T}_1^v, ..., \hat{T}_{n_a}^v)]$   
=  $\sum_{i=1}^{n_a+1} (\hat{T}_i^v - \hat{T}_{i-1}^v) \log \tilde{\sigma}_i^2 - \sum_{i=1}^{n_a+1} (\tilde{T}_i^v - \tilde{T}_{i-1}^v) \log \hat{\sigma}_i^2$ 

where  $\widetilde{\sigma}_i^2 = (\hat{T}_i^v - \hat{T}_{i-1}^v)^{-1} \sum_{t=\hat{T}_{i-1}^v+1}^{\hat{T}_i^v} (y_t - x_t'\widetilde{\beta} - z_t'\widetilde{\delta})^2$  and  $\hat{\sigma}_i^2 = (\widetilde{T}_i^v - \widetilde{T}_{i-1}^v)^{-1} \sum_{t=\hat{T}_{i-1}^v+1}^{\hat{T}_i^v} (y_t - x_t'\widetilde{\beta} - z_t'\widetilde{\delta})^2$  $x_t^i \hat{\beta} - z_t^i \hat{\delta}_{t,j}$ <sup>2</sup>. Applying a Taylor expansion on log  $\tilde{\sigma}_i^2$  and log  $\hat{\sigma}_i^2$  around log  $\sigma_{i0}^2$ , we obtain  $\sup LR_{3,T}(m_a, n_a, \varepsilon | m = 0, n_a) = \sum_{i=1}^{n_a+1} (F_{1,T}^i + F_{2,T}^i) + o_p(1)$ 

where  $F_{1,T}^i = (\hat{T}_i^v - \hat{T}_{i-1}^v)(\tilde{\sigma}_i^2)$  $(\hat{T}_i^v - \tilde{T}_{i-1}^v)(\hat{\sigma}_i^2)$ 

$$
F_{2,T}^i = -(1/2)[(\hat{T}_i^v - \hat{T}_{i-1}^v)([\tilde{\sigma}_i^2 - \sigma_{i0}^2]/\sigma_{i0}^2)^2 - (\tilde{T}_i^v - \tilde{T}_{i-1}^v)([\hat{\sigma}_i^2 - \sigma_{i0}^2]/\sigma_{i0}^2)^2].
$$

 $i^2/\sigma_{i0}^2$  and

We first show that  $F_{2,T}^i = o_p(1)$  as follows. We have:

$$
F_{2,T}^{i} = -(1/2)[(\hat{T}_{i}^{v} - \hat{T}_{i-1}^{v})(\frac{\tilde{\sigma}_{i}^{2} - \sigma_{i0}^{2}}{\sigma_{i0}^{2}})^{2} - (\tilde{T}_{i}^{v} - \tilde{T}_{i-1}^{v})(\frac{\tilde{\sigma}_{i}^{2} - \sigma_{i0}^{2}}{\sigma_{i0}^{2}})^{2}]
$$
  

$$
= -(1/2)[T^{-1}(\hat{T}_{i}^{v} - \hat{T}_{i-1}^{v})[T^{1/2}(\frac{\tilde{\sigma}_{i}^{2} - \sigma_{i0}^{2}}{\sigma_{i0}^{2}})]^{2} - T^{-1}(\tilde{T}_{i}^{v} - \tilde{T}_{i-1}^{v})[T^{1/2}(\frac{\tilde{\sigma}_{i}^{2} - \sigma_{i0}^{2}}{\sigma_{i0}^{2}})]^{2}]
$$

where  $[(\hat{T}_i^v - \hat{T}_{i-1}^v)/T][\sqrt{T}(\tilde{\sigma}_i^2 - \sigma_{i0}^2)/\sigma_{i0}^2]^2$  and  $[(\tilde{T}_i^v - \tilde{T}_{i-1}^v)/T][\sqrt{T}(\hat{\sigma}_i^2 - \sigma_{i0}^2)/\sigma_{i0}^2]^2$  have the same limit distribution under A3. For  $F_{1,T}^i$ , let  $\sigma_0 = \sigma_{10}$  without loss of generality, then

$$
\sum_{i=1}^{n_a+1} F_{1,T}^i = (\sigma_0^2)^{-1} \sum_{i=1}^{n_a+1} \left[ (\hat{T}_i^v - \hat{T}_{i-1}^v) \hat{\sigma}_i^2 - (\tilde{T}_i^v - \tilde{T}_{i-1}^v) \hat{\sigma}_i^2 \right] + (\sigma_0^2)^{-1} \sum_{i=1}^{n_a+1} \left( [\sigma_{i0}^2 - \sigma_0^2] / \sigma_{i0}^2 \right) \left[ (\hat{T}_i^v - \hat{T}_{i-1}^v) \hat{\sigma}_i^2 - (\tilde{T}_i^v - \tilde{T}_{i-1}^v) \hat{\sigma}_i^2 \right]
$$

The first term becomes,

$$
(\sigma_0^2)^{-1} \sum_{i=1}^{n_a+1} \left[ (\hat{T}_i^v - \hat{T}_{i-1}^v) \hat{\sigma}_i^2 - (\tilde{T}_i^v - \tilde{T}_{i-1}^v) \hat{\sigma}_i^2 \right]
$$
  
= 
$$
(\sigma_0^2)^{-1} \sum_{t=1}^T [(y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta})^2 - (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{t,j})^2]
$$
(A.2)

:

$$
= (\sigma_0^2)^{-1} \sum_{j=1}^{m_a} \sum_{t=1}^{\tilde{T}_{j+1}^c} (y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta})^2 - \sum_{t=1}^{\tilde{T}_j^c} (y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta})^2 - \sum_{t=\tilde{T}_j^c+1}^{\tilde{T}_{j+1}^c} (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{j+1})^2 + (\sigma_0^2)^{-1} \sum_{t=1}^{\tilde{T}_i^c} (y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta})^2 - (\sigma_0^2)^{-1} \sum_{t=1}^{\tilde{T}_i^c} (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_1)^2 = (\sigma_0^2)^{-1} \{\sum_{j=1}^{m_a} [D^r(1, j+1) - D^r(1, j) - D^u(j+1)] + D^r(1, 1) - D^u(1)\},
$$

where  $D^r(1, j) = \sum_{t=1}^{\widetilde{T}_j^c} (y_t - x_t'\widetilde{\beta} - z_t'\widetilde{\delta})^2$  and  $D^u(j) = \sum_{t=1}^{\widetilde{T}_j^c}$  $\tilde{T}_{j}^c$ <br>  $t = \tilde{T}_{j-1}^c + 1} (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_j)^2$ . The second term is  $o_p(1)$  by A3. Using similar derivations as in Qu and Perron (2007b), we obtain

$$
D^{r}(1, j + 1) - D^{r}(1, j) - D^{u}(j + 1)
$$
\n
$$
= -U'_{1:j+1}Z_{1:j+1}(Z'_{1:j+1}Z_{1:j+1})^{-1}Z'_{1:j+1}U_{1:j+1} + U'_{1:j}Z_{1:j}(Z'_{1:j}Z_{1:j})^{-1}Z'_{1:j}U_{1:j}
$$
\n
$$
+ U'_{j+1}Z_{j+1}(Z'_{j+1}Z_{j+1})^{-1}Z'_{j+1}U_{j+1} + o_{p}(1),
$$
\n
$$
\Rightarrow \frac{\left\| \lambda_{j}^{c}W_{q}(\lambda_{j+1}^{c}) - \lambda_{j+1}^{c}W_{q}(\lambda_{j}^{c}) \right\|^{2}}{\lambda_{j+1}^{c}\lambda_{j}^{c}(\lambda_{j+1}^{c} - \lambda_{j}^{c})}
$$

by A2. This yields

$$
\sup LR_{3,T}(m_a, n_a, \varepsilon | m = 0, n_a) \Rightarrow \sup_{(\lambda_1^c, \dots, \lambda_{m_a}^c) \in \Lambda_{c,\varepsilon}^v} \sum_{j=1}^{m_a} \frac{\left\| \lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c) \right\|^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)},
$$
  

$$
\leq \sup_{(\lambda_1^c, \dots, \lambda_{m_a}^c) \in \Lambda_{c,\varepsilon}} \sum_{j=1}^{m_a} \frac{\left\| \lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c) \right\|^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)},
$$

because  $\Lambda_{c,\varepsilon}^v \subseteq \Lambda_{c,\varepsilon}$ . For part (d), we have:

$$
\sup LR_{4,T} (m_a, n_a, \varepsilon | m = n = 0)
$$
\n
$$
= 2 \Big[ \sup_{(\lambda_1^c, \dots, \lambda_{m_a}^c; \lambda_1^v, \dots, \lambda_{n_a}^v) \in \Lambda_{\varepsilon}} \log \hat{L}_T (T_1^c, \dots, T_{m_a}^c; T_1^v, \dots, T_{n_a}^v) - \log \tilde{L}_T \Big]
$$
\n
$$
= 2 \Big[ \log \hat{L}_T (\tilde{T}_1^c, \dots, \tilde{T}_{m_a}^c; \tilde{T}_1^v, \dots, \tilde{T}_{n_a}^v) - \log \tilde{L}_T \Big]
$$
\n
$$
= T \log \tilde{\sigma}^2 - \sum_{i=1}^{n_a+1} (\tilde{T}_i^v - \tilde{T}_{i-1}^v) \log \hat{\sigma}_i^2
$$
\n
$$
= \sum_{i=1}^{n_a} \Big[ \tilde{T}_{i+1}^v \log \tilde{\sigma}_{1,i+1}^2 - \tilde{T}_i^v \log \tilde{\sigma}_{1,i}^2 - (\tilde{T}_{i+1}^v - \tilde{T}_i^v) \log \hat{\sigma}_{i+1}^2 \Big] + \tilde{T}_1^v (\log \tilde{\sigma}_{1,1}^2 - \log \hat{\sigma}_1^2),
$$

where  $\widetilde{\sigma}_{1,i}^2 = (\widetilde{T}_i^v)^{-1} \sum_{t=1}^{\widetilde{T}_i^v} (y_t - x_t \widetilde{\beta} - z_t \widetilde{\delta})^2$ . Applying a Taylor expansion to log  $\widetilde{\sigma}_{1,i+1}^2$ , log  $\widetilde{\sigma}_1^2$  $_{1,i}$ and  $\log \hat{\sigma}_{i+1}^2$  around  $\log \sigma_0^2$ , we obtain

$$
\sup LR_{4,T}(m_a, n_a, \varepsilon | m = n = 0) = \sum_{i=1}^{n_a} (F_{1,T}^i + F_{2,T}^i) + o_p(1)
$$

where the first term is the same as in  $(A.2)$ , so that

$$
\sum_{i=1}^{n_a} F_{1,T}^i = \sum_{i=1}^{n_a} (\sigma_0^2)^{-1} \left[ \widetilde{T}_{i+1}^v \widetilde{\sigma}_{1,i+1}^2 - \widetilde{T}_i^v \widetilde{\sigma}_{1,i}^2 - \left( \widetilde{T}_{i+1}^v - \widetilde{T}_i^v \right) \widehat{\sigma}_{i+1}^2 \right] + (\sigma_0^2)^{-1} \widetilde{T}_1^v (\widetilde{\sigma}_{1,1}^2 - \widehat{\sigma}_1^2)
$$
  
\n
$$
= (\sigma_0^2)^{-1} \sum_{t=1}^T \left[ \left( y_t - x_t' \widetilde{\beta} - z_t' \widetilde{\delta} \right)^2 - \left( y_t - x_t' \widehat{\beta} - z_t' \widehat{\delta}_{t,j} \right)^2 \right]
$$
  
\n
$$
= (\sigma_0^2)^{-1} \left\{ \sum_{j=1}^{m_a} \left[ D^r(1, j+1) - D^r(1, j) - D^u(j+1) \right] + D^r(1, 1) - D^u(1) \right\}
$$

as shown in part (c). The second term is the same as  $(A.1)$  but with no changes in  $\delta$  to construct  $\tilde{\sigma}_{1,i}^2$ , i.e.,  $LR_v$  defined by (11). Hence,

$$
F_{2,T}^i = -(1/2)[\widetilde{T}_{i+1}^v(\frac{\widetilde{\sigma}_{1,i+1}^2 - \sigma_0^2}{\sigma_0^2})^2 - \widetilde{T}_{i}^v(\frac{\widetilde{\sigma}_{1,i}^2 - \sigma_0^2}{\sigma_0^2})^2 - (\widetilde{T}_{i+1}^v - \widetilde{T}_{i}^v)(\frac{\widetilde{\sigma}_{i+1}^2 - \sigma_0^2}{\sigma_0^2})^2]
$$

as shown in part (b). From the proof of part (c),

$$
\sum_{i=1}^{n_a} F_{1,T}^i \Rightarrow \sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)}
$$

under A2 and from that of part (b),

$$
F_{2,T}^i \Rightarrow \frac{\psi}{2} \frac{\left(\lambda_i^v W\left(\lambda_{i+1}^v\right) - \lambda_{i+1}^v W\left(\lambda_i^v\right)\right)^2}{\lambda_{i+1}^v \lambda_i^v \left(\lambda_{i+1}^v - \lambda_i^v\right)}
$$

under A1. Hence, we obtain

$$
\sup LR_{4,T}(m_a, n_a, \varepsilon | m = n = 0) \Rightarrow \sup_{\left(\lambda_1^c, \ldots, \lambda_{m_a}^c; \lambda_1^v, \ldots, \lambda_{n_a}^v\right) \in \Lambda_{\varepsilon}} \left[ \begin{array}{c} \sum_{j=1}^{m_a} \frac{||\lambda_j^c W_q(\lambda_{j+1}^c) - \lambda_{j+1}^c W_q(\lambda_j^c)||^2}{\lambda_{j+1}^c \lambda_j^c (\lambda_{j+1}^c - \lambda_j^c)} \\ + \frac{\psi}{2} \sum_{i=1}^{n_a} \frac{\left(\lambda_i^v W(\lambda_{i+1}^v) - \lambda_{i+1}^v W(\lambda_i^v)\right)^2}{\lambda_{i+1}^v \lambda_i^v (\lambda_{i+1}^v - \lambda_i^v)} \end{array} \right].
$$

## References

Andrews, D. W. K. (1991), "Heteroskedasticity and autocorrelation consistent covariance matrix estimation." *Econometrica*, 59, 817-858.

Andrews, D. W. K. (1993), "Tests for parameter instability and structural change with unknown change point." Econometrica, 61, 821-856.

Aue, A., S. Hormann, L. Horváth, and M. Reimherr (2009), "Break detection in the covariance structure of multivariate time series models." The Annals of Statistics, 37, 4046-4087.

Bai, J. (2000), "Vector autoregressive models with structural changes in regression coefficients and in variance-covariance matrices." Annals of Economics and Finance, 1, 303-339.

Bai, J., R. L. Lumsdaine, and J. H. Stock (1998), "Testing for and dating breaks in multivariate time series." Review of Economic Studies, 65, 395-432.

Bai, J. and S. Ng (2005), "Tests for skewness, kurtosis, and normality for time series data." Journal of Business and Economic Statistics, 23, 49-60.

Bai, J. and P. Perron (1998), "Estimating and testing linear models with multiple structural changes."  $Econometrica$ , 66, 47-78.

Bai, J. and P. Perron (2003a), "Computation and analysis of multiple structural change models." Journal of Applied Econometrics, 18, 1-22.

Bai, J. and P. Perron (2003b), "Critical values for multiple structural change tests," *Econo*metrics Journal, 6, 72-78.

Bai, J. and P. Perron (2006), "Multiple structural change models: a simulation analysis." In Econometric Theory and Practice: Frontiers of Analysis and Applied Research, D. Corbae, S. Durlauf and B. E. Hansen (eds.), Cambridge University Press, 212-237.

Blanchard, O. and J. Simon (2001), "The long and large decline in U.S. output volatility." Brookings Papers on Economic Activity, 1, 135-173.

Brown, R. L., J. Durbin, and J. M. Evans (1975), "Techniques for testing the constancy of regression relationships over time." Journal of the Royal Statistical Society B, 37, 149-163.

Casini, A. and P. Perron  $(2019a)$ , "Continuous record asymptotics for structural change models." Unpublished manuscript, Department of Economics, Boston University.

Casini, A. and P. Perron (2019b), "Structural breaks in time series." Forthcoming in the Oxford Research Encyclopedia of Economics and Finance.

Cavaliere, G. and I. Georgiev (2018), "Inference under random limit bootstrap measures." Unpublished manuscript, University of Bologna.

Davis, R. A., D. Huang, and Y. C. Yao (1995), "Testing for a change in the parameter values and order of an autoregressive model." Annals of Statistics, 23, 282-304.

Deng, A. and P. Perron (2008), "The limit distribution of the CUSUM of squares test under general mixing conditions." *Econometric Theory*, 24, 809-822.

Gadea, M. D., A. Gómez-Loscos, and G. Pérez-Quirós (2018), "Great moderation and great recession: From plain sailing to stormy seas?" *International Economic Review*, 59, 2297-2321.

Garcia, R. and P. Perron (1996), "An analysis of the real interest rate under regime shifts." Review of Economics and Statistics, 78, 111-125.

Górecki, T., L. Horváth, and P. Kokoszka (2018), "Change point detection in heteroscedastic time series." *Econometrics and Statistics*, 7, 63-88.

Hansen, B. E. (2000), "Testing for structural change in conditional models." *Journal of* Econometrics, 97, 93-115.

Hawkins, D. M. (1976), "Point estimation of the parameters of piecewise regression models." Applied Statistics, 25, 51-57.

Herrera, A. M. and E. Pesavento (2005), "The decline in U.S. output volatility: structural changes and inventory investment." Journal of Business and Economic Statistics, 23, 462-472.

Horváth, L. (1993), "The maximum likelihood method for testing changes in the parameters of normal observations." Annals of Statistics, 21, 671-680.

Inclán, C. and G. C. Tiao (1994), "Use of cumulative sums of squares for retrospective detection of changes of variance." Journal of the American Statistical Association, 89, 913-923.

Kejriwal, M. (2009), "Tests for a mean shift with good size and monotonic power." *Economics* Letters, 102, 78-82.

Kejriwal, M. and P. Perron (2008), "The limit distribution of the estimates in cointegrated regression models with multiple structural changes." Journal of Econometrics, 146, 59-73.

Kejriwal, M. and P. Perron (2010), "Testing for multiple structural changes in cointegrated regression models." Journal of Business and Economic Statistics, 28, 503-522.

Kim, C.-J. and C. R. Nelson (1999), "Has the U.S. economy become more stable? A Bayesian approach based on a Markov-switching model of the business cycle." Review of Economics and Statistics, 81, 608-616.

Kurozumi, E. and P. Tuvaandorj (2011), "Model selection criteria in multivariate models with multiple structural changes." Journal of Econometrics, 164, 218-238.

Liu, J., S. Wu, and J. V. Zidek (1997), "On segmented multivariate regressions." Statistica Sinica, 7, 497-525.

McConnell, M. M. and G. Pérez-Quirós (2000), "Output fluctuations in the United States: What has changed since the early 1980's?" American Economic Review, 90, 1464-1476.

Perron, P. (1989), "The great crash, the oil price shock, and the unit root hypothesis." Econometrica, 57, 1361-1401.

Perron, P. (2006), "Dealing with structural breaks." In Palgrave Handbook of Econometrics, Vol. 1: Econometric Theory, K. Patterson and T.C. Mills (eds.), Palgrave Macmillan, 278- 352.

Perron, P. and Z. Qu (2006), "Estimating restricted structural change models." Journal of Econometrics, 134, 373-399.

Perron, P. and Y. Yamamoto (2014), "A note on estimating and testing for multiple structural changes in models with endogenous regressors via 2SLS." *Econometric Theory*, 30, 491-507.

Perron, P. and Y. Yamamoto (2015), "Using OLS to estimate and test for structural changes in models with endogenous regressors." Journal of Applied Econometrics, 30, 119-144.

Perron, P. and Y. Yamamoto (2019a), "Pitfalls of two steps testing for changes in the error variance and coefficients of a linear regression models." *Econometrics*, 7, 22.

Perron, P. and Y. Yamamoto (2019b), "The great moderation: updated evidence with joint tests for multiple structural changes in variance and persistence." Unpublished manuscript, Department of Economics, Boston University.

Pitarakis, J.-Y. (2004), "Least-squares estimation and tests of breaks in mean and variance under misspecification." Econometrics Journal, 7, 32-54.

 $Qu, Z.$  and P. Perron  $(2007a)$ , "Estimating and testing multiple structural changes in multivariate regressions."  $Econometrica$ , 75, 459-502.

 $Qu, Z.$  and P. Perron  $(2007b)$ , "Supplemental material to: Estimating and testing multiple structural changes in multivariate regressions." (https://www.econometricsociety.org/ sites/default/files/ECTA5733SUPP\_0.pdf).

Sensier, M. and D. van Dijk (2004), "Testing for volatility changes in U.S. macroeconomic time series." Review of Economics and Statistics, 86, 833-839.

Stock, J. H. and M. W. Watson (2002), "Has the business cycle changed and why?" In NBER Macroeconomics Annual 17, M. Gertler & K. Rogoff (eds.), MIT press, 159-218.

Xu, K.-L. (2013), "Powerful test for structural changes in volatility." Journal of Econometrics, 173, 126-142.

|                 |          |         |           | $\varepsilon=0.10$ |           |         |           | $\varepsilon = 0.15$ |                      |         | $\varepsilon = 0.20$ |           | $\varepsilon = 0.25$ |                      | $UD$ max $LR_A^*$    |                      |
|-----------------|----------|---------|-----------|--------------------|-----------|---------|-----------|----------------------|----------------------|---------|----------------------|-----------|----------------------|----------------------|----------------------|----------------------|
|                 |          | $n_a=1$ |           |                    | $n_a = 2$ | $n_a=1$ |           |                      | $n_a = \overline{2}$ | $n_a=1$ |                      | $n_a = 2$ | $n_a=1$              |                      | $M = N = 2$          |                      |
| $q_{\parallel}$ | $\alpha$ | $m_a=1$ | $m_a = 2$ | $m_a=1$            | $m_a=2$   | $m_a=1$ | $m_a = 2$ | $m_a=1$              | $m_a = 2$            | $m_a=1$ | $m_a = 2$            | $m_a=1$   | $m_a=1$              | $\varepsilon = 0.10$ | $\varepsilon = 0.15$ | $\varepsilon = 0.20$ |
|                 | .90      | 6.59    | 6.34      | 6.32               | 6.20      | 6.21    | 5.75      | 5.72                 | 5.46                 | 5.83    | 5.19                 | 5.18      | 5.48                 | 7.18                 | 6.61                 | 6.15                 |
|                 | .95      | 7.63    | 7.12      | 7.10               | 6.83      | 7.18    | 6.49      | 6.46                 | 6.13                 | 6.79    | 5.93                 | 5.89      | 6.43                 | 8.03                 | 7.51                 | 7.05                 |
|                 | .975     | 8.54    | 7.78      | 7.75               | 7.44      | 8.12    | 7.17      | 7.23                 | 6.71                 | 7.70    | 6.56                 | 6.70      | 7.42                 | 8.81                 | 8.32                 | 7.87                 |
|                 | .99      | 9.79    | 8.73      | 8.70               | 8.17      | 9.24    | 7.98      | 8.00                 | 7.45                 | 8.83    | 7.42                 | 7.52      | 8.56                 | 10.00                | 9.42                 | 8.95                 |
| 2               | .90      | 7.88    | 7.96      | 7.18               | 7.41      | 7.45    | 7.31      | 6.54                 | 6.66                 | 7.10    | 6.72                 | 6.01      | 6.70                 | 8.47                 | 7.93                 | 7.39                 |
|                 | .95      | 8.87    | 8.78      | 7.94               | 8.03      | 8.45    | 8.12      | 7.36                 | 7.33                 | 8.12    | 7.52                 | 6.77      | 7.72                 | 9.37                 | 8.88                 | $8.42\,$             |
|                 | .975     | 9.85    | 9.52      | 8.69               | 8.69      | 9.45    | 8.91      | 8.02                 | 7.88                 | 9.08    | 8.34                 | 7.50      | 8.69                 | 10.32                | 9.77                 | $9.40\,$             |
|                 | .99      | 11.12   | 10.55     | 9.52               | 9.52      | 10.73   | 9.90      | 8.93                 | 8.73                 | 10.27   | 9.31                 | 8.33      | 9.94                 | 11.47                | 10.96                | 10.54                |
| $\mathcal{S}$   | .90      | 8.98    | 9.34      | 7.93               | 8.44      | 8.53    | 8.63      | 7.30                 | 7.63                 | 8.09    | 7.94                 | 6.70      | 7.67                 | 9.73                 | 9.09                 | $8.55\,$             |
|                 | .95      | 10.06   | 10.23     | 8.72               | 9.11      | 9.52    | 9.51      | 8.07                 | 8.31                 | 9.11    | 8.77                 | 7.50      | 8.75                 | 10.66                | 10.08                | 9.48                 |
|                 | .975     | 11.08   | 10.98     | 9.43               | 9.75      | 10.61   | 10.30     | 8.80                 | 8.98                 | 10.18   | 9.59                 | 8.25      | 9.73                 | 11.48                | 10.93                | 10.41                |
|                 | .99      | 12.43   | 12.01     | 10.33              | 10.53     | 11.87   | 11.30     | 9.67                 | 9.80                 | 11.50   | 10.50                | 9.09      | 10.89                | 12.66                | 12.19                | 11.64                |
|                 | .90      | 9.96    | 10.60     | 8.54               | 9.32      | 9.51    | 9.90      | 7.87                 | 8.56                 | 9.09    | 9.17                 | 7.31      | 8.66                 | 10.88                | 10.24                | 9.64                 |
|                 | .95      | 11.10   | 11.51     | 9.38               | 10.05     | 10.54   | 10.83     | 8.73                 | 9.30                 | 10.14   | 10.01                | 8.14      | 9.73                 | 11.85                | 11.19                | 10.66                |
|                 | .975     | 12.17   | 12.30     | 10.13              | 10.72     | 11.61   | 11.62     | 9.47                 | 9.98                 | 11.17   | 10.89                | 8.91      | 10.87                | 12.81                | 12.20                | 11.53                |
|                 | .99      | 13.50   | 13.36     | 11.07              | 11.59     | 13.08   | 12.62     | 10.42                | 10.73                | 12.67   | 11.90                | 9.76      | 12.33                | 13.99                | 13.39                | 12.84                |
| $5^{\circ}$     | .90      | 10.94   | 11.81     | 9.19               | 10.21     | 10.45   | 11.03     | 8.53                 | 9.41                 | 9.99    | 10.36                | 7.94      | 9.56                 | 12.07                | 11.33                | 10.70                |
|                 | .95      | 12.14   | 12.76     | 10.00              | 10.99     | 11.66   | 12.01     | 9.33                 | 10.13                | 11.20   | 11.33                | 8.75      | 10.73                | 13.06                | 12.38                | 11.84                |
|                 | .975     | 13.22   | 13.68     | 10.74              | 11.63     | 12.72   | 12.89     | 10.09                | 10.82                | 12.28   | 12.22                | 9.54      | 11.93                | 13.99                | 13.38                | 12.86                |
|                 | .99      | 14.47   | 14.66     | 11.77              | 12.50     | 14.06   | 14.13     | 11.15                | 11.67                | 13.56   | 13.29                | 10.52     | 13.23                | 15.16                | 14.50                | 13.95                |

Table 1: Asympotic critical values of the upper bound of the sup  $LR_{4,T}^*$  test (the entries are quantiles x such that  $P((n_a + m_a)^{-1} \sup LR_4^* \le x) \ge \alpha$ )

|          |         |                |             |         |                |             |         |                |       | $T = 100$ |                |             |         |                |             |              |              |             |
|----------|---------|----------------|-------------|---------|----------------|-------------|---------|----------------|-------|-----------|----------------|-------------|---------|----------------|-------------|--------------|--------------|-------------|
|          |         |                |             |         | $\alpha = 0.2$ |             |         |                |       |           |                |             |         | $\alpha = 0.7$ |             |              |              |             |
|          |         | $\gamma = 0.1$ |             |         | $\gamma = 0.3$ |             |         | $\gamma = 0.5$ |       |           | $\gamma = 0.1$ |             |         | $\gamma=0.3$   |             | $\gamma=0.5$ |              |             |
| $\tau_2$ | $_{LR}$ | $\rm{UDmax}$   | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax          | CUSQ  | $_{LR}$   | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$      | UDmax        | <b>CUSQ</b> |
| $\Omega$ | 0.059   | 0.059          | 0.029       | 0.083   | 0.086          | 0.039       | 0.098   | 0.099          | 0.042 | 0.066     | 0.061          | 0.029       | 0.078   | 0.084          | 0.038       | 0.097        | 0.092        | 0.039       |
| 0.05     | 0.171   | 0.167          | 0.158       | 0.165   | 0.171          | 0.103       | 0.151   | 0.155          | 0.082 | 0.164     | 0.158          | 0.149       | 0.147   | 0.149          | 0.100       | 0.137        | 0.140        | 0.080       |
| 0.1      | 0.396   | 0.373          | 0.354       | 0.307   | 0.307          | 0.232       | 0.224   | 0.228          | 0.136 | 0.383     | 0.367          | 0.356       | 0.300   | 0.297          | 0.232       | 0.218        | 0.224        | 0.138       |
| 0.15     | 0.593   | 0.575          | 0.574       | 0.432   | 0.409          | 0.349       | 0.312   | 0.312          | 0.199 | 0.591     | 0.573          | 0.564       | 0.425   | 0.414          | 0.330       | 0.307        | 0.308        | 0.201       |
| 0.2      | 0.744   | 0.725          | 0.693       | 0.542   | 0.542          | 0.446       | 0.415   | 0.408          | 0.270 | 0.741     | 0.723          | 0.684       | 0.534   | 0.534          | 0.441       | 0.384        | 0.385        | 0.259       |
| 0.3      | 0.902   | 0.888          | 0.851       | 0.741   | 0.738          | 0.626       | 0.535   | 0.540          | 0.370 | 0.897     | 0.887          | 0.856       | 0.724   | 0.724          | 0.624       | 0.534        | 0.534        | 0.376       |
|          |         |                |             |         |                |             |         |                |       | $T=200$   |                |             |         |                |             |              |              |             |
|          |         |                |             |         | $\alpha=0.2$   |             |         |                |       |           |                |             |         | $\alpha = 0.7$ |             |              |              |             |
|          |         | $\gamma=0.1$   |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$   |       |           | $\gamma=0.1$   |             |         | $\gamma=0.3$   |             |              | $\gamma=0.5$ |             |
| $\tau_2$ | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax          | CUSQ  | $_{LR}$   | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$      | UDmax        | <b>CUSQ</b> |
| $\Omega$ | 0.049   | 0.044          | 0.034       | 0.058   | 0.060          | 0.035       | 0.064   | 0.063          | 0.045 | 0.055     | 0.056          | 0.036       | 0.061   | 0.064          | 0.034       | 0.060        | 0.061        | 0.040       |
| 0.05     | 0.315   | 0.311          | 0.335       | 0.217   | 0.202          | 0.203       | 0.129   | 0.123          | 0.110 | 0.311     | 0.303          | 0.332       | 0.208   | 0.202          | 0.205       | 0.122        | 0.115        | 0.100       |
| 0.1      | 0.709   | 0.692          | 0.751       | 0.446   | 0.431          | 0.455       | 0.263   | 0.249          | 0.225 | 0.702     | 0.682          | 0.734       | 0.442   | 0.428          | 0.448       | 0.257        | 0.241        | 0.222       |
| 0.15     | 0.918   | 0.910          | 0.928       | 0.672   | 0.648          | 0.649       | 0.404   | 0.384          | 0.345 | 0.918     | 0.912          | 0.923       | 0.648   | 0.641          | 0.643       | 0.386        | 0.370        | 0.335       |
| 0.2      | 0.980   | 0.977          | 0.979       | 0.780   | 0.764          | 0.764       | 0.510   | 0.497          | 0.456 | 0.981     | 0.980          | 0.981       | 0.777   | 0.766          | 0.763       | 0.496        | 0.489        | 0.441       |
| 0.3      | 0.997   | 0.996          | 0.997       | 0.910   | 0.903          | 0.878       | 0.682   | 0.662          | 0.601 | 0.997     | 0.997          | 0.998       | 0.903   | 0.898          | 0.877       | 0.676        | 0.654        | 0.606       |

Table 2: Size and power of the sup  $LR_{1,T}^*(n_a = 1, \varepsilon)$ ,  $UD \max LR_{1,T}$  and  $CUSQ$  tests in a dynamic model with GARCH(1,1) errors (DGP:  $y_t = c + \alpha y_{t-1} + e_t$ ,  $e_t = u_t \sqrt{h_t}$ , with  $u_t \sim i.i.d. N(0, 1)$ ,  $h_t = \tau_1 + \tau_2 1$   $(t > [0.5T]) + \gamma e_{t-1}^2 + \rho h_{t-1}$ ,  $h_0 = \tau_1/(1 - \gamma - \rho)$ ,  $c = 0.5, \tau_1 = 0.1$ ,  $\rho = 0.2; \, \varepsilon = 0.15$ ).

|                |         |                      | $\tau v$<br>$=$ | $T_2^v$<br>.3T | .6T<br>$=$           |       |       |         |                      | $T^v_{\hskip 0.5pt\text{\it t}}$<br>$=$ | $T_2^v$<br>.2T | .8T<br>$=$           |       |       |
|----------------|---------|----------------------|-----------------|----------------|----------------------|-------|-------|---------|----------------------|-----------------------------------------|----------------|----------------------|-------|-------|
|                |         | $\varepsilon = 0.10$ |                 |                | $\varepsilon = 0.15$ |       |       |         | $\varepsilon = 0.10$ |                                         |                | $\varepsilon = 0.15$ |       |       |
| $\theta$       | $n_a=1$ | $n_a=2$              | UDmax           | $n_a=1$        | $n_a=2$              | UDmax | CUSQ  | $n_a=1$ | $n_a=2$              | UDmax                                   | $n_a=$         | $n_a=2$              | UDmax | CUSQ  |
| $\theta$       | 0.035   | 0.034                | 0.036           | 0.033          | 0.025                | 0.030 | 0.025 | 0.035   | 0.034                | 0.036                                   | 0.033          | 0.025                | 0.030 | 0.025 |
| 0.25           | 0.049   | 0.040                | 0.045           | 0.066          | 0.054                | 0.064 | 0.031 | 0.067   | 0.043                | 0.062                                   | 0.063          | 0.052                | 0.064 | 0.035 |
| 0.5            | 0.111   | 0.120                | 0.103           | 0.117          | 0.159                | 0.121 | 0.059 | 0.158   | 0.138                | 0.139                                   | 0.166          | 0.170                | 0.165 | 0.036 |
| 0.75           | 0.164   | 0.260                | 0.195           | 0.171          | 0.294                | 0.209 | 0.085 | 0.263   | 0.283                | 0.265                                   | 0.276          | 0.360                | 0.287 | 0.044 |
|                | 0.213   | 0.418                | 0.289           | 0.239          | 0.493                | 0.340 | 0.124 | 0.390   | 0.472                | 0.390                                   | 0.428          | 0.520                | 0.442 | 0.061 |
| 1.25           | 0.291   | 0.575                | 0.404           | 0.328          | 0.674                | 0.495 | 0.147 | 0.538   | 0.647                | 0.558                                   | 0.563          | 0.707                | 0.606 | 0.053 |
| 1.5            | 0.356   | 0.703                | 0.513           | 0.405          | 0.778                | 0.613 | 0.197 | 0.647   | 0.780                | 0.676                                   | 0.706          | 0.837                | 0.731 | 0.065 |
| $\overline{2}$ | 0.456   | 0.835                | 0.701           | 0.530          | 0.893                | 0.761 | 0.276 | 0.798   | 0.915                | 0.841                                   | 0.828          | 0.946                | 0.868 | 0.083 |
| 2.5            | 0.621   | 0.935                | 0.848           | 0.686          | 0.959                | 0.882 | 0.375 | 0.907   | 0.971                | 0.931                                   | 0.930          | 0.986                | 0.950 | 0.133 |
| 3              | 0.693   | 0.959                | 0.895           | 0.728          | 0.983                | 0.919 | 0.430 | 0.943   | 0.987                | 0.961                                   | 0.963          | 0.993                | 0.977 | 0.120 |

Table 3: Size and power of the sup  $LR_{1,T}^*(n_a, \varepsilon)$ ,  $UD \max LR_{1,T}$  and  $CUSQ$  tests with normal errors and two variance breaks (DGP:  $y_t = e_t$ ;  $e_t \sim i.i.d. N(0, 1 + \theta 1(T_1^v < t \leq T_2^v), T = 200)$ 

Table 4: Size of the sup  $LR_{2,T}^*(m_a=1,n_a=1,\varepsilon|n=0,m_a=1)$  test with different trimming parameter  $\varepsilon$  in the case of normal errors

|                                |       |       | $T = 100$ |       |       |       | $T=200$ |       |
|--------------------------------|-------|-------|-----------|-------|-------|-------|---------|-------|
| $\mu_2 \backslash \varepsilon$ | 0.1   | 0.15  | 0.2       | 0.25  | 0.1   | 0.15  | 0.2     | 0.25  |
| $\theta$                       | 0.045 | 0.042 | 0.030     | 0.023 | 0.039 | 0.032 | 0.030   | 0.031 |
| 0.1                            | 0.038 | 0.028 | 0.033     | 0.030 | 0.045 | 0.046 | 0.036   | 0.037 |
| 0.25                           | 0.037 | 0.039 | 0.034     | 0.030 | 0.034 | 0.034 | 0.035   | 0.030 |
| 0.5                            | 0.037 | 0.035 | 0.036     | 0.033 | 0.031 | 0.025 | 0.029   | 0.027 |
| 0.75                           | 0.043 | 0.047 | 0.046     | 0.041 | 0.044 | 0.033 | 0.035   | 0.031 |
| 1                              | 0.034 | 0.031 | 0.031     | 0.031 | 0.034 | 0.027 | 0.020   | 0.017 |
| $\overline{2}$                 | 0.030 | 0.023 | 0.028     | 0.028 | 0.041 | 0.029 | 0.028   | 0.029 |
| 4                              | 0.034 | 0.032 | 0.031     | 0.027 | 0.034 | 0.026 | 0.024   | 0.026 |
| 10                             | 0.038 | 0.033 | 0.032     | 0.031 | 0.038 | 0.033 | 0.025   | 0.022 |
| 20                             | 0.031 | 0.030 | 0.035     | 0.027 | 0.040 | 0.034 | 0.023   | 0.021 |

(DGP:  $y_t = \mu_1 + \mu_2 1(t > [0.5T]) + e_t, e_t \sim i.i.d. N(0, 1), \mu_1 = 0).$ 

Table 5: Power of the sup  $LR_{2,T}^*(m_a=1,n_a=1,\epsilon|n=0,m_a=1)$  test with different trimming parameter  $\varepsilon$  in the case of normal errors

| (DGP: $y_t = \mu_1 + \mu_2 1(t > [0.5T]) + e_t, e_t \sim i.i.d. N(0, 1 + \theta 1(t > [0.25T])).$ |  |  |  |
|---------------------------------------------------------------------------------------------------|--|--|--|
|---------------------------------------------------------------------------------------------------|--|--|--|



Table 6: Size of the sup  $LR_{3,T}^*(m_a=1,n_a=1,\varepsilon|m=0,n_a=1)$  test with different trimming parameter  $\varepsilon$  in the case of normal errors

|                                 |       |       | $T = 100$ |       |       |       | $T = 200$ |       |
|---------------------------------|-------|-------|-----------|-------|-------|-------|-----------|-------|
| $\theta \backslash \varepsilon$ | 0.1   | 0.15  | 0.2       | 0.25  | 0.1   | 0.15  | 0.2       | 0.25  |
| $\overline{0}$                  | 0.043 | 0.053 | 0.051     | 0.031 | 0.042 | 0.041 | 0.039     | 0.036 |
| 0.1                             | 0.050 | 0.053 | 0.033     | 0.037 | 0.027 | 0.035 | 0.033     | 0.026 |
| 0.25                            | 0.042 | 0.042 | 0.042     | 0.023 | 0.034 | 0.044 | 0.039     | 0.040 |
| 0.5                             | 0.044 | 0.024 | 0.038     | 0.038 | 0.036 | 0.035 | 0.035     | 0.028 |
| 0.75                            | 0.039 | 0.039 | 0.037     | 0.033 | 0.043 | 0.038 | 0.040     | 0.034 |
| 1                               | 0.033 | 0.043 | 0.045     | 0.027 | 0.029 | 0.044 | 0.042     | 0.029 |
| $\overline{2}$                  | 0.046 | 0.045 | 0.039     | 0.022 | 0.038 | 0.032 | 0.029     | 0.013 |
| 4                               | 0.030 | 0.054 | 0.035     | 0.020 | 0.038 | 0.032 | 0.030     | 0.014 |
| 10                              | 0.034 | 0.043 | 0.030     | 0.027 | 0.037 | 0.035 | 0.031     | 0.015 |
| 20                              | 0.046 | 0.039 | 0.027     | 0.027 | 0.032 | 0.039 | 0.030     | 0.012 |

(DGP:  $y_t = \mu_1 + e_t$ ,  $e_t \sim i.i.d. N(0, 1 + \theta 1(t > [0.5T]), \mu_1 = 0)$ .

(DGP:  $y_t = c + \alpha y_{t-1} + e_t, e_t \sim i.i.d. N(0, 1 + \theta 1(t > [0.5T]), c = 0, \alpha = 0.5).$ 

|                           |       |       | $T = 100$ |       |       |       | $T = 200$ |       |
|---------------------------|-------|-------|-----------|-------|-------|-------|-----------|-------|
| $\theta$<br>$\varepsilon$ | 0.1   | 0.15  | 0.2       | 0.25  | 0.1   | 0.15  | 0.2       | 0.25  |
| $\Omega$                  | 0.069 | 0.066 | 0.066     | 0.055 | 0.049 | 0.043 | 0.050     | 0.042 |
| 0.1                       | 0.057 | 0.060 | 0.062     | 0.056 | 0.044 | 0.047 | 0.048     | 0.039 |
| 0.25                      | 0.057 | 0.055 | 0.055     | 0.049 | 0.039 | 0.044 | 0.053     | 0.035 |
| 0.5                       | 0.050 | 0.058 | 0.048     | 0.043 | 0.051 | 0.044 | 0.050     | 0.035 |
| 0.75                      | 0.055 | 0.055 | 0.057     | 0.046 | 0.043 | 0.036 | 0.036     | 0.034 |
| 1                         | 0.065 | 0.055 | 0.051     | 0.042 | 0.044 | 0.053 | 0.045     | 0.028 |
| $\overline{2}$            | 0.047 | 0.066 | 0.062     | 0.045 | 0.043 | 0.040 | 0.040     | 0.027 |
| $\overline{4}$            | 0.052 | 0.053 | 0.039     | 0.025 | 0.030 | 0.051 | 0.031     | 0.017 |
| 10                        | 0.050 | 0.063 | 0.050     | 0.026 | 0.043 | 0.038 | 0.034     | 0.018 |
| 20                        | 0.040 | 0.065 | 0.059     | 0.024 | 0.048 | 0.038 | 0.034     | 0.025 |

Table 7: Power of the sup  $LR_{3,T}^*(m_a=1,n_a=1,\epsilon|m=0,n_a=1)$  test with different trimming parameter  $\varepsilon$  in the case of normal errors

(DGP:  $y_t = \mu_1 + \mu_2 1(t > [0.25T]) + e_t, e_t \sim i.i.d. N(0, 1 + \theta 1(t > [0.5T]), \mu_1 = 0).$ 



|          |                 |                     |                               | $T = 100$ |                 |                     |                    |       |
|----------|-----------------|---------------------|-------------------------------|-----------|-----------------|---------------------|--------------------|-------|
|          |                 | $\varepsilon = 0.1$ |                               |           |                 | $\varepsilon = 0.2$ |                    |       |
| $\gamma$ | $m_a = n_a = 1$ | $m_a=1, n_a=2$      | $m_a=2, n_a=1$                | UDmax     | $m_a = n_a = 1$ | $m_a=1, n_a=2$      | $m_a = 2, n_a = 1$ | UDmax |
| 0.1      | 0.044           | 0.046               | 0.047                         | 0.050     | 0.037           | 0.040               | 0.035              | 0.046 |
| 0.3      | 0.048           | 0.065               | 0.051                         | 0.073     | 0.041           | 0.052               | 0.042              | 0.055 |
| $0.5\,$  | 0.072           | 0.083               | 0.075                         | 0.085     | 0.065           | 0.069               | 0.059              | 0.061 |
|          |                 |                     |                               | $T = 200$ |                 |                     |                    |       |
|          |                 | $\varepsilon = 0.1$ |                               |           |                 | $\varepsilon = 0.2$ |                    |       |
|          | $m_a = n_a = 1$ |                     | $m_a=1, n_a=2$ $m_a=2, n_a=1$ | UDmax     | $m_a = n_a = 1$ | $m_a=1, n_a=2$      | $m_a = 2, n_a = 1$ | UDmax |
| 0.1      | 0.034           | 0.035               | 0.034                         | 0.041     | 0.036           | 0.034               | 0.037              | 0.037 |
| 0.3      | 0.032           | 0.041               | 0.035                         | 0.043     | 0.036           | 0.037               | 0.031              | 0.040 |
| $0.5\,$  | 0.039           | 0.044               | 0.041                         | 0.051     | 0.040           | 0.040               | 0.024              | 0.040 |

Table 8: Size of the sup  $LR_{4,T}^*(m_a, n_a)$  and  $UD$  max  $LR_{4,T}$  tests in the case of  $GARCH(1,1)$  errors (DGP:  $y_t = e_t$ ,  $e_t = u_t \sqrt{h_t}$ , with  $u_t \sim i.i.d. N(0, 1)$ ,  $h_t = \tau_1 + \gamma e_{t-1}^2 + \rho h_{t-1}$ ,  $\tau_1 = 1$ ,  $\rho = 0.2$ ,  $h_0 = \tau_1/(1 - \gamma - \rho)$ )

Table 9: Power of the sup  $LR_{4,T}^*(m_a, n_a)$  and  $UD$  max  $LR_{4,T}$  tests for DGPs with one break in coefficients and two breaks in

variance





Table 10: Power of the sup  $LR_{4,T}^*(m_a, n_a)$  and  $UD$  max  $LR_{4,T}$  tests for DGPs with two breaks in coefficients and one break in

variance

(DGP:  $y_t = \mu_1 + \mu_2 1(T_1^c < t \le T_2^c) + e_t, e_t \sim i.i.d. N(0, 1 + \theta 1(t > T^v)), \mu_1 = 0, \mu_2 = \theta, \varepsilon = 0.1).$ 



|                      | $m=n=0$ |                                              | $m = n = 1$                |                                         |                      |            | $m = n = 1$                  |                                                                   |
|----------------------|---------|----------------------------------------------|----------------------------|-----------------------------------------|----------------------|------------|------------------------------|-------------------------------------------------------------------|
|                      |         |                                              | $T^c = [.5T], T^v = [.7T]$ |                                         |                      |            | $T^c = [.25T], T^v = [.75T]$ |                                                                   |
|                      |         | $\mu_2 = \theta = 1$                         |                            | $\mu_2=1, \theta=3$ $\mu_2=1, \theta=5$ | $\mu_2 = \theta = 2$ |            |                              | $\mu_2 = \theta = 1$ $\mu_2 = \theta = 2$ $\mu_2 = 1, \theta = 3$ |
| $prob(m = 0, n = 0)$ | 0.906   | 0.000                                        | 0.000                      | 0.000                                   | 0.000                | 0.000      | 0.000                        | 0.000                                                             |
| $prob(m=0,n=1)$      | 0.042   | 0.000                                        | 0.002                      | 0.003                                   | 0.000                | 0.000      | 0.000                        | 0.000                                                             |
| $prob(m = 0, n = 2)$ | 0.000   | 0.000                                        | 0.000                      | 0.000                                   | 0.000                | 0.000      | 0.000                        | 0.000                                                             |
| $prob(m = 1, n = 0)$ | 0.043   | 0.286                                        | 0.001                      | 0.000                                   | 0.023                | 0.343      | 0.028                        | 0.004                                                             |
| $prob(m=1, n=1)$     | 0.007   | 0.680                                        | 0.954                      | 0.956                                   | 0.936                | 0.628      | 0.937                        | 0.963                                                             |
| $prob(m = 1, n = 2)$ | 0.000   | 0.009                                        | 0.002                      | 0.016                                   | 0.019                | 0.007      | 0.011                        | 0.010                                                             |
| $prob(m=2, n=0)$     | 0.002   | 0.008                                        | 0.000                      | 0.000                                   | 0.000                | 0.010      | 0.001                        | 0.000                                                             |
| $prob(m = 2, n = 1)$ | 0.000   | 0.016                                        | 0.023                      | 0.025                                   | 0.022                | 0.011      | 0.020                        | 0.021                                                             |
| $prob(m=2, n=2)$     | 0.000   | 0.001                                        | 0.000                      | 0.000                                   | 0.000                | 0.001      | 0.003                        | 0.002                                                             |
|                      |         | $m = n = 1$                                  |                            | $m = 1, n = 0$                          |                      |            | $m = 0, n = 1$               |                                                                   |
|                      |         | $T^c = T^v = [.5T]$                          |                            | $T^c = [.5T]$                           |                      |            | $T^v = [.5T]$                |                                                                   |
|                      |         | $\mu_2 = \theta = 1$ $\mu_2 = 1, \theta = 3$ | $\mu_2 = 1$                | $\mu_2 = 2$                             | $\mu_2 = 3$          | $\theta=1$ | $\theta = 2$                 | $\theta = 3$                                                      |
| $prob(m = 0, n = 0)$ | 0.000   | 0.000                                        | 0.000                      | 0.000                                   | 0.000                | 0.234      | 0.005                        | 0.000                                                             |
| $prob(m = 0, n = 1)$ | 0.003   | 0.029                                        | 0.000                      | 0.000                                   | 0.000                | 0.706      | 0.924                        | 0.924                                                             |
| $prob(m = 0, n = 2)$ | 0.000   | 0.002                                        | 0.000                      | 0.000                                   | 0.000                | 0.013      | 0.027                        | 0.031                                                             |
| $prob(m = 1, n = 0)$ | 0.240   | 0.000                                        | 0.931                      | 0.935                                   | 0.934                | 0.009      | 0.000                        | 0.000                                                             |
| $prob(m = 1, n = 1)$ | 0.729   | 0.917                                        | 0.039                      | 0.038                                   | 0.038                | 0.035      | 0.040                        | 0.041                                                             |
| $prob(m = 1, n = 2)$ | 0.008   | 0.034                                        | 0.000                      | 0.000                                   | 0.000                | 0.002      | 0.003                        | 0.003                                                             |
| $prob(m = 2, n = 0)$ | 0.005   | 0.000                                        | 0.028                      | 0.023                                   | 0.024                | 0.001      | 0.000                        | 0.000                                                             |
| $prob(m = 2, n = 1)$ | 0.014   | 0.017                                        | 0.002                      | 0.004                                   | 0.004                | 0.000      | 0.001                        | 0.001                                                             |
| $prob(m = 2, n = 2)$ | 0.001   | 0.001                                        | 0.000                      | 0.000                                   | 0.000                | 0.000      | 0.000                        | 0.000                                                             |

Table11: Finite sample performance of the specific to general sequential procedure to select the number of breaks in coefficients and variance (DGP:  $y_t = \mu_1 + \mu_2 1(t > T^c) + e_t, e_t \sim i.i.d. N(0, 1 + \theta 1(t > T^v)), \varepsilon = 0.15, T = 200).$ 

Note:  $prob(m = j, n = i)$  represents the probability of choosing j breaks in mean and i breaks in variance. The upper bounds for

the coefficients and the variance breaks are set to  $M = 2$  and  $N = 2$ .

Table 12: Empirical results for the inflation rate

|         |                          | $supLR_{4,T}$ |            | $UD$ max $LR_{4,T}$ |
|---------|--------------------------|---------------|------------|---------------------|
|         | $m_a=1$                  | $m_a=2$       | $m_a=3$    | $M = 3, N = 3$      |
| $n_a=1$ | $12.18**$                | - 10.78       | 9.58       | $15.91***$          |
|         | $n_a = 2 \quad 15.27***$ | $13.33***$    | $11.81**$  |                     |
|         | $n_a = 3$ 15.91***       | $15.06***$    | $14.03***$ |                     |

a) Tests for structural changes in mean and/or variance

|         |      | $supLR_{3,T}$                      |       | $UD$ max $LR_{3T}$ |       | $supSeq_{9,T}$                |      | break dates |
|---------|------|------------------------------------|-------|--------------------|-------|-------------------------------|------|-------------|
|         |      | $m_a = 1$ $m_a = 2$ $m_a = 3$      |       | $M=3$              |       | $m_a = 1$ $m_a = 2$ $m_a = 3$ |      |             |
|         |      | $n_a = 0$ 22.50** 19.42*** 15.93** |       | $22.50**$          | 10.17 | 9.38                          | 4.59 | 1982:1      |
| $n_a=1$ | 8.54 | 7.57                               | 7.04  | 8.54               | 6.19  | 6.99                          | 4.59 |             |
| $n_a=2$ | 5.72 | 6.62                               | 7.37  | 7.37               | 2.79  | 4.96                          | 3.10 |             |
| $n_a=3$ | 9.90 | 9.72                               | 10.03 | 10.03              | 2.74  | 4.80                          | 4.74 |             |

b) Tests for structural changes in mean

c) Tests for structural changes in variance

|         |            | $supLR_{2,T}$ |            | $UD$ max $LR_{2,T}$ |            | $supSeq_{10,T}$ |         |        | break dates |        |
|---------|------------|---------------|------------|---------------------|------------|-----------------|---------|--------|-------------|--------|
|         | $n_a=1$    | $n_a=2$       | $n_a=3$    | $N=2$               | $n_a=1$    | $n_a=2$         | $n_a=3$ |        |             |        |
| $m_a=0$ | $16.00***$ | $21.30***$    | $16.49***$ | $21.30***$          | $18.69***$ | $13.05***$      | 5.21    | 1971:3 | 1983:2      | 2006:3 |
| $m_a=1$ | $9.37**$   | $13.77***$    | $14.00***$ | $14.00***$          | $18.97***$ | $16.21***$      | 5.54    | 1971:3 | 1982:1      | 2006:3 |
| $m_a=2$ | 3.33       | $8.26**$      | $11.22***$ | $11.22**$           | $18.97***$ | $16.79***$      | 6.73    |        |             |        |
| $m_a=3$ | 1.69       | $9.14**$      | $11.90***$ | $11.90**$           | $19.93***$ | $16.79***$      | 7.18    |        |             |        |

Notes: \*,\*\* and \*\*\* indicate significance at the  $10\%$ ,  $5\%$  and  $1\%$  levels, respectively.

Table 13: Empirical results for the real interest rate

| a) Tests for structural changes in mean and/or variance |               |  |                     |  |
|---------------------------------------------------------|---------------|--|---------------------|--|
|                                                         | $supLR_{4,T}$ |  | $UD$ max $LR_{4,T}$ |  |







Notes: \*,\*\* and \*\*\* indicate significance at the  $10\%$ ,  $5\%$  and  $1\%$  levels, respectively.



Figure 1: Annual change of the quarterly US inflation rate: 1959:1-2018:4



Figure 2: US ex-post real interest rate: 1961:1-1986:3

# **Testing jointly for structural changes in the error variance and coefficients of** a linear regression model" by Pierre Perron, Yohei Yamamoto and Jing Zhou Supplementary Material

**A: Proof of the statement in equation (7):** Consider an AR(1) model  $y_t = \beta y_{t-1} + u_t$ in which the variance of  $u_t$  has n breaks and  $|\beta|$  < 1. Consider the variance adjusted series  $y_t^{\sigma} = \beta y_{t-1}^{\sigma} + u_t^{\sigma}$  where  $u_t^{\sigma} = u_t / \sigma_{i0}$  and  $y_t^* = \sigma_0 y_t^{\sigma}$  with  $\sigma_0 = \sigma_{10}$ , without loss of generality. Then,

$$
T^{-1} \sum_{t=1}^{[Ts]} z_t z_t' = T^{-1} \sum_{t=1}^{[Ts]} y_{t-1}^2
$$
  
= 
$$
T^{-1} \sum_{t=1}^{[Ts]} y_{t-1}^{*2} + 2T^{-1} \sum_{t=1}^{[Ts]} y_{t-1}^{*}(y_{t-1} - y_{t-1}^{*}) + T^{-1} \sum_{t=1}^{[Ts]} (y_{t-1} - y_{t-1}^{*})^2.
$$

We here show that the second and the third terms are  $O_p(v_T)$  and  $O_p(v_T^2)$  where  $v_T \to 0$ uniformly in s. For notational simplicity, we show these results for  $y_t$  and  $y_t^*$  instead of  $y_{t-1}$ and  $y_{t-1}^*$  as the difference is negligible. First, for  $[T\lambda_{k-1}^{v0}] < t \leq [T\lambda_k^{v0}]$ :

$$
y_t = \sum_{\tau=0}^{t-1} \beta^{\tau} u_{t-\tau} = \sum_{l=1}^{k} (\sigma_{l,0}/\sigma_0) v_{l,t}
$$
  

$$
y_t^* = \sum_{\tau=0}^{t-1} \beta^{\tau} u_{t-\tau}^* = \sum_{l=1}^{k} v_{l,t}
$$

where  $v_{l,t} = \sigma_0 \sum_{\tau=|T\lambda_l^{v0}|}^{[T\lambda_l^{v0}]}$  $\int_{\tau=[T\lambda_{l-1}^{v0}]+1}^{T\lambda_{l}^{v0}} \beta^{\tau} u_{t-\tau}^{\sigma}$  for  $l < k$  and  $v_{k,t} = \sigma_0 \sum_{\tau=[T\lambda_{k-1}^{v0}]+1}^{t} \beta^{\tau} u_{t-\tau}^{\sigma}$ . These yield

$$
y_t^*(y_t - y_t^*) = \sum_{l_1=1}^k \sum_{l_2=1}^k \left( \frac{\sigma_{l_2,0} - \sigma_0}{\sigma_0} \right) v_{l_1,t} v_{l_2,t}
$$
  

$$
(y_t - y_t^*)^2 = \sum_{l_1=1}^k \sum_{l_2=1}^k \left( \frac{\sigma_{l_1,0} - \sigma_0}{\sigma_0} \right) \left( \frac{\sigma_{l_2,0} - \sigma_0}{\sigma_0} \right) v_{l_1,t} v_{l_2,t}
$$

so that for any  $l < k$ 

$$
T^{-1} \sum_{t=[T\lambda_{l-1}^{v0}]_{+1}}^{[T\lambda_{l}^{v0}]} y_{t}^{*}(y_{t}-y_{t}^{*}) = \sum_{l_{1}=1}^{k} \sum_{l_{2}=1}^{k} \underbrace{\left(\frac{\sigma_{l_{2},0}-\sigma_{0}}{\sigma_{0}}\right)}_{=O_{p}(v_{T})} \underbrace{\left(T^{-1} \sum_{t=[T\lambda_{l-1}^{v0}]_{+1}}^{[T\lambda_{l}^{v0}]} v_{l_{1},t}v_{l_{2},t}\right)}_{=O_{p}(1)} = S_{1,l} = O_{p}(v_{T})
$$

and

$$
T^{-1} \sum_{t=[T\lambda_t^{v0}]}^{[T\lambda_t^{v0}]} [y_t - y_t^* ]^2
$$
  
=  $\sum_{l_1=1}^k \sum_{l_2=1}^k \underbrace{\left(\frac{\sigma_{l_1,0} - \sigma_0}{\sigma_0}\right) \left(\frac{\sigma_{l_2,0} - \sigma_0}{\sigma_0}\right)}_{=O_p(v_T^2)} \underbrace{\left(T^{-1} \sum_{t=[T\lambda_t^{v0}]}^{[T\lambda_t^{v0}]} [y_t, t] \right)}_{=O_p(1)}$   
=  $S_{2,l} = O_p(v_T^2).$ 

For any  $l < k$ ,  $T^{-1} \sum_{t=[T_1]}^{[T\lambda_l^{v0}]}$  $u_{t=[T\lambda_{l-1}^{0}]_{+1}}^{(1)}v_{l_1,t}v_{l_2,t} = O_p(1)$  because  $v_{l_1,t}$  and  $v_{l_2,t}$  are covariance stationary series for any  $l_1$  and  $l_2$ . We can show that the same property holds uniformly in s for  $l = k$  with a minor change of notation. Therefore, uniformly in s,

$$
2T^{-1} \sum_{t=1}^{[Ts]} y_{t-1}^*(y_{t-1} - y_{t-1}^*) = 2 \sum_{l=1}^k S_{1,l} = O_p(v_T)
$$
  

$$
T^{-1} \sum_{t=1}^{[Ts]} (y_{t-1} - y_{t-1}^*)^2 = \sum_{l=1}^k S_{2,l} = O_p(v_T^2)
$$

## B: The choice of  $\hat{\psi}$ .

To address what specific version of the correction factor to use, we consider the size and power of the sup  $LR_{4,T}^*$  test under the following simple DGP with  $\text{GARCH}(1,1)$  errors:

$$
y_t = \mu_1 + \mu_2 1(t > [.25T]) + e_t, \ e_t = u_t \sqrt{h_t}, \ u_t \sim i.i.d. \ N(0, 1),
$$
  

$$
h_t = \tau_1 + \tau_2 1 \ (t > [.75T]) + \gamma e_{t-1}^2 + \rho h_{t-1},
$$

with  $h_0 = \tau_1/(1 - \gamma - \rho)$  and  $\tau_1 = 1$ . The sample size is  $T = 100$  and  $\varepsilon = 0.20$ . Under  $H_0, \mu_2 = \tau_2 = 0$ , while under  $H_1$ , one break in mean and one break in variance are allowed  $(\mu_1 = 0$  under both  $H_0$  and  $H_1$ ). We consider four versions for the estimate  $\hat{\psi}$  as defined by (8): 1)  $\hat{\psi} = 2$ , i.e., no dependence in  $\eta_t$  is accounted for (labelled "no correction"), 2) using the residuals under  $H_1$  to construct the bandwidth  $b_T$  and to estimate the autocovariances of  $\eta_t$  (labelled "alternative"); 3) using the residuals under  $H_0$  instead (labelled "null"); and, as suggested by Kejriwal (2009), 4) using a hybrid method that constructs the bandwidth  $b_T$ using the residuals under  $H_1$  but uses the residuals under  $H_0$  to estimate the autocovariances of  $\eta_t$  (labelled "hybrid"). Here and elsewhere, we use 1,000 replications. The reason to include the "no correction" option is to assess which cases (i.e., which combinations of values for  $\rho$  and  $\gamma$ ) leads to distortions when serial dependence is not accounted for and how well the various suggested options for corrections improve the size.

The results for the exact size of the test (5% nominal size) are presented in Table S.1. The critical values are those of the bound of the limit distribution, hence, a conservative size is expected. The results show that the methods "no correction" and "alternative" exhibit substantial size distortions, that increase with  $\gamma$  and  $\rho$ , which indicates the extent of the correlation in the squared residuals. The method "null", on the other hand, shows conservative size distortions as expected. The hybrid method shows less conservative size distortions when  $\gamma$  and  $\rho$  are not very large. These results dictate our choice of  $\rho = 0.2$  and  $\gamma = 0.1,..., 0.5$  in the subsequent simulations reported in the text since they imply tests that require a correction and using either the "null" and "hybrid" methods yields test with good finite samples sizes. The results for power are presented in Table S.2. We only consider the methods "null" and "hybrid" given the high size distortions of the methods "no correction" and "alternative". The results show that substantial power gains can be achieved using the "hybrid" method as opposed to the "null" method, especially if the GARCH effect is pronounced. Hence, we recommend using the "hybrid" method and all results reported in the main text are based on it.

## C: Should we always correct?

We address the issue of whether it is costly in terms of power to use a correction valid under more general conditions than needed. To that effect we first consider the power of the  $\sup LR^*_{4,T}$  test under the following DGP with normal errors:

$$
y_t = \mu_1 + \mu_2 1(t > T_1^c) + e_t
$$
,  $e_t \sim i.i.d.$   $N(0, 1 + \theta 1(t > T_1^v)),$ 

where we set  $\mu_1 = 0$  and  $\mu_2 = \theta$ . We consider three scenarios for the timing of the breaks: a common break in mean and variance at  $T_1^c = T_1^v = [.5T]$ , and disjoint breaks at  $\{T_1^c = [.3T]$ ,  $T_1^v = [.6T]$ } and  $\{T_1^c = [.6T]$ ,  $T_1^v = [.3T]$ }. We use  $T = 100$ , 200 and the power, for 5% nominal size tests, is evaluated at values of  $\theta$  ranging from 0.25 to 1.5 with  $\varepsilon = 0.15$ . Three versions of the sup  $LR^*_{4,T}$  tests are evaluated: 1) with a full correction based on  $\hat{\psi}$  using the hybrid method (labelled "full"); 2) a correction valid only for *i.i.d.* errors, though not necessarily normal, given by  $\hat{\psi} = \hat{\mu}_4 / \hat{\sigma}^4 - 1$ , where  $\hat{\sigma}^2 = T^{-1} \sum_{t=1}^T \hat{u}_t^2$  and  $\hat{\mu}_4 = T^{-1} \sum_{t=1}^T \hat{u}_t^4$ with  $\hat{u}_t$  the residuals under  $H_0$  (labelled "i.i.d."); 3) no correction, i.e., using  $\hat{\psi} = 2$ , which is the appropriate value with normal errors (labelled  $\text{``NC''}$ ). The results are presented in Table S.3. They show that the power is basically the same using any of the three methods. Hence, there is no cost in using a full correction and we use it throughout for the results reported in the main text.

## D: Local asymptotic power functions.

We consider model (1) focusing on the case of  $n = m = 1$  with the following assumptions. •Assumption L1: Assumptions A1 and A3 hold with  $\sigma_{20} - \sigma_{10} = \sigma^* / \sqrt{T}$ . We also have  $T^{-1/2} \sum_{t=1}^{[Ts]} [(u_t^{\sigma})^2 - 1] \Rightarrow \psi W(s)$  with  $\psi = \lim_{T \to \infty} var(T^{-1/2} \sum_{t=1}^{T} [(u_t^{\sigma})^2 - 1])$  and  $T^{-1} \sum_{t=1}^{[Ts]} (u_t^{\sigma})^2 \stackrel{p}{\rightarrow} s$  uniformly in  $s \in [0,1]$ .

• Assumption L2: Assumptions A2 and A3 hold with  $\delta_2^0 - \delta_1^0 = \delta^* / \sqrt{T}$ .

In the following, we derive the local asymptotic power of the sup  $LR_{2,T}$  and sup  $LR_{3,T}$ 

tests, allowing for nuisance breaks, i.e., we consider the tests sup  $LR_{2,T} (n = 1, m = 1, \varepsilon | n =$  $(0, m = 1)$  and sup  $LR_{3,T}$   $(m = 1, n = 1, \varepsilon | m = 0, n = 1)$ . The results are also valid if the nuisance breaks are not accounted for, in which case the tests reduce to the sup  $LR_{1,T}$  and the sup  $LR_T$  test (Andrews, 1993), respectively. Without loss of generality, we denote  $\sigma_{20}$ by  $\sigma_0$  and  $\delta_2^0$  by  $\delta^0$ .

Lemma S.1 Under Assumption L1 or Assumption L1 with Assumption A3 allowing for  $\delta_1^* = 0,$ 

$$
\sup LR_{2,T}(n=1,m=1,\varepsilon|n=0,m=1) \Rightarrow \sup_{\lambda^v \in \Lambda_{v,\varepsilon}^c} (\psi/2)[J(\lambda^v)]^2 \tag{S.1}
$$

where

$$
J(\lambda^v) = \frac{\lambda^v W(1) - W(\lambda^v)}{\sqrt{\lambda^v (1 - \lambda^v)}} + \frac{2\sigma^* \sigma_0}{\sqrt{\psi}} b(\lambda^v)
$$

$$
b(\lambda^v) = \begin{cases} \lambda^{v0} \sqrt{\frac{1 - \lambda^v}{\lambda^v}} & \text{if } \lambda^{v0} \le \lambda^v \\ (1 - \lambda^{v0}) \sqrt{\frac{\lambda^v}{1 - \lambda^v}} & \text{if } \lambda^{v0} > \lambda^v \end{cases}
$$

In particular if  $\delta_1^* = 0$ , which is imposed in the construction of the test,

$$
\sup LR_{1,T}(n=1,\varepsilon) \Rightarrow \sup_{\lambda^v \in \Lambda_{v,\varepsilon}} (\psi/2)[J(\lambda^v)]^2. \tag{S.2}
$$

:

Lemma S.2 Under Assumption L2 or Assumption L2 with Assumption A3 allowing for  $\sigma_{10}^* = 0,$ 

$$
\sup LR_{3,T}(m=1,n=1,\varepsilon|m=0,n=1) \Rightarrow \sup_{\lambda^c \in \Lambda_{c,\varepsilon}^v} (\lambda^c)' J(\lambda^c) \tag{S.3}
$$

where

$$
J(\lambda^c) = \frac{\lambda^c W_q(1) - W_q(\lambda^c)}{\sqrt{\lambda^c (1 - \lambda^c)}} + Q^{1/2} \delta^* b(\lambda^c)
$$

$$
b(\lambda^c) = \begin{cases} \lambda^{c0} \sqrt{\frac{1 - \lambda^c}{\lambda^c}} & \text{if } \lambda^{c0} \le \lambda^c \\ (1 - \lambda^{c0}) \sqrt{\frac{\lambda^c}{1 - \lambda^c}} & \text{if } \lambda^{c0} > \lambda^c \end{cases}
$$

In particular, if  $\sigma_{10}^* = 0$ , which is imposed in the construction of the test,

$$
\sup LR_T(m=1,\varepsilon) \Rightarrow \sup_{\lambda^c \in \Lambda_{c,\varepsilon}} J(\lambda^c)' J(\lambda^c). \tag{S.4}
$$

Importantly, the result in  $(S.4)$  is the same as Theorem  $4(c)$  in Andrews  $(1993)$ , if we set (in his notation)  $\eta(s) = \delta^* I(s \leq \lambda^{c0}), S = \sigma_0^2(T^{-1}Z'Z)$  and  $M = (T^{-1}Z'Z)$ . For comparisons, we also consider the cumulative sum of squares  $(CUSQ)$  test when there are no nuisance coefficient breaks. With  $\hat{u}_t$  the OLS regression residuals, the CUSQ test is:

$$
CUSQ = \frac{\max\limits_{1 \le T^v \le T} \left| T^{-1/2} \left[ \sum_{t=1}^{T^v} \hat{u}_t^2 - \frac{T^v}{T} \sum_{t=1}^T \hat{u}_t^2 \right] \right|}{T^{-1} \sum_{t=1}^T \hat{u}_t^2}
$$

From Deng and Perron (2008)

$$
CUSQ = \sup_{\lambda^v \in [0,1]} \left| T^{-1/2} \left[ \sum_{t=1}^{[T\lambda^v]} \left( \frac{u_t^2}{\sigma_0^2} - 1 \right) - \frac{[T\lambda^v]}{T} \sum_{t=1}^T \left( \frac{u_t^2}{\sigma_0^2} - 1 \right) \right] \right| + o_p(1)
$$

and we obtain the following result.

**Lemma S.3** Under Assumption L1, if there is no structural change in the coefficients, then

$$
CUSQ \Rightarrow \sqrt{\psi} \sup_{\lambda^v \in [0,1]} \left| W(\lambda^v) - \lambda^v W(1) + \frac{2\sigma^*\sigma_0}{\sqrt{\psi}} \mu(\lambda^v) \right| \tag{S.5}
$$

where

$$
\mu(\lambda^v) = \begin{cases} \lambda^{v0} (1 - \lambda^v) & \text{if } \lambda^{v0} \leq \lambda^v \\ \lambda^v (1 - \lambda^{v0}) & \text{if } \lambda^{v0} > \lambda^v \end{cases}.
$$

Lemma S.1 suggests that the local asymptotic power of the sup  $LR_{2,T}$  test coincides with that of the sup  $LR_{1,T}$  test except for the fact that the set of permissible break dates  $\Lambda_{v,\varepsilon}^c$ becomes smaller than  $\Lambda_{v,\varepsilon}$ . Lemma S.2 suggests that the local asymptotic power of the  $\sup LR_{3,T}$  test coincides with that of the standard sup  $LR_T$  test derived in Theorem 4 of Andrews (1993) except that the set of permissible break dates  $\Lambda_{c,\varepsilon}^v$  is in general smaller than  $\Lambda_{c,\varepsilon}$ . Hence, when testing for changes in variance allowing for changes in coefficients, we have the same local asymptotic power function as when testing for changes in variance when no change in coefficient is present and none is allowed for. Therefore, we incur no loss in local asymptotic power by adopting our more general approach.

We next compare the local asymptotic power functions of the sup  $LR_{1,T}$  test given by  $(S.2)$ , the sup  $LR_{2,T}$  test given by  $(S.1)$  and the  $CUSQ$  test given by  $(S.5)$  via Monte Carlo simulations. To this end, the Wiener processes  $W(\cdot)$  are approximated by the partial sums of i.i.d. standard normal random variables with 5,000 discrete steps. The power functions of 5% nominal size tests are computed based on 10,000 Monte Carlo replications with the value of  $\sigma^*$  ranging from 0 to 10. We also set the trimming  $\varepsilon = 0.15$ ,  $\psi = 2$  and  $\sigma_0 = 1$ , although these particular choices do not qualitatively affect the results. We use the critical values of 8.58 for the sup  $LR_{1,T}$  and sup  $LR_{2,T}$  tests and  $\sqrt{2} \times 1.358$  for the  $CUSQ$  test.

Figure S.1 shows the asymptotic local power functions of the sup  $LR_{1,T}$  test and the CUSQ test when a break in variance occurs at  $\lambda^{v0} = 0.3$ , 0.5 and 0.7 and no break occurs in the coefficients. They show the local asymptotic power functions to be almost identical. Figure S.2 presents the local asymptotic power functions of the sup  $LR_{2,T}$  test when it accounts for a coefficient break at  $\lambda^{c0} = 0.3, 0.5$  or 0.7. It also shows, the local asymptotic power functions of the  $CUSQ$  test under the (correct) assumption of no break in the coefficients. Hence, this simulation design gives an advantage to the CUSQ test and some power loss for the sup  $LR_{2,T}$  test might be expected. Indeed, the power of the sup  $LR_{2,T}$  test is slightly lower when the variance and the coefficient break dates coincide. This is because the permissible break dates around the true break date are not considered due to the concurrent nuisance break. However, the power loss of the sup  $LR_{2,T}$  test is very minor even though the sup  $LR_{2,T}$  test allows for a coefficient break. The power functions of both tests are almost identical when the two breaks are far apart. i.e., the case of  $(\lambda^{v0}, \lambda^{c0}) = (0.3, 0.7)$ and  $(0.7, 0.3)$ .

**Proof of Lemma S.1** The sup  $LR_{2,T}$  test is:

$$
\sup LR_{2,T} = 2[\log \hat{L}_T(\widetilde{T}^c; \widetilde{T}^v) - \log \widetilde{L}_T(\hat{T}^c)]
$$

$$
= T \log \widetilde{\sigma}^2 - (T - \widetilde{T}^v) \log \hat{\sigma}_2^2 - \widetilde{T}^v \log \hat{\sigma}_1^2
$$

where  $\widetilde{\sigma}^2 = T^{-1} \sum_{t=1}^T (y_t - x_t'\widetilde{\beta} - z_t'\widetilde{\delta}_{t,j})^2$ ,  $\hat{\sigma}_2^2 = (T - \widetilde{T}^v)^{-1} \sum_{t=\widetilde{T}^v+1}^T (y_t - x_t'\widehat{\beta} - z_t'\widetilde{\delta}_{t,j})^2$  and  $\hat{\sigma}_1^2 = \tilde{T}^{v-1} \sum_{t=1}^{\tilde{T}^v} (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{t,j})^2$ . Applying a Taylor expansion to log  $\tilde{\sigma}^2$ , log  $\hat{\sigma}_2^2$  and log  $\hat{\sigma}_1^2$ 1 around  $\log \sigma_0^2$  (without loss of generality, let  $\sigma_0^2 = \sigma_{20}^2$ ), we obtain

$$
\sup LR_{2,T} = (F_{1,T} + F_{2,T}) + o_p(1)
$$

where

$$
F_{1,T} = (\sigma_0^2)^{-1} [T\tilde{\sigma}^2 - (T - \tilde{T}^v)\hat{\sigma}_2^2 - \tilde{T}^v\hat{\sigma}_1^2]
$$
  
\n
$$
= (\sigma_0^2)^{-1} \sum_{t=1}^{\tilde{T}^v} \left[ (y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta}_{t,j})^2 - (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{t,j})^2 \right]
$$
  
\n
$$
+ (\sigma_0^2)^{-1} \sum_{t=\tilde{T}^v+1}^T \left[ (y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta}_{t,j})^2 - (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{t,j})^2 \right]
$$

and

$$
F_{2,T} = -\frac{1}{2} \left[ T \left( \frac{\tilde{\sigma}^2 - \sigma_0^2}{\sigma_0^2} \right)^2 - (T - \tilde{T}^v) \left( \frac{\hat{\sigma}_2^2 - \sigma_0^2}{\sigma_0^2} \right)^2 - \tilde{T}^v \left( \frac{\hat{\sigma}_1^2 - \sigma_0^2}{\sigma_0^2} \right)^2 \right]
$$
  
=  $-\frac{1}{2} (I - II - III).$ 

We first show that  $F_{1,T} = o_p(1)$ . From Assumption A1, for any partition  $\tilde{T}^v$ , we have  $X_i'X_i = O_p(T)$ ,  $Z_i'Z_i = O_p(T)$ ,  $X_i'Z_i = O_p(T)$ ,  $X_i'U_i = O_p(T^{1/2})$  and  $Z_i'U_i = O_p(T^{1/2})$ for  $i = 1$  and 2. In addition, under Assumptions A1 and A3 in which the change in the coefficient is assumed to shrink at rate  $v_T$ , we obtain  $\beta - \hat{\beta} = O_p(T^{-1/2}), \delta_j^0 - \hat{\delta}_j = O_p(T^{-1/2}),$  $\hat{\beta} - \tilde{\beta} = o_p(T^{-1/2})$  and  $\hat{\delta}_j - \tilde{\delta}_j = o_p(T^{-1/2})$  for  $j = 1$  and 2. Hence,  $F_{1,T} = o_p(1)$  is shown by directly following the proof of Theorem  $1(b)$ . If there is no break in the coefficient  $(\delta_{1}^{0} = \delta_{2}^{0})$  $\hat{Q}_2^0$ , we also obtain  $\beta - \hat{\beta} = O_p(T^{-1/2}), \ \delta_j^0 - \hat{\delta}_j = O_p(T^{-1/2}), \ \hat{\beta} - \tilde{\beta} = o_p(T^{-1/2})$  and  $\hat{\delta}_j - \widetilde{\delta}_j = o_p(T^{-1/2})$  for  $j = 1$  and 2 no matter where  $\widetilde{T}^c$  is. Hence,  $F_{1,T} = o_p(1)$ .

For  $F_{2,T}$ , we slightly change the notation and express the change in variance as  $\sigma_{i0} - \sigma_{20} =$  $(\sigma_i^{**}/\sigma_{20})/\sqrt{T}$  for  $i = 1, 2$ . We also denote  $\sigma_{20}$  by  $\sigma_0$  without loss of generality so that  $\sigma_2^{**} = 0$ by construction. Then,

$$
\sigma_{i0} - \sigma_0 = \frac{\sigma_i^{**}/\sigma_0}{\sqrt{T}} \n\sigma_{i0}^2 = \sigma_0^2 + 2\frac{\sigma_i^{**}}{\sqrt{T}} + \frac{(\sigma_i^{**}/\sigma_0)^2}{T} = \sigma_0^2 \left(1 + 2\frac{\sigma_i^{**}}{\sqrt{T}} + O(T^{-1})\right) \n\frac{1}{\sigma_0^2} = \frac{1}{\sigma_{i0}^2} \left(1 + 2\frac{\sigma_i^{**}}{\sqrt{T}} + O(T^{-1})\right).
$$
\n(S.6)

or

For each of the three terms, we have

$$
\begin{split}\n\sqrt{I} &= T^{-1/2} \sum_{t=1}^{T} \left[ \frac{(y_t - x_t'\tilde{\beta} - z_t'\tilde{\delta}_{t,j})^2}{\sigma_0^2} - 1 \right] \\
&= T^{-1/2} \sum_{t=1}^{T} \left( \frac{u_t^2}{\sigma_0^2} - 1 \right) + o_p(1) \\
&= T^{-1/2} \sum_{t=1}^{T} \left( \frac{u_t^2}{\sigma_{i0}^2} - 1 \right) + T^{-1} \sum_{t=1}^{T} \left( \frac{u_t^2}{\sigma_{i0}^2} \right) 2\sigma_1^{**} I(t \le T_1^{v0}) + o_p(1) \\
&\Rightarrow \sqrt{\psi} W(1) + 2\lambda^{v0} \sigma_1^{**},\n\end{split}
$$

$$
\sqrt{II} = \left(\frac{T - \tilde{T}^v}{T}\right)^{-1/2} T^{-1/2} \sum_{t = \tilde{T}^v + 1}^T \left(\frac{u_t^2}{\sigma_0^2} - 1\right) + o_p(1)
$$
\n
$$
= \left(\frac{T - \tilde{T}^v}{T}\right)^{-1/2} \left\{ T^{-1/2} \sum_{t = 1}^T \left(\frac{u_t^2}{\sigma_0^2} - 1\right) - T^{-1/2} \sum_{t = 1}^T \left(\frac{u_t^2}{\sigma_0^2} - 1\right) \right\} + o_p(1)
$$
\n
$$
= \left(\frac{T - \tilde{T}^v}{T}\right)^{-1/2} \left\{ T^{-1/2} \sum_{t = 1}^T \left(\frac{u_t^2}{\sigma_{i0}^2} - 1\right) - T^{-1/2} \sum_{t = 1}^T \left(\frac{u_t^2}{\sigma_{i0}^2} - 1\right) \right\}
$$

$$
+T^{-1}\sum_{t=1}^{T} \left(\frac{u_t^2}{\sigma_{i0}^2}\right)\sigma_1^{*t}I(t \leq T^{v0}) - T^{-1}\sum_{t=1}^{\widetilde{T}^v} \left(\frac{u_t^2}{\sigma_{i0}^2}\right)2\sigma_1^{*t}I(t \leq T^{v0}) + o_p(1)
$$
  
\n
$$
\Rightarrow \sqrt{\psi}\frac{W(1) - W(\lambda^v)}{\sqrt{1 - \lambda^v}} + \frac{\lambda^{v0} - \min\{\lambda^{v0}, \lambda^v\}}{\sqrt{1 - \lambda^v}}2\sigma_1^{**},
$$
  
\n
$$
\sqrt{III} = \left(\frac{\widetilde{T}^v}{T}\right)^{-1/2}\left\{T^{-1/2}\sum_{t=1}^{\widetilde{T}^v} \left(\frac{u_t^2}{\sigma_0^2} - 1\right)\right\} + o_p(1)
$$

$$
= \left(\frac{\widetilde{T}^{v}}{T}\right)^{-1/2} \left\{ T^{-1/2} \sum_{t=1}^{\widetilde{T}^{v}} \left(\frac{u_{t}^{2}}{\sigma_{i0}^{2}} - 1\right) + T^{-1} \sum_{t=1}^{\widetilde{T}^{v}} \left(\frac{u_{t}^{2}}{\sigma_{i0}^{2}}\right) 2\sigma_{1}^{*} I(t \leq T_{1}^{v0}) \right\} + o_{p}(1)
$$
  

$$
\Rightarrow \sqrt{\psi} \frac{W(\lambda^{v})}{\sqrt{\lambda^{v}}} + \frac{\min\{\lambda^{v0}, \lambda^{v}\}}{\sqrt{\lambda^{v}}} 2\sigma_{1}^{**}.
$$

Therefore,

$$
F_{2,T} \Rightarrow -\frac{\psi}{2} \left[ \frac{\lambda^v W(1) - W(\lambda^v)}{\sqrt{\lambda^v (1 - \lambda^v)}} + \frac{2}{\sqrt{\psi}} \sigma_1^{**} b(\lambda^v) \right]^2
$$

where

$$
b(\lambda^v) = \begin{cases} \lambda^{v0} \sqrt{\frac{1-\lambda^v}{\lambda^v}} & \text{if } \lambda^{v0} \le \lambda^v\\ (1-\lambda^{v0}) \sqrt{\frac{\lambda^v}{1-\lambda^v}} & \text{if } \lambda^{v0} > \lambda^v \end{cases}
$$

:

:

This yields

$$
\sup LR_{2,T} \Rightarrow \sup_{\lambda^v \in \Lambda_{v,\varepsilon}^c} \frac{\psi}{2} [J(\lambda^v)]^2
$$
  

$$
J(\lambda^v) = \frac{\lambda^v W(1) - W(\lambda^v)}{\sqrt{\lambda^v (1 - \lambda^v)}} + \frac{2\sigma_1^{**}}{\sqrt{\psi}} b(\lambda^v)
$$
  

$$
b(\lambda^v) = \begin{cases} \lambda^{v0} \sqrt{\frac{1 - \lambda^v}{\lambda^v}} & \text{if } \lambda^{v0} \le \lambda^v \\ (1 - \lambda^{v0}) \sqrt{\frac{\lambda^v}{1 - \lambda^v}} & \text{if } \lambda^{v0} > \lambda^v \end{cases}
$$

The results for the sup  $LR_{1,T}$  follow because  $F_{1,T} = o_p(1)$  holds also when there is no break in the coefficients.  $\,$ 

**Proof of Lemma S.2.** The sup  $LR_{3,T}$  test is:

$$
\sup LR_{3,T} = 2[\log \hat{L}_T(\tilde{T}^c; \tilde{T}^v) - \log \tilde{L}_T(\hat{T}^v)]
$$
  
=  $(T - \hat{T}^v) \log \tilde{\sigma}_2^2 + \hat{T}^v \log \tilde{\sigma}_1^2 - (T - \tilde{T}^v) \log \hat{\sigma}_2^2 - \tilde{T}^v \log \hat{\sigma}_1^2$ 

where  $\widetilde{\sigma}_2^2 = (T - \widetilde{T}^v)^{-1} \sum_{t=\widetilde{T}^v+1}^T (y_t - x_t'\widetilde{\beta} - z_t'\widetilde{\delta})^2$ ,  $\widetilde{\sigma}_1^2 = (\widetilde{T}^v)^{-1} \sum_{t=1}^{\widetilde{T}^v} (y_t - x_t'\widetilde{\beta} - z_t'\widetilde{\delta})^2$ ,  $\hat{\sigma}_2^2 =$  $(T - \widetilde{T}^v)^{-1} \sum_{t=\widetilde{T}^v+1}^T (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{t,j})^2$  and  $\hat{\sigma}_1^2 = (\widetilde{T}^v)^{-1} \sum_{t=1}^T (y_t - x_t'\hat{\beta} - z_t'\hat{\delta}_{t,j})^2$ . Applying a Taylor expansion to  $\log \tilde{\sigma}_2^2$  and  $\log \hat{\sigma}_2^2$  around  $\log \sigma_{20}^2$ , and to  $\log \tilde{\sigma}_1^2$  and  $\log \hat{\sigma}_1^2$  around  $\log \sigma_{10}^2$ ,

$$
\sup LR_{3,T} = (F_{1,T} + F_{2,T}) + o_p(1) \tag{S.7}
$$

where

$$
F_{1,T} = (T - \hat{T}^v) \frac{\tilde{\sigma}_2^2}{\sigma_{20}^2} - (T - \tilde{T}^v) \frac{\hat{\sigma}_2^2}{\sigma_{20}^2} + \hat{T}^v \frac{\tilde{\sigma}_1^2}{\sigma_{10}^2} - \tilde{T}^v \frac{\hat{\sigma}_1^2}{\sigma_{10}^2}
$$

and

$$
F_{2,T} = -\frac{1}{2} \left[ (T - \hat{T}^v) \left( \frac{\tilde{\sigma}_2^2 - \sigma_{20}^2}{\sigma_{20}^2} \right)^2 - (T - \tilde{T}^v) \left( \frac{\hat{\sigma}_2^2 - \sigma_{20}^2}{\sigma_{20}^2} \right)^2 \right] - \frac{1}{2} \left[ \hat{T}^v \left( \frac{\tilde{\sigma}_1^2 - \sigma_{10}^2}{\sigma_{10}^2} \right)^2 - \tilde{T}^v \left( \frac{\hat{\sigma}_1^2 - \sigma_{10}^2}{\sigma_{10}^2} \right)^2 \right].
$$

We first show that  $F_{2,T} = o_p(1)$ . We have

$$
F_{2,T} = -\frac{1}{2} \left[ \frac{T - \hat{T}^v}{T} \left[ \sqrt{T} \left( \frac{\hat{\sigma}_2^2 - \sigma_{20}^2}{\sigma_{20}^2} \right) \right]^2 - \frac{T - \tilde{T}^v}{T} \left[ \sqrt{T} \left( \frac{\hat{\sigma}_2^2 - \sigma_{20}^2}{\sigma_{20}^2} \right) \right]^2 \right]
$$

$$
-\frac{1}{2} \left[ \frac{\hat{T}^v}{T} \left[ \sqrt{T} \left( \frac{\hat{\sigma}_1^2 - \sigma_{10}^2}{\sigma_{10}^2} \right) \right]^2 - \frac{\tilde{T}^v}{T} \left[ \sqrt{T} \left( \frac{\hat{\sigma}_1^2 - \sigma_{10}^2}{\sigma_{10}^2} \right) \right]^2 \right]
$$

where  $[(T - \hat{T}^v)/T][\sqrt{T}(\tilde{\sigma}_2^2 - \sigma_{20}^2)/\sigma_{20}^2]^2$  and  $[(T - \tilde{T}^v)/T][\sqrt{T}(\hat{\sigma}_2^2 - \sigma_{20}^2)/\sigma_{20}^2]^2$  have the same limit distribution and  $(\hat{T}^v/T)[\sqrt{T}(\tilde{\sigma}_1^2 - \sigma_{10}^2)/\sigma_{10}^2]^2$  and  $(\tilde{T}^v/T)[\sqrt{T}(\hat{\sigma}_2^2 - \sigma_{20}^2)/\sigma_{20}^2]^2$  have the same limit distribution under Assumption A3. These also hold when there is no break in the variance. For  $F_{1,T}$ , let  $\sigma_0 = \sigma_{20}$  without loss of generality, then

$$
F_{1,T} = (\sigma_0^2)^{-1} \left[ (T - \hat{T}^v) \tilde{\sigma}_2^2 - (T - \tilde{T}^v) \hat{\sigma}_2^2 + \hat{T}^v \tilde{\sigma}_1^2 - \tilde{T}^v \hat{\sigma}_1^2 \right] - (\sigma_0^2)^{-1} \left( \frac{\sigma_{10}^2 - \sigma_0^2}{\sigma_{10}^2} \right) (\hat{T}^v \tilde{\sigma}_1^2 - \tilde{T}^v \hat{\sigma}_1^2).
$$

The first term becomes,

$$
(\sigma_0^2)^{-1} \left[ \sum_{t=1}^T (y_t - x_t^2 \tilde{\beta} - z_t^2 \tilde{\delta})^2 - \sum_{t=1}^{\tilde{T}^c} (y_t - x_t^2 \tilde{\beta} - z_t^2 \tilde{\delta})^2 - \sum_{t=\tilde{T}^c+1}^T (y_t - x_t^2 \hat{\beta} - z_t^2 \hat{\delta}_{j+1})^2 \right]
$$
  
=  $(\sigma_0^2)^{-1} [D^r - D^u(2) - D^u(1)]$ 

and the second term is  $o_p(1)$  under Assumption A3. When there is no break in variance, the second term is zero because  $\sigma_{10}^2 - \sigma_0^2 = \sigma_{10}^2 - \sigma_{20}^2 = 0$ . Then,

$$
D^{r} - D^{u}(2) - D^{u}(1)
$$
\n
$$
= -\left[T^{-1/2} \sum_{t=1}^{T} (u_{t}z_{t}^{\prime} + I(t \leq T^{c0})\delta^{*'}z_{t}z_{t}^{\prime})\right] \left(T^{-1} \sum_{t=1}^{T} z_{t}z_{t}^{\prime}\right)
$$
\n
$$
\times \left[T^{-1/2} \sum_{t=1}^{T} (z_{t}u_{t} + z_{t}z_{t}^{\prime}\delta^{*}I(t \leq T^{c0}))\right]
$$
\n
$$
+ \left[T^{-1/2} \sum_{t=1}^{T} (u_{t}z_{t}^{\prime} + I(t \leq T^{c0})\delta^{*'}z_{t}z_{t}^{\prime})\right] \left(T^{-1} \sum_{t=1}^{T^{c}} z_{t}z_{t}^{\prime}\right)
$$
\n
$$
\times \left[T^{-1/2} \sum_{t=1}^{T^{c}} (z_{t}u_{t} + z_{t}z_{t}^{\prime}\delta^{*}I(t \leq T^{c0}))\right]
$$
\n
$$
+ \left[T^{-1/2} \sum_{t=T^{c}+1}^{T} (u_{t}z_{t}^{\prime} + I(t \leq T^{c0})\delta^{*'}z_{t}z_{t}^{\prime})\right] \left(T^{-1} \sum_{t=T^{c}+1}^{T} z_{t}z_{t}^{\prime}\right)
$$
\n
$$
\times \left[T^{-1/2} \sum_{t=T^{c}+1}^{T} (z_{t}u_{t} + z_{t}z_{t}^{\prime}\delta^{*}I(t \leq T^{c0}))\right] + o_{p}(1)
$$
\n
$$
\Rightarrow J(\lambda^{c})^{\prime}J(\lambda^{c})
$$

where

$$
J(\lambda^{c}) = \left(\frac{\lambda^{c}W_{q}(1) - W_{q}(\lambda^{c})}{\sqrt{\lambda^{c}(1 - \lambda^{c})}}\right) + Q^{1/2}\delta^{*}b(\lambda^{c})
$$

$$
b(\lambda^{c}) = \begin{cases} \lambda^{c0}\sqrt{\frac{1 - \lambda^{c}}{\lambda^{c}}} & \text{if } \lambda^{c0} \leq \lambda^{c} \\ (1 - \lambda^{c0})\sqrt{\frac{\lambda^{c}}{1 - \lambda^{c}}} & \text{if } \lambda^{c0} > \lambda^{c} \end{cases}
$$

and  $Q \equiv p \lim_{T \to \infty} (T^{-1} \sum_{t=1}^{T} z_t z_t')$ . Hence, from (S.7) the results of the sup  $LR_{3,T}$  test is obtained. The result for the the sup  $LR_T$  is also obtained since we showed  $F_{2,T} = o_p(1)$  to hold when there is no variance break.

Proof of Lemma S.3. By (S.6), we obtain

$$
\sigma_{i0}^2/\sigma_0^2 = 1 + 2\sigma_i^{**}/\sqrt{T} + O(T^{-1})
$$

and the test statistic  $CUSQ$  is such that:

$$
CUSQ = \sup_{\lambda^{v} \in [0,1]} \left| T^{-1/2} \left[ \sum_{t=1}^{[T\lambda^{v}]} \left( \frac{u_{t}^{2}}{\sigma_{i0}^{2}} \frac{\sigma_{i0}^{2}}{\sigma_{0}^{2}} - 1 \right) - \frac{[T\lambda^{v}]}{T} \sum_{t=1}^{T} \left( \frac{u_{t}^{2}}{\sigma_{i0}^{2}} \frac{\sigma_{i0}^{2}}{\sigma_{0}^{2}} - 1 \right) \right] \right| + o_{p}(1)
$$
  
\n
$$
= \sup_{\lambda^{v} \in [0,1]} \left| T^{-1/2} \left[ \sum_{t=1}^{[T\lambda^{v}]} \left\{ \frac{u_{t}^{2}}{\sigma_{i0}^{2}} \left( 1 + 2 \frac{\sigma_{1}^{**}}{\sqrt{T}} I(t \leq T^{v0}) \right) - 1 \right\} - \frac{[T\lambda^{v}]}{T} \sum_{t=1}^{T} \left\{ \frac{u_{t}^{2}}{\sigma_{i0}^{2}} \left( 1 + 2 \frac{\sigma_{1}^{**}}{\sqrt{T}} I(t \leq T^{v0}) \right) - 1 \right\} \right] + o_{p}(1)
$$

$$
= \sup_{\lambda^{v} \in [0,1]} \left| T^{-1/2} \left[ \sum_{t=1}^{[T\lambda^{v}]} \left( \frac{u_{t}^{2}}{\sigma_{i0}^{2}} - 1 \right) - \frac{[T\lambda^{v}]}{T} \sum_{t=1}^{T} \left( \frac{u_{t}^{2}}{\sigma_{i0}^{2}} - 1 \right) \right] \right.
$$
  
+  $T^{-1} \left[ \sum_{t=1}^{[T\lambda^{v}]} \left( \frac{u_{t}^{2}}{\sigma_{i0}^{2}} \right) 2\sigma_{1}^{*} I(t \leq T^{v0}) - \frac{[T\lambda^{v}]}{T} \sum_{t=1}^{T} \left( \frac{u_{t}^{2}}{\sigma_{i0}^{2}} \right) 2\sigma_{1}^{*} I(t \leq T^{v0}) \right] \right| + o_{p}(1)$   

$$
\Rightarrow \sqrt{\psi} \sup_{\lambda^{v} \in [0,1]} \left| [W(\lambda^{v}) - \lambda^{v} W(1)] + \frac{2\sigma_{1}^{*}}{\sqrt{\psi}} \mu(\lambda^{v}) \right|
$$

where

$$
\mu(\lambda^v) = \begin{cases} \lambda^{v0} (1 - \lambda^v) & \text{if } \lambda^{v0} \le \lambda^v \\ \lambda^v (1 - \lambda^{v0}) & \text{if } \lambda^{v0} > \lambda^v \end{cases}
$$

:

#### E: Robustness to non-normal errors.

Given that our tests are based on a quasi-likelihood framework assuming normal errors, it is useful to assess their size and power under non-normal error distributions. We focus on the tests for the structural changes in variance, i.e. the sup  $LR_{1,T}$  and sup  $LR_{2,T}$  tests, mostly because these are the most prone to be affected by non-normality; e.g., the test for a single coefficient break coincides with that derived by Andrews (1993) using a GMM-based approach. To investigate the sup  $LR_{1,T}$  test, we generate the same data as the experiment pertaining to Table 2:

$$
y_t = c + \alpha y_{t-1} + e_t, \quad e_t = u_t \sqrt{h_t}
$$
  

$$
h_t = \tau_1 + \tau_2 I(t > [.5T]) + \gamma e_{t-1}^2 + \rho h_{t-1},
$$

where  $h_0 = \tau_1/(1 - \gamma - \rho)$  and  $u_t$  is drawn from the following well-known non-normal distributions: (a) the t distribution with 5 degrees of freedom  $(t_5)$ , (b) a mixture of two normal distributions:  $v_1I(z \le 0.5) + v_2I(z > 0.5)$ , where  $z \sim U[0, 1], v_1 \sim N(-1, 1)$  and  $v_2 \sim N(1, 1)$ (c) the  $\chi^2$  distribution with 5 degrees of freedom and (d) an exponential distribution  $-\ln(v)$ ,  $v \sim U[0, 1]$ . These distributions were chosen as empirically relevant examples following Bai and Ng (2005). To facilitate comparisons, the errors are normalized by subtracting the sample mean and dividing by the sample standard deviation of each Monte Carlo repetition. The model parameter values are set at  $c = 0.5, \tau_1 = 0.1, \rho = 0.2$ , and  $\varepsilon = 0.15$ . We consider  $\alpha = 0.2, 0.7$  and  $\gamma = 0.1, 0.3, 0.5$ . The sample size is  $T = 100, 200$ . Table S.4 presents the exact size and power of the sup  $LR_{1,T}$ ,  $UD$  max<sub>1,T</sub> and  $CUSQ$  tests. The reported values are roughly comparable to those with normal errors in Table 2, i.e., little if any size distortions. In all cases, the power decreases to some extent. Note, however, that this is also the case for

the CUSQ test and the relative advantage of the sup  $LR_{1,T}$  and  $UD$  max<sub>1,T</sub> tests over the CUSQ test remains under these non-normal errors.

For the sup  $LR_{2,T}$  test, we use the same data generating process as that corresponding to Table 4 to assess the size, i.e.,

$$
y_t = \mu_1 + \mu_2 1(t > [0.5T]) + e_t,
$$
\n(S.8)

with  $e_t$  drawn from one of the four types of non-normal distributions. Again, the errors are standardized to have mean zero and variance one in each Monte Carlo repetition. We set  $\mu_1 = 0$  and the truncation  $\varepsilon = 0.15$ , although we obtained similar results for other choices of  $\varepsilon$ . Table S.5 shows that the size distortions are minor in all cases. To assess the power of the sup  $LR_{2,T}$  test, we use again DGP (S.8). The errors are standardized to have mean zero and variance one when  $t \leq [0.25T]$  and  $1 + \theta$  when  $t > [0.25T]$  so that  $\theta$  indicates the magnitude of the break. The results are presented in Table S.6. Relative to the results in Table 5, we have, as expected, some power reductions. The extent of the power losses vary across the different distributions. Nevertheless, the test remains informative.

# F: Size and Power of the  $\sup LR^*_{1,T}$  test in the case of normal errors.

Table S.7 presents results related to Table 2 for the statistic sup  $LR_{1,T}^*$  when testing for a single break in variance assuming no break in regression coefficients but with the static model and normal errors. The DGP is  $y_t = e_t$  with  $e_t \sim i.i.d. N(0, 1 + \theta I(t > [.5T])$  and  $\theta$ varies between 0 and 1.5. The trimming parameter is set to  $\varepsilon = 0.15$ . The results show that using  $\psi$  with the full correction yields power and exact size similar to tests with a correction that correctly assumes *i.i.d.* errors, though here imposing normality can lead to tests with somewhat higher power. This confirms that using the full correction entails little power loss or size distortions.

We also investigate the findings that the  $UD$  max  $LR_{1,T}$  test can have power close to that of sup  $LR_{1,T}^*$  under a single break model even though the former considers a wider range of alternatives by using a simple design with normal errors. We also compare them with the CUSQ test described in the main text. We use the same DGP and the results are presented in Table S.8. They show the exact sizes of the sup  $LR_{1,T}^*$  and  $UD$  max  $LR_{1,T}$  tests to be close to the nominal 5% size. The  $CUSQ$  test is slightly undersized. The power functions of the three tests are very close.

# G: Size of the sup  $LR^*_{4,T}$  and  $UD$  max tests in the case of normal errors.

We present results about the size properties of the sup  $LR_{4,T}^*$  and  $UD$  max tests with normal *i.i.d.* errors, with the DGP set to  $y_t = e_t \sim i.i.d. N(0, 1)$ . We use three values of the trimming parameter  $\varepsilon = 0.1, 0.15$  and 0.2. For the UD max test,  $M = N = 2$  and for the  $\sup LR^*_{4,T}$  test, we consider the following combinations: a)  $m_a = n_a = 1$ , b)  $m_a = 1$ ,  $n_a = 2$ , c)  $m_a = 2$ ,  $n_a = 1$ . Two sample sizes are used,  $T = 100$ , 200. The results are presented in Table S.9 and they show the size to be slightly conservative, as expected since the critical values are from a limit distribution that provides an upper bound. Nevertheless, the size is close to the nominal 5% level in every case.

## H: Split-sample method to select the number of breaks.

We present results for a split-sample method to estimate the number of breaks in  $\delta$  and  $\sigma^2$ . It is based on a specific to general sequential procedure which is a modification of the sequential procedure discussed in Qu and Perron (2007). Our problem is, however, more complex since we wish to ascertain what types of break occur at any given selected break date, not only to know whether some kind of break did occur. Hence, the need for some refinements. The starting point is to consider the testing problem for the number of breaks in the union of the coefficients and variance breaks  $K$ . This is implemented by using the  $Seq_T(l+1|l)$  test proposed by Qu and Perron (2007). The next step is to decide whether a break in coefficients, in variance or in both has occurred at each of the selected break dates. We then perform standard hypothesis testing for the equality of the parameters across adjacent segments. Since the limit distribution of the estimates of the parameters of the model are the same whether using estimates of the break dates or their true value, standard procedures can be applied. Consider first the case of testing whether the regression coefficients are equal across the two regimes  $(\hat{T}_{k-1}, \hat{T}_k)$ , regime  $k$ , and  $(\hat{T}_k, \hat{T}_{k+1})$ , regime  $k+1$ , separated by the  $k^{th}$  break  $(k = 1, ..., K)$ . Denote the true value of the regression coefficients in regimes k and  $k+1$  by  $\delta_k$  and  $\delta_{k+1}$ , respectively. The null and alternative hypotheses are  $H_0: \delta_k = \delta_{k+1}$  and  $H_1: \delta_k \neq \delta_{k+1}$ . Note that since there is a break in  $\delta$  and/or  $\sigma^2$ , under  $H_0$  there must be a change in  $\sigma^2$ . Hence, the test to be applied is a standard Chow-type test allowing for a change in variance across regimes (see Goldfeld and Quandt, 1978). Consider now the testing problem  $H_0: \sigma_k^2 = \sigma_{k+1}^2$  versus  $H_1: \sigma_k^2 \neq \sigma_{k+1}^2$ , where  $\sigma_k^2$  and  $\sigma_{k+1}^2$  are the error variances in regimes k and  $k + 1$ , respectively. The Wald test is

$$
W_k = \frac{(\hat{T}_k - \hat{T}_{k-1})(\hat{T}_{k+1} - \hat{T}_k)}{(\hat{T}_{k+1} - \hat{T}_{k-1})(\hat{\mu}_4 - \hat{\sigma}^4)} (\hat{\sigma}_{k+1}^2 - \hat{\sigma}_k^2)^2,
$$

where  $\hat{\sigma}_k^2$  and  $\hat{\sigma}_{k+1}^2$  are the MLE of  $\sigma_k^2$  and  $\sigma_{k+1}^2$  (constructed allowing  $\delta$  to be different in regimes k and  $k + 1$ , and  $\hat{\mu}_4$  is a consistent estimate of  $E(u_t^4)$ , e.g.,  $\hat{\mu}_4 = (\hat{T}_{k+1} (T_{k-1})^{-1} \sum_{T_{k-1}+1}^{T_{k+1}} \hat{u}_t^4$ , constructed under  $H_1$  to maximize power. The simulation design is the same as stated in Section 6. The results for this split-sample approach are presented in Table S.10. Of note, there are cases for which the probability of making the correct selection is quite low; e.g., when both changes in mean and variance are not large and occur at different dates, especially when they are far apart. The basic reason for that is that the sequential test of  $Qu$  and Perron  $(2007)$  jointly tests whether a break in both regression coefficients and variance occur. Hence, if only one type of break occurs the power can be quite low unless the magnitudes of the breaks are large. Unfortunately, this situation is expected to be quite common in practice (see, Perron and Yamamoto, 2019). Hence, though this procedure is valid in large samples, it should not be applied mechanically. Care must be exercised to assess whether we are in a situation where its Önite sample properties are rather poor.

## References

Andrews, D. W. K. (1993), "Tests for parameter instability and structural change with unknown change point." *Econometrica*, 61, 821-856.

Bai, J. and S. Ng (2005), "Tests for skewness, kurtosis, and normality for time series data." Journal of Business and Economic Statistics, 23, 49-60.

Deng, A. and P. Perron (2008), "The limit distribution of the CUSUM of squares test under general mixing conditions." *Econometric Theory*, 24, 809-822.

Goldfeld, S. M. and R. E. Quandt (1978), "Asymptotic tests for the constancy of regressions in the heteroskedastic case." Econometric Research Program Research Memorandum No. 229, Princeton University.

Kejriwal, M.  $(2009)$ , "Tests for a mean shift with good size and monotonic power." *Economics* Letters, 102, 78-82.

Perron, P. and Y. Yamamoto (2019), "The great moderation: updated evidence from testing jointly for multiple changes in variance and mean." Unpublished manuscript, Department of Economics, Boston University.

 $Qu, Z.$  and P. Perron  $(2007)$ , "Estimating and testing multiple structural changes in multivariate regressions." Econometrica, 75, 459-502.

Table S.1: Size of the sup  $LR_{4,T}^*$  using different estimates of  $\psi$  in the case of GARCH(1,1) errors  $(DGP: y_t = e_t, e_t = u_t \sqrt{h_t},$  with  $u_t \sim i.i.d. N(0, 1), h_t = \tau_1 + \gamma e_{t-1}^2 + \rho h_{t-1}, h_0 = \tau_1/(1 - \gamma - \rho),$  $\tau_1 = 1, T = 100, \varepsilon = 0.20,$  Alternative hypothesis:  $m_a = 1, n_a = 1$ .

|                          |       |       | no correction |       |       |       |                                                               |       |       |        | alternative |       |       |  |  |
|--------------------------|-------|-------|---------------|-------|-------|-------|---------------------------------------------------------------|-------|-------|--------|-------------|-------|-------|--|--|
| $\gamma \backslash \rho$ | 0.0   | 0.1   | 0.2           | 0.3   | 0.4   | 0.5   | $\gamma \backslash \rho$                                      | 0.0   | 0.1   | 0.2    | 0.3         | 0.4   | 0.5   |  |  |
| 0.1                      | 0.045 | 0.049 | 0.053         | 0.056 | 0.064 | 0.067 | 0.1                                                           | 0.063 | 0.066 | 0.076  | 0.062       | 0.079 | 0.104 |  |  |
| 0.2                      | 0.087 | 0.089 | 0.119         | 0.113 | 0.137 | 0.172 | 0.2                                                           | 0.076 | 0.095 | 0.113  | 0.111       | 0.146 | 0.158 |  |  |
| 0.3                      | 0.138 | 0.147 | 0.171         | 0.219 | 0.308 | 0.354 | 0.3                                                           | 0.103 | 0.114 | 0.147  | 0.147       | 0.218 | 0.279 |  |  |
| 0.4                      | 0.187 | 0.249 | 0.318         | 0.351 | 0.431 | 0.554 | 0.4                                                           | 0.112 | 0.139 | 0.187  | 0.187       | 0.289 | 0.382 |  |  |
| 0.5                      | 0.280 | 0.336 | 0.407         | 0.479 | 0.593 | -     | 0.5                                                           | 0.142 | 0.172 | 0.233  | 0.233       | 0.360 |       |  |  |
|                          |       |       |               |       |       |       |                                                               |       |       |        |             |       |       |  |  |
|                          |       |       | null          |       |       |       |                                                               |       |       | hybrid |             |       |       |  |  |
| $\gamma \backslash \rho$ | 0.0   | 0.1   | 0.2           | 0.3   | 0.4   | 0.5   | 0.2<br>0.3<br>0.0<br>0.1<br>0.4<br>0.5<br>$\sim$<br>$\varphi$ |       |       |        |             |       |       |  |  |
| 0 <sub>1</sub>           | 0.032 | 0.032 | 0.034         | 0.027 | 0.038 | 0.032 | 0 <sup>1</sup>                                                | 0.038 | 0.035 | 0.037  | 0.035       | 0.054 | 0.055 |  |  |



Note: "no correction" specifies  $\hat{\psi} = 2$ ; "alternative" specifies that the unrestricted residuals are used to construct  $\hat{\psi}$  and  $b_T$ ; "null" specifies that the residuals imposing the null hypothesis are used to construct  $\hat{\psi}$  and  $b_T$ , and "hybrid" specifies that the residuals under the alternative are used to construct  $b_T$  and the residuals under the null hypothesis are used to construct  $\hat{\psi}$ .

Table S.2: Power of the sup  $LR_{4,T}^*$  using different estimates of  $\psi$  in the case of GARCH(1) errors  $(DGP: y_t = \mu_1 + \mu_2 1(t > [0.25T]) + e_t, e_t = u_t \sqrt{h_t}, \text{ with } u_t \sim i.i.d. N(0, 1),$  $h_t = \tau_1 + \tau_2 1 \left(t > [0.75T] \right) + \gamma e_{t-1}^2 + \rho h_{t-1}, h_0 = \tau_1 / (1 - \gamma - \rho), \tau_1 = 1, \rho = 0.2, T = 100; \varepsilon = 0.20$ .

|                           |       |              | a)    |        |       |       |              | small change in variance, large change in mean |       |              |        |       |
|---------------------------|-------|--------------|-------|--------|-------|-------|--------------|------------------------------------------------|-------|--------------|--------|-------|
|                           |       | $\gamma=0.1$ |       |        |       |       | $\gamma=0.3$ |                                                |       | $\gamma=0.5$ |        |       |
|                           |       | null         |       | hybrid |       | null  |              | hybrid                                         |       | null         | hybrid |       |
| $\mu_2 \backslash \tau_2$ | 0.25  | 0.5          | 0.25  | 0.5    | 0.25  | 0.5   | 0.25         | 0.5                                            | 0.25  | 0.5          | 0.25   | 0.5   |
| 0.5                       | 0.201 | 0.222        | 0.206 | 0.250  | 0.148 | 0.183 | 0.173        | 0.197                                          | 0.112 | 0.102        | 0.147  | 0.150 |
| $\mathbf{1}$              | 0.714 | 0.705        | 0.719 | 0.711  | 0.534 | 0.565 | 0.559        | 0.588                                          | 0.399 | 0.385        | 0.417  | 0.391 |
| 1.5                       | 0.977 | 0.979        | 0.978 | 0.980  | 0.911 | 0.893 | 0.919        | 0.901                                          | 0.752 | 0.740        | 0.760  | 0.757 |
| $\overline{2}$            | 1.000 | 1.000        | 1.000 | 1.000  | 0.992 | 0.997 | 0.991        | 0.995                                          | 0.944 | 0.928        | 0.952  | 0.923 |



Note: "null" specifies that the residuals imposing the null hypothesis are used to construct  $\hat{\psi}$  and  $b_T$ , and "hybrid" specifies that the residuals under the alternative are used to construct  $b_T$  and the residuals under the null hypothesis are used to construct  $\hat{\psi}$ .

Table S.3: Power of the sup  $LR_{4,T}^*$  test using different corrections in the case of normal errors (DGP:  $y_t = \mu_1 + \mu_2 1(t > T_1^c) + e_t$ ;  $e_t \sim i.i.d. N(0, 1 + \theta 1(t > T_1^v)), \mu_1 = 0, \mu_2 = \theta, \varepsilon = 0.15$ )

|              |       |                         |       |       | $T=100$ |                                |       |        |                                           |
|--------------|-------|-------------------------|-------|-------|---------|--------------------------------|-------|--------|-------------------------------------------|
|              |       | $T_1^c = T_1^v = [.5T]$ |       |       |         | $T_1^c = [.3T], T_1^v = [.6T]$ |       |        | $\overline{T_1^c}$ [.6T], $T_1^v$ = [.3T] |
| $\theta$     | full  | i.i.d.                  | NC    | full  | i.i.d.  | NC                             | full  | i.i.d. | NC                                        |
| $\theta$     | 0.040 | 0.032                   | 0.029 | 0.040 | 0.032   | 0.029                          | 0.040 | 0.032  | 0.029                                     |
| 0.25         | 0.120 | 0.115                   | 0.118 | 0.108 | 0.104   | 0.102                          | 0.106 | 0.106  | 0.101                                     |
| 0.5          | 0.370 | 0.371                   | 0.370 | 0.325 | 0.323   | 0.328                          | 0.327 | 0.334  | 0.330                                     |
| 0.75         | 0.736 | 0.727                   | 0.751 | 0.692 | 0.689   | 0.706                          | 0.649 | 0.647  | 0.668                                     |
| $\mathbf{1}$ | 0.937 | 0.938                   | 0.941 | 0.919 | 0.925   | 0.936                          | 0.871 | 0.869  | 0.877                                     |
| 1.25         | 0.992 | 0.992                   | 0.990 | 0.990 | 0.990   | 0.991                          | 0.976 | 0.980  | 0.978                                     |
| $1.5\,$      | 1.000 | 0.999                   | 0.999 | 1.000 | 1.000   | 1.000                          | 0.991 | 0.994  | 0.993                                     |
|              |       |                         |       |       | $T=200$ |                                |       |        |                                           |
|              |       | $T_1^c = T_1^v = [.5T]$ |       |       |         | $T_1^c = [.3T], T_1^v = [.6T]$ |       |        | $\overline{T_1^c}$ [.6T], $T_1^v$ = [.3T] |
| $\theta$     | full  | i.i.d.                  | NC    | full  | i.i.d.  | NC                             | full  | i.i.d. | NC                                        |
| $\theta$     | 0.035 | 0.036                   | 0.033 | 0.035 | 0.036   | 0.033                          | 0.035 | 0.036  | 0.033                                     |
| 0.25         |       |                         |       |       |         |                                |       |        |                                           |
|              | 0.227 | 0.228                   | 0.237 | 0.168 | 0.177   | 0.185                          | 0.199 | 0.207  | 0.217                                     |
| 0.5          | 0.746 | 0.758                   | 0.764 | 0.709 | 0.712   | 0.712                          | 0.678 | 0.676  | 0.673                                     |
| 0.75         | 0.989 | 0.987                   | 0.991 | 0.984 | 0.982   | 0.982                          | 0.961 | 0.963  | 0.964                                     |
| $\mathbf{1}$ | 1.000 | 0.999                   | 1.000 | 1.000 | 1.000   | 1.000                          | 0.997 | 0.997  | 0.998                                     |
| 1.25         | 1.000 | 1.000                   | 1.000 | 1.000 | 1.000   | 1.000                          | 1.000 | 1.000  | 1.000                                     |

Note: The nominal size is 5% and 1,000 replications are used. The column "full" refers the test using the correction  $\psi$  which allows for non-normal, conditionally heteroskesdatic and serially correlated errors, as defined by (8); the column "i.i.d." refers to a correction that only allows for i.i.d. non-normal errors, i.e.,  $\hat{\psi} = \hat{\mu}_4 / \hat{\sigma}^4 - 1$ , where  $\hat{\sigma}^2 = T^{-1} \sum_{t=1}^T \hat{u}_t^2$  and  $\hat{\mu}_4 = T^{-1} \sum_{t=1}^T \hat{u}_t^4$  with  $\hat{$ null hypotheses; the column "NC" applies no correction and sets  $\hat{\psi} = 2$ , which is valid with normal errors.

|          |         |              |             |         |                |             |         |              |             | $T=100\,$ |              |             |         |                |             |         |              |             |
|----------|---------|--------------|-------------|---------|----------------|-------------|---------|--------------|-------------|-----------|--------------|-------------|---------|----------------|-------------|---------|--------------|-------------|
|          |         |              |             |         | $\alpha = 0.2$ |             |         |              |             |           |              |             |         | $\alpha = 0.7$ |             |         |              |             |
|          |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |           | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $\tau_2$ | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$   | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> |
| $\theta$ | 0.041   | 0.039        | 0.026       | 0.064   | 0.064          | 0.025       | 0.094   | 0.090        | 0.029       | 0.046     | 0.038        | 0.023       | 0.065   | 0.062          | 0.028       | 0.091   | 0.085        | 0.031       |
| 0.05     | 0.094   | 0.090        | 0.068       | 0.101   | 0.098          | 0.053       | 0.108   | 0.106        | 0.047       | 0.089     | 0.079        | 0.064       | 0.088   | 0.093          | 0.047       | 0.104   | 0.103        | 0.037       |
| 0.1      | 0.203   | 0.190        | 0.182       | 0.184   | 0.187          | 0.137       | 0.178   | 0.179        | 0.102       | 0.194     | 0.189        | 0.180       | 0.188   | 0.187          | 0.130       | 0.169   | 0.175        | 0.096       |
| 0.15     | 0.327   | 0.303        | 0.273       | 0.273   | 0.262          | 0.193       | 0.232   | 0.218        | 0.134       | 0.310     | 0.290        | 0.277       | 0.264   | 0.251          | 0.198       | 0.233   | 0.226        | 0.134       |
| 0.2      | 0.435   | 0.415        | 0.390       | 0.372   | 0.364          | 0.268       | 0.300   | 0.296        | 0.183       | 0.431     | 0.410        | 0.385       | 0.366   | 0.357          | 0.258       | 0.306   | 0.291        | 0.181       |
| 0.3      | 0.620   | 0.600        | 0.530       | 0.501   | 0.490          | 0.385       | 0.407   | 0.399        | 0.259       | 0.615     | 0.594        | 0.524       | 0.494   | 0.479          | 0.386       | 0.394   | 0.380        | 0.259       |
|          |         |              |             |         |                |             |         |              | $T=200$     |           |              |             |         |                |             |         |              |             |
|          |         |              |             |         | $\alpha = 0.2$ |             |         |              |             |           |              |             |         | $\alpha = 0.7$ |             |         |              |             |
|          |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |           | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $\tau_2$ | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$   | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | LR      | UDmax        | <b>CUSQ</b> |
| $\Omega$ | 0.041   | 0.039        | 0.027       | 0.054   | 0.054          | 0.036       | 0.057   | 0.052        | 0.040       | 0.042     | 0.035        | 0.029       | 0.051   | 0.052          | 0.038       | 0.053   | 0.048        | 0.039       |
| 0.05     | 0.129   | 0.123        | 0.136       | 0.113   | 0.104          | 0.101       | 0.089   | 0.085        | 0.073       | 0.127     | 0.121        | 0.142       | 0.108   | 0.102          | 0.103       | 0.086   | 0.081        | 0.068       |
| 0.1      | 0.358   | 0.340        | 0.369       | 0.279   | 0.262          | 0.258       | 0.229   | 0.207        | 0.169       | 0.367     | 0.347        | 0.375       | 0.275   | 0.248          | 0.254       | 0.213   | 0.194        | 0.169       |
| 0.15     | 0.560   | 0.536        | 0.565       | 0.420   | 0.403          | 0.388       | 0.294   | 0.279        | 0.257       | 0.557     | 0.535        | 0.563       | 0.403   | 0.387          | 0.383       | 0.290   | 0.269        | 0.250       |
| 0.2      | 0.718   | 0.705        | 0.712       | 0.551   | 0.533          | 0.523       | 0.397   | 0.380        | 0.320       | 0.707     | 0.690        | 0.708       | 0.543   | 0.521          | 0.519       | 0.387   | 0.379        | 0.309       |
| 0.3      | 0.845   | 0.837        | 0.825       | 0.700   | 0.685          | 0.636       | 0.519   | 0.507        | 0.435       | 0.844     | 0.832        | 0.827       | 0.696   | 0.682          | 0.636       | 0.512   | 0.490        | 0.431       |

Table S.4: Size and power of the  $supLR_{1,T}(n_a = 1, \varepsilon)$ ,  $UD$  max  $LR_{1,T}$  and  $CUSQ$  tests in a dynamic model with GARCH(1,1) errors

(a)  $t_5$  distribution

|          |         |              |             |         |                |             |         |              | $T=100$     |         |              |             |         |                |             |         |              |             |
|----------|---------|--------------|-------------|---------|----------------|-------------|---------|--------------|-------------|---------|--------------|-------------|---------|----------------|-------------|---------|--------------|-------------|
|          |         |              |             |         | $\alpha=0.2$   |             |         |              |             |         |              |             |         | $\alpha = 0.7$ |             |         |              |             |
|          |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $\tau_2$ | $_{LR}$ | UDmax        | CUSQ        | $_{LR}$ | UDmax          | CUSQ        | $_{LR}$ | UDmax        | CUSQ        | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> |
| $\theta$ | 0.102   | 0.105        | 0.037       | 0.107   | 0.117          | 0.041       | 0.110   | 0.121        | 0.042       | 0.067   | 0.062        | 0.026       | 0.109   | 0.109          | 0.036       | 0.112   | 0.119        | 0.049       |
| 0.05     | 0.184   | 0.186        | 0.128       | 0.141   | 0.156          | 0.085       | 0.143   | 0.157        | 0.086       | 0.213   | 0.207        | 0.188       | 0.191   | 0.184          | 0.135       | 0.145   | 0.151        | 0.082       |
| 0.1      | 0.350   | 0.343        | 0.268       | 0.241   | 0.255          | 0.146       | 0.231   | 0.246        | 0.135       | 0.477   | 0.462        | 0.452       | 0.349   | 0.335          | 0.265       | 0.224   | 0.236        | 0.142       |
| 0.15     | 0.522   | 0.509        | 0.429       | 0.335   | 0.325          | 0.216       | 0.329   | 0.323        | 0.218       | 0.714   | 0.695        | 0.703       | 0.510   | 0.493          | 0.418       | 0.320   | 0.309        | 0.211       |
| 0.2      | 0.639   | 0.632        | 0.552       | 0.428   | 0.430          | 0.285       | 0.439   | 0.446        | 0.287       | 0.851   | 0.840        | 0.828       | 0.637   | 0.628          | 0.533       | 0.423   | 0.413        | 0.273       |
| 0.3      | 0.785   | 0.769        | 0.677       | 0.581   | 0.573          | 0.389       | 0.555   | 0.544        | 0.386       | 0.949   | 0.939        | 0.906       | 0.783   | 0.763          | 0.664       | 0.558   | 0.546        | 0.393       |
|          |         |              |             |         |                |             |         |              |             | $T=200$ |              |             |         |                |             |         |              |             |
|          |         |              |             |         | $\alpha = 0.2$ |             |         |              |             |         |              |             |         | $\alpha = 0.7$ |             |         |              |             |
|          |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $\tau_2$ | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> |
| $\theta$ | 0.059   | 0.062        | 0.037       | 0.065   | 0.068          | 0.042       | 0.051   | 0.050        | 0.043       | 0.059   | 0.058        | 0.029       | 0.063   | 0.067          | 0.040       | 0.051   | 0.049        | 0.041       |
| 0.05     | 0.373   | 0.359        | 0.411       | 0.243   | 0.236          | 0.241       | 0.143   | 0.137        | 0.126       | 0.364   | 0.348        | 0.408       | 0.241   | 0.231          | 0.236       | 0.141   | 0.132        | 0.116       |
| 0.1      | 0.831   | 0.822        | 0.848       | 0.556   | 0.543          | 0.566       | 0.307   | 0.292        | 0.272       | 0.827   | 0.815        | 0.848       | 0.548   | 0.538          | 0.558       | 0.296   | 0.286        | 0.265       |
| 0.15     | 0.968   | 0.962        | 0.973       | 0.758   | 0.750          | 0.761       | 0.455   | 0.441        | 0.399       | 0.965   | 0.960        | 0.974       | 0.754   | 0.744          | 0.747       | 0.438   | 0.426        | 0.389       |
| 0.2      | 0.995   | 0.995        | 0.996       | 0.867   | 0.864          | 0.864       | 0.584   | 0.575        | 0.528       | 0.996   | 0.996        | 0.995       | 0.869   | 0.863          | 0.868       | 0.577   | 0.567        | 0.527       |
| 0.3      | 1.000   | 1.000        | 0.999       | 0.954   | 0.948          | 0.930       | 0.726   | 0.702        | 0.634       | 1.000   | 1.000        | 0.999       | 0.951   | 0.944          | 0.923       | 0.703   | 0.690        | 0.629       |

(b) mixture of normal distributions

|          |         |              |             |         |              |             |         |              | $\overline{T=100}$ |         |              |             |         |                |             |         |              |             |
|----------|---------|--------------|-------------|---------|--------------|-------------|---------|--------------|--------------------|---------|--------------|-------------|---------|----------------|-------------|---------|--------------|-------------|
|          |         |              |             |         | $\alpha=0.2$ |             |         |              |                    |         |              |             |         | $\alpha = 0.7$ |             |         |              |             |
|          |         | $\gamma=0.1$ |             |         | $\gamma=0.3$ |             |         | $\gamma=0.5$ |                    |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $T_{2}$  | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b>        | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> |
| $\Omega$ | 0.024   | 0.025        | 0.015       | 0.054   | 0.050        | 0.029       | 0.087   | 0.092        | 0.041              | 0.025   | 0.025        | 0.015       | 0.051   | 0.048          | 0.026       | 0.081   | 0.087        | 0.044       |
| 0.05     | 0.085   | 0.080        | 0.068       | 0.095   | 0.092        | 0.059       | 0.111   | 0.116        | 0.055              | 0.083   | 0.073        | 0.069       | 0.091   | 0.088          | 0.058       | 0.101   | 0.112        | 0.050       |
| 0.1      | 0.191   | 0.178        | 0.169       | 0.188   | 0.177        | 0.130       | 0.170   | 0.176        | 0.099              | 0.195   | 0.187        | 0.159       | 0.180   | 0.182          | 0.135       | 0.169   | 0.170        | 0.092       |
| 0.15     | 0.359   | 0.329        | 0.309       | 0.307   | 0.293        | 0.227       | 0.260   | 0.254        | 0.153              | 0.356   | 0.329        | 0.304       | 0.302   | 0.282          | 0.223       | 0.251   | 0.259        | 0.153       |
| 0.2      | 0.510   | 0.490        | 0.448       | 0.427   | 0.414        | 0.333       | 0.334   | 0.324        | 0.213              | 0.509   | 0.487        | 0.443       | 0.408   | 0.391          | 0.315       | 0.320   | 0.321        | 0.208       |
| 0.3      | 0.637   | 0.614        | 0.573       | 0.548   | 0.536        | 0.416       | 0.434   | 0.432        | 0.284              | 0.628   | 0.616        | 0.559       | 0.543   | 0.522          | 0.407       | 0.426   | 0.409        | 0.280       |
|          |         |              |             |         |              |             |         |              | $T=200$            |         |              |             |         |                |             |         |              |             |
|          |         |              |             |         | $\alpha=0.2$ |             |         |              |                    |         |              |             |         | $\alpha=0.7$   |             |         |              |             |
|          |         | $\gamma=0.1$ |             |         | $\gamma=0.3$ |             |         | $\gamma=0.5$ |                    |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $\tau_2$ | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | LR      | UDmax        | <b>CUSQ</b>        | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | CUSQ        |
| $\Omega$ | 0.031   | 0.028        | 0.025       | 0.044   | 0.041        | 0.031       | 0.053   | 0.053        | 0.042              | 0.032   | 0.032        | 0.029       | 0.044   | 0.043          | 0.035       | 0.050   | 0.050        | 0.049       |
| 0.05     | 0.140   | 0.134        | 0.133       | 0.136   | 0.124        | 0.116       | 0.118   | 0.109        | 0.085              | 0.138   | 0.129        | 0.135       | 0.130   | 0.124          | 0.107       | 0.109   | 0.102        | 0.084       |
| 0.1      | 0.388   | 0.366        | 0.415       | 0.282   | 0.259        | 0.260       | 0.196   | 0.182        | 0.145              | 0.370   | 0.348        | 0.384       | 0.270   | 0.247          | 0.261       | 0.187   | 0.178        | 0.157       |
| 0.15     | 0.623   | 0.603        | 0.633       | 0.478   | 0.455        | 0.438       | 0.333   | 0.326        | 0.260              | 0.645   | 0.623        | 0.650       | 0.466   | 0.447          | 0.429       | 0.325   | 0.310        | 0.256       |
| 0.2      | 0.781   | 0.761        | 0.790       | 0.601   | 0.593        | 0.576       | 0.415   | 0.404        | 0.329              | 0.765   | 0.744        | 0.766       | 0.592   | 0.581          | 0.560       | 0.408   | 0.393        | 0.326       |
| 0.3      | 0.926   | 0.915        | 0.911       | 0.786   | 0.775        | 0.732       | 0.589   | 0.573        | 0.493              | 0.911   | 0.901        | 0.895       | 0.785   | 0.766          | 0.734       | 0.575   | 0.564        | 0.470       |

(c)  $\chi^2_5$  distribution

|                     |         |              |             |         |                |             |         |              |             | $T=100$ |              |             |         |                |             |         |              |             |
|---------------------|---------|--------------|-------------|---------|----------------|-------------|---------|--------------|-------------|---------|--------------|-------------|---------|----------------|-------------|---------|--------------|-------------|
|                     |         |              |             |         | $\alpha=0.2$   |             |         |              |             |         |              |             |         | $\alpha = 0.7$ |             |         |              |             |
|                     |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $\tau$ <sub>2</sub> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | CUSQ        |
| $\Omega$            | 0.032   | 0.029        | 0.018       | 0.047   | 0.044          | 0.028       | 0.062   | 0.066        | 0.032       | 0.034   | 0.029        | 0.018       | 0.042   | 0.039          | 0.024       | 0.057   | 0.058        | 0.028       |
| 0.05                | 0.067   | 0.061        | 0.051       | 0.093   | 0.088          | 0.056       | 0.110   | 0.110        | 0.060       | 0.069   | 0.062        | 0.046       | 0.097   | 0.092          | 0.063       | 0.114   | 0.116        | 0.058       |
| 0.1                 | 0.129   | 0.117        | 0.075       | 0.140   | 0.132          | 0.081       | 0.148   | 0.143        | 0.073       | 0.122   | 0.118        | 0.070       | 0.121   | 0.120          | 0.077       | 0.137   | 0.134        | 0.070       |
| 0.15                | 0.218   | 0.200        | 0.153       | 0.215   | 0.203          | 0.138       | 0.227   | 0.212        | 0.118       | 0.220   | 0.202        | 0.157       | 0.211   | 0.199          | 0.137       | 0.209   | 0.198        | 0.110       |
| 0.2                 | 0.274   | 0.257        | 0.198       | 0.259   | 0.255          | 0.161       | 0.254   | 0.250        | 0.139       | 0.275   | 0.255        | 0.209       | 0.262   | 0.250          | 0.165       | 0.249   | 0.240        | 0.128       |
| 0.3                 | 0.445   | 0.419        | 0.334       | 0.407   | 0.393          | 0.259       | 0.374   | 0.363        | 0.231       | 0.440   | 0.409        | 0.328       | 0.386   | 0.372          | 0.249       | 0.355   | 0.340        | 0.215       |
|                     |         |              |             |         |                |             |         |              | $T=200$     |         |              |             |         |                |             |         |              |             |
|                     |         |              |             |         | $\alpha = 0.2$ |             |         |              |             |         |              |             |         | $\alpha = 0.7$ |             |         |              |             |
|                     |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |         | $\gamma=0.1$ |             |         | $\gamma=0.3$   |             |         | $\gamma=0.5$ |             |
| $\tau_2$            | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> | $_{LR}$ | UDmax          | <b>CUSQ</b> | $_{LR}$ | UDmax        | <b>CUSQ</b> |
| $\theta$            | 0.029   | 0.025        | 0.025       | 0.044   | 0.041          | 0.036       | 0.058   | 0.055        | 0.036       | 0.031   | 0.024        | 0.026       | 0.040   | 0.039          | 0.034       | 0.050   | 0.046        | 0.034       |
| 0.05                | 0.099   | 0.090        | 0.089       | 0.098   | 0.089          | 0.083       | 0.114   | 0.104        | 0.083       | 0.091   | 0.082        | 0.090       | 0.094   | 0.084          | 0.080       | 0.105   | 0.095        | 0.081       |
| 0.1                 | 0.232   | 0.214        | 0.226       | 0.202   | 0.188          | 0.178       | 0.188   | 0.177        | 0.135       | 0.232   | 0.215        | 0.228       | 0.202   | 0.184          | 0.178       | 0.185   | 0.173        | 0.131       |
| 0.15                | 0.364   | 0.350        | 0.355       | 0.307   | 0.303          | 0.262       | 0.267   | 0.252        | 0.201       | 0.370   | 0.348        | 0.347       | 0.307   | 0.291          | 0.261       | 0.254   | 0.240        | 0.194       |
| 0.2                 | 0.539   | 0.517        | 0.512       | 0.452   | 0.437          | 0.409       | 0.380   | 0.360        | 0.291       | 0.537   | 0.508        | 0.515       | 0.444   | 0.428          | 0.395       | 0.358   | 0.341        | 0.281       |
| 0.3                 | 0.717   | 0.701        | 0.676       | 0.593   | 0.584          | 0.525       | 0.478   | 0.469        | 0.365       | 0.717   | 0.699        | 0.667       | 0.583   | 0.579          | 0.523       | 0.465   | 0.453        | 0.366       |

(d) exponential distribution

|                |       |       | $T = 100$ |       |       |       | $T = 200$ |       |
|----------------|-------|-------|-----------|-------|-------|-------|-----------|-------|
| $\mu_2$        | (a)   | (b)   | (c)       | (d)   | (a)   | (b)   | (c)       | (d)   |
| $\theta$       | 0.020 | 0.039 | 0.033     | 0.047 | 0.021 | 0.031 | 0.039     | 0.042 |
| 0.1            | 0.021 | 0.035 | 0.036     | 0.031 | 0.024 | 0.030 | 0.032     | 0.035 |
| 0.25           | 0.014 | 0.040 | 0.029     | 0.039 | 0.021 | 0.034 | 0.034     | 0.027 |
| 0.5            | 0.024 | 0.040 | 0.032     | 0.033 | 0.015 | 0.032 | 0.031     | 0.032 |
| 0.75           | 0.031 | 0.039 | 0.027     | 0.033 | 0.013 | 0.029 | 0.027     | 0.024 |
| 1              | 0.029 | 0.027 | 0.026     | 0.033 | 0.015 | 0.039 | 0.030     | 0.026 |
| $\mathfrak{2}$ | 0.016 | 0.027 | 0.014     | 0.030 | 0.022 | 0.033 | 0.030     | 0.018 |
| $\overline{4}$ | 0.025 | 0.027 | 0.018     | 0.032 | 0.020 | 0.028 | 0.021     | 0.031 |
| 10             | 0.022 | 0.033 | 0.020     | 0.024 | 0.022 | 0.040 | 0.016     | 0.023 |
| 20             | 0.020 | 0.039 | 0.017     | 0.026 | 0.029 | 0.025 | 0.023     | 0.029 |

Table S.5: Size of the sup  $LR_{2,T}^*(m_a=1,n_a=1,\varepsilon|n=0,m_a=1)$  test under non-normal errors  $(\varepsilon = 0.15)$ 

Note: (a) the  $t_5$  distribution, (b) the mixture of normal distributions,

(c) the  $\chi^2_5$  distribution., (d) the exponential distribution.

|                                 |                | $T=100$<br>mixture of normal distributions |                |                    |                |       |       |                  |                |       |                          |                |       |       |
|---------------------------------|----------------|--------------------------------------------|----------------|--------------------|----------------|-------|-------|------------------|----------------|-------|--------------------------|----------------|-------|-------|
|                                 |                |                                            | (a)            | $t_5$ distribution |                |       |       |                  | (b             |       |                          |                |       |       |
| $\theta \backslash \mu_2$       | $\overline{0}$ | 0.1                                        | 0.5            | $\boldsymbol{2}$   | $\overline{4}$ | 10    | 20    | $\boldsymbol{0}$ | 0.1            | 0.5   | $\overline{2}$           | $\overline{4}$ | 10    | 20    |
| 0.25                            | 0.028          | 0.034                                      | 0.027          | 0.034              | 0.033          | 0.029 | 0.025 | 0.073            | 0.063          | 0.049 | 0.060                    | 0.059          | 0.089 | 0.080 |
| 0.5                             | 0.039          | 0.043                                      | 0.040          | 0.055              | 0.037          | 0.054 | 0.047 | 0.117            | 0.121          | 0.111 | 0.137                    | 0.117          | 0.124 | 0.155 |
| 0.75                            | 0.063          | 0.065                                      | 0.077          | 0.064              | 0.079          | 0.072 | 0.069 | 0.196            | 0.202          | 0.200 | 0.210                    | 0.213          | 0.249 | 0.258 |
| 1                               | 0.075          | 0.107                                      | 0.091          | 0.120              | 0.112          | 0.106 | 0.107 | 0.334            | 0.295          | 0.278 | 0.304                    | 0.326          | 0.320 | 0.323 |
| 1.25                            | 0.132          | 0.135                                      | 0.147          | 0.161              | 0.159          | 0.125 | 0.135 | 0.418            | 0.393          | 0.402 | 0.434                    | 0.460          | 0.474 | 0.450 |
| 1.5                             | 0.186          | 0.168                                      | 0.193          | 0.159              | 0.200          | 0.199 | 0.188 | 0.510            | 0.489          | 0.473 | 0.479                    | 0.553          | 0.541 | 0.586 |
| $\overline{2}$                  | 0.259          | 0.245                                      | 0.252          | 0.305              | 0.297          | 0.297 | 0.281 | 0.668            | 0.677          | 0.667 | 0.701                    | 0.722          | 0.750 | 0.771 |
| 3                               | 0.395          | 0.407                                      | 0.389          | 0.431              | 0.437          | 0.430 | 0.447 | 0.862            | 0.890          | 0.881 | 0.885                    | 0.921          | 0.938 | 0.913 |
| $\overline{4}$                  | 0.535          | 0.543                                      | 0.567          | 0.559              | 0.560          | 0.599 | 0.593 | 0.949            | 0.966          | 0.954 | 0.963                    | 0.974          | 0.976 | 0.975 |
|                                 |                |                                            | (c) $\chi^2_5$ | distribution       |                |       |       |                  | $(\mathrm{d})$ |       | exponential distribution |                |       |       |
| $\bar{\theta} \backslash \mu_2$ | $\overline{0}$ | 0.1                                        | 0.5            | $\overline{2}$     | $\overline{4}$ | 10    | 20    | $\theta$         | 0.1            | 0.5   | $\overline{2}$           | $\overline{4}$ | 10    | 20    |
| 0.25                            | 0.051          | 0.052                                      | 0.036          | 0.029              | 0.034          | 0.027 | 0.033 | 0.041            | 0.048          | 0.048 | 0.025                    | 0.021          | 0.035 | 0.032 |
| 0.5                             | 0.066          | 0.061                                      | 0.062          | 0.038              | 0.046          | 0.055 | 0.059 | 0.062            | 0.066          | 0.059 | 0.031                    | 0.042          | 0.045 | 0.051 |
| 0.75                            | 0.092          | 0.102                                      | 0.089          | 0.095              | 0.089          | 0.090 | 0.071 | 0.087            | 0.085          | 0.078 | 0.063                    | 0.059          | 0.066 | 0.048 |
| 1                               | 0.128          | 0.133                                      | 0.131          | 0.122              | 0.112          | 0.122 | 0.133 | 0.101            | 0.091          | 0.085 | 0.086                    | 0.068          | 0.085 | 0.071 |
| 1.25                            | 0.150          | 0.167                                      | 0.183          | 0.182              | 0.170          | 0.157 | 0.163 | 0.127            | 0.116          | 0.112 | 0.125                    | 0.098          | 0.093 | 0.095 |
| 1.5                             | 0.200          | 0.199                                      | 0.209          | 0.211              | 0.234          | 0.229 | 0.231 | 0.142            | 0.141          | 0.125 | 0.142                    | 0.119          | 0.133 | 0.128 |
| $\overline{2}$                  | 0.311          | 0.289                                      | 0.294          | 0.281              | 0.313          | 0.280 | 0.305 | 0.181            | 0.174          | 0.205 | 0.169                    | 0.176          | 0.151 | 0.162 |
| 3                               | 0.482          | 0.459                                      | 0.447          | 0.435              | 0.472          | 0.497 | 0.495 | 0.276            | 0.260          | 0.262 | 0.272                    | 0.269          | 0.251 | 0.291 |
| 4                               | 0.599          | 0.572                                      | 0.590          | 0.555              | 0.617          | 0.625 | 0.603 | 0.357            | 0.376          | 0.360 | 0.350                    | 0.355          | 0.381 | 0.377 |

Table S.6: Power of the sup  $LR_{2,T}^*(m_a = 1, n_a = 1, \varepsilon | n = 0, m_a = 1)$  test under non-normal errors  $(\varepsilon = 0.1)$ 



Table S.7: Size and power of the sup  $LR_{1,T}^*$  test using different corrections in the case of i.i.d. normal errors (DGP:  $y_t = e_t$ ;  $e_t \sim i.i.d. N(0, 1 + \theta 1(t > [.5T]))$ ,  $\varepsilon = 0.15)$ )

| $\cdots$ |       |           |       |       |           | $\cdots$ |
|----------|-------|-----------|-------|-------|-----------|----------|
|          |       | $T = 100$ |       |       | $T = 200$ |          |
| $\theta$ | full  | i.i.d.    | NC    | full  | i.i.d.    | NC       |
| $\theta$ | 0.049 | 0.043     | 0.054 | 0.045 | 0.045     | 0.046    |
| 0.25     | 0.064 | 0.079     | 0.090 | 0.112 | 0.120     | 0.131    |
| 0.5      | 0.150 | 0.162     | 0.195 | 0.324 | 0.327     | 0.371    |
| 0.75     | 0.282 | 0.289     | 0.340 | 0.572 | 0.582     | 0.641    |
| 1        | 0.380 | 0.415     | 0.505 | 0.781 | 0.790     | 0.857    |
| 1.25     | 0.525 | 0.523     | 0.654 | 0.894 | 0.903     | 0.938    |
| 1.5      | 0.610 | 0.644     | 0.751 | 0.958 | 0.942     | 0.969    |

Note: The nominal size is 5% and 1,000 replications are used. The column "full" refers to the tests using the correction  $\psi$  which allows for non-normal, conditionally heteroskesdatic and serially correlated errors, as defined by (8); the column "i.i.d." refers to a correction that only allows for i.i.d. non-normal errors, i.e.,  $\hat{\psi} = \hat{\mu}_4 / \hat{\sigma}^4 - 1$ , where  $\hat{\sigma}^2 = T^{-1} \sum_{t=1}^T \hat{u}_t^2$  and  $\hat{\mu}_4 = T^{-1} \sum_{t=1}^T \hat{u}_t^4$  with null hypotheses; the column "NC" applies no correction and sets  $\dot{\psi} = 2$ , which is valid with normal errors.

Table S.8: Size and power of the sup  $LR_{1,T}^*(n_a=1)$ ,  $UD$  max  $LR_{1,T}$  and  $CUSQ$  tests in the case of i.i.d. normal errors

|          | (DGP: $y_t = e_t$ ; $e_t \sim i.i.d. N(0, 1 + \theta 1(t > [.5T]))$ , $\varepsilon = 0.15$ ) |           |            |                              |           |       |
|----------|----------------------------------------------------------------------------------------------|-----------|------------|------------------------------|-----------|-------|
|          |                                                                                              | $T = 100$ |            |                              | $T = 200$ |       |
| $\theta$ | sup $LR_{1,T}^*$                                                                             | UDmax     | $\it CUSO$ | $\overline{\sup} LR_{1,T}^*$ | UDmax     | CUSO  |
| $\theta$ | 0.049                                                                                        | 0.051     | 0.030      | 0.045                        | 0.044     | 0.029 |
| 0.25     | 0.064                                                                                        | 0.064     | 0.059      | 0.112                        | 0.108     | 0.116 |
| 0.5      | 0.150                                                                                        | 0.136     | 0.142      | 0.324                        | 0.302     | 0.351 |
| 0.75     | 0.282                                                                                        | 0.259     | 0.268      | 0.572                        | 0.554     | 0.613 |
| 1        | 0.380                                                                                        | 0.356     | 0.391      | 0.781                        | 0.762     | 0.808 |
| 1.25     | 0.525                                                                                        | 0.497     | 0.521      | 0.894                        | 0.889     | 0.918 |
| 1.5      | 0.610                                                                                        | 0.588     | 0.599      | 0.958                        | 0.951     | 0.965 |

Table S.9: Size of the sup  $LR_{4,T}^*(m_a, n_a)$  and  $UD$  max  $LR_{4,T}$  tests in the case of i.i.d. normal errors (DGP:  $y_t = e_t, e_t \sim i.i.d. N(0, 1)$ )



| $(DGP: y_t = \mu_1 + \mu_2 1(t > T^c) + e_t, e_t \sim i.i.d. N(0, 1 + \theta 1(t > T^v)), \varepsilon = 0.15, T = 200).$ |                     |                                              |                                                    |             |                              |                |              |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|----------------------------------------------------|-------------|------------------------------|----------------|--------------|-------------------------------------------------------------------|
|                                                                                                                          | $m = n = 0$         | $m = n = 1$                                  |                                                    |             |                              | $m = n = 1$    |              |                                                                   |
|                                                                                                                          |                     | $T^c = [.5T], T^v = [.7T]$                   |                                                    |             | $T^c = [.25T], T^v = [.75T]$ |                |              |                                                                   |
|                                                                                                                          |                     | $\mu_2 = \overline{\theta} = 1$              | $\mu_2 = 1, \theta = 3 \mid \mu_2 = 1, \theta = 5$ |             | $\mu_2 = \theta = 2$         |                |              | $\mu_2 = \theta = 1$ $\mu_2 = \theta = 2$ $\mu_2 = 1, \theta = 3$ |
| $prob(m = 0, n = 0)$                                                                                                     | 0.930               | 0.002                                        | 0.000                                              | 0.000       | 0.000                        | 0.014          | 0.000        | 0.015                                                             |
| $prob(m = 0, n = 1)$                                                                                                     | 0.022               | 0.000                                        | 0.009                                              | 0.014       | 0.000                        | 0.001          | 0.000        | 0.006                                                             |
| $prob(m = 0, n = 2)$                                                                                                     | 0.000               | 0.000                                        | 0.000                                              | 0.000       | 0.000                        | 0.000          | 0.000        | 0.000                                                             |
| $prob(m = 1, n = 0)$                                                                                                     | 0.030               | 0.313                                        | 0.001                                              | 0.001       | 0.018                        | 0.571          | 0.186        | 0.031                                                             |
| $prob(m = 1, n = 1)$                                                                                                     | 0.013               | 0.618                                        | 0.880                                              | 0.856       | 0.922                        | 0.331          | 0.714        | 0.822                                                             |
| $\overline{prob(m=1,n=2)}$                                                                                               | 0.001               | 0.014                                        | 0.050                                              | 0.076       | 0.016                        | 0.032          | 0.037        | 0.072                                                             |
| $prob(m = 2, n = 0)$                                                                                                     | 0.001               | 0.006                                        | 0.000                                              | 0.000       | 0.000                        | 0.006          | 0.000        | 0.000                                                             |
| $prob(m = 2, n = 1)$                                                                                                     | 0.002               | 0.040                                        | 0.054                                              | 0.045       | 0.039                        | 0.042          | 0.058        | 0.051                                                             |
| $prob(m = 2, n = 2)$                                                                                                     | 0.001               | 0.007                                        | 0.006                                              | 0.008       | 0.005                        | 0.003          | 0.005        | 0.003                                                             |
| $prob(K=0)$                                                                                                              | 0.930               | 0.002                                        | 0.000                                              | 0.000       | 0.000                        | 0.014          | 0.000        | 0.015                                                             |
| $prob(K=1)$                                                                                                              | 0.064               | 0.827                                        | 0.327                                              | 0.125       | 0.496                        | 0.679          | 0.226        | 0.059                                                             |
| $prob(K=2)$                                                                                                              | 0.006               | 0.171                                        | 0.673                                              | 0.875       | 0.504                        | 0.307          | 0.774        | 0.926                                                             |
|                                                                                                                          | $m = n = 1$         |                                              | $m = 1, n = 0$                                     |             |                              | $m = 0, n = 1$ |              |                                                                   |
|                                                                                                                          | $T^c = T^v = [.5T]$ |                                              | $T^c = [.5T]$                                      |             |                              | $T^v = [.5T]$  |              |                                                                   |
|                                                                                                                          |                     | $\mu_2 = \theta = 1$ $\mu_2 = 1, \theta = 3$ | $\mu_2 = 1$                                        | $\mu_2 = 2$ | $\mu_2 = 3$                  | $\theta=1$     | $\theta = 2$ | $\theta=3$                                                        |
| $prob(m = 0, n = 0)$                                                                                                     | 0.000               | 0.000                                        | 0.000                                              | 0.000       | 0.000                        | 0.379          | 0.020        | 0.000                                                             |
| $prob(m = 0, n = 1)$                                                                                                     | 0.001               | 0.009                                        | 0.000                                              | 0.000       | 0.000                        | 0.518          | 0.883        | 0.907                                                             |
| $prob(m = 0, n = 2)$                                                                                                     | 0.000               | 0.000                                        | 0.000                                              | 0.000       | 0.000                        | 0.002          | 0.005        | 0.007                                                             |
| $prob(m = 1, n = 0)$                                                                                                     | 0.080               | 0.000                                        | 0.907                                              | 0.908       | 0.916                        | 0.007          | 0.000        | 0.001                                                             |
| $\overline{prob}(m=1, n=1)$                                                                                              | 0.887               | 0.951                                        | 0.056                                              | 0.061       | 0.048                        | 0.080          | 0.073        | 0.069                                                             |
| $\overline{prob}(m=1, n=2)$                                                                                              | 0.004               | 0.010                                        | 0.005                                              | 0.008       | 0.004                        | 0.001          | 0.003        | 0.006                                                             |
| $prob(m = 2, n = 0)$                                                                                                     | 0.000               | 0.000                                        | 0.024                                              | 0.016       | 0.017                        | 0.001          | 0.001        | 0.000                                                             |
| $prob(m = 2, n = 1)$                                                                                                     | 0.023               | 0.022                                        | 0.004                                              | 0.006       | 0.011                        | 0.009          | 0.013        | 0.010                                                             |
| $prob(m = 2, n = 2)$                                                                                                     | 0.005               | 0.008                                        | 0.004                                              | 0.001       | 0.004                        | 0.003          | 0.002        | 0.000                                                             |
| $prob(K=0)$                                                                                                              | 0.000               | 0.000                                        | 0.000                                              | 0.000       | 0.000                        | 0.379          | 0.020        | 0.000                                                             |
| $prob(K=1)$                                                                                                              | 0.962               | 0.951                                        | 0.960                                              | 0.962       | 0.958                        | 0.588          | 0.940        | 0.966                                                             |
| $prob(K=2)$                                                                                                              | 0.038               | 0.049                                        | 0.040                                              | 0.038       | 0.042                        | 0.033          | 0.040        | 0.034                                                             |

Table S.10: Finite sample performance of the split-sample procedure to select the number of breaks in coe fficients and variance

Note:  $prob(m = j, n = i)$  represents the probability of choosing j breaks in mean and i breaks in variance, and  $prob(\bar{K} = j)$  denotes the probability of selecting j total breaks in either mean or variance. The upper bound for the total number of breaks is set to 2.

