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1 Introduction

In many bargaining settings, new private information may arrive as negotiations

proceed. Consider, for instance, a producer of a new intermediate good negotiating

a sale with a potential industrial buyer. Since the good for sale is new, production

costs are likely to be initially high. Over time, costs may fall as the seller privately

becomes more efficient. Markets for new durable goods also typically feature declining

production costs, driven by efficiency gains and falling input prices. The goal of

this paper is to study how the arrival of new private information affects bargaining

outcomes.

I study a bargaining game in which a seller makes offers to a privately informed

buyer.1 The seller’s cost of producing the good (or, equivalently, the opportunity

cost of selling it) changes stochastically over time, and is privately observed by the

seller. The seller’s cost can take two values, high or low, and it evolves over time

as a Markov chain. For most of the analysis I focus on separating Perfect Bayesian

Equilibria (PBE), under which the seller’s price each period reveals her cost. These

equilibria are intuitive, tractable, and provide a natural point of comparison with

prior papers in the literature (e.g. Cho, 1990, Ortner, 2017).

The analysis delivers four main results. First, I provide a characterization of

the set of separating PBE. In any separating equilibrium, buyer and seller trade

at a slow rate when the seller’s cost is high, and prices fall gradually. When the

seller’s cost falls, equilibrium becomes Coasian: buyer and seller trade fast at a low

price. Market dynamics under separating PBE are broadly consistent with dynamics

typically observed in markets for new durable goods, where prices fall gradually during

the early stages, and market penetration raises slowly (Conlon, 2012). Moreover,

without loss, separating PBE can be taken to be weakly stationary.

The key drivers of these equilibrium dynamics are the information revelation con-

1As usual, this bargaining model is mathematically equivalent to a setting in which a durable
good monopolist sells to a population of heterogenous buyers.
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straints that arise as a result of the seller’s evolving private information. In any

separating equilibrium, a seller whose cost just fell must not gain by mimicking a

high cost seller and posting a high price. The slow rate at which buyer and seller

trade when costs are high makes this deviation unprofitable, since a low cost seller

has a stronger incentive to trade fast. An implication is that information revelation

constraints lead to inefficiencies relative to the first-best outcome.

The second main result studies the frequent-offers limit of (most efficient) sepa-

rating equilibria. I show that this limit is characterized by a system of differential

equations, which specifies how prices and probability of trade change over time while

the seller’s cost is high. This tractable characterization allows me to derive several

comparative statics. An increase in the seller’s high cost increases equilibrium prices,

and lowers the speed with which buyer and seller trade. An increase in the distribu-

tion of buyer values (in terms of the reversed hazard rate), or an increase in the rate

at which costs fall, have similar effects on bargaining dynamics. Lastly, seller’s prof-

its become negligible as the buyer’s lowest valuation converges to zero, as in classic

Coasian bargaining games (Fudenberg et al., 1985, Gul et al., 1985). The difference,

however, is that this fall in seller’s profits comes together with a drop in social welfare.

My third main result shows that, under some conditions, the environment that

I study admits an efficient mechanism satisfying individually rationality, incentive

compatibility and budget balance. An implication is that equilibrium dynamics lead

to greater inefficiencies than those implied by feasibility.2 This relates my work with

Deneckere and Liang (2006), who study settings with interdependent values and show

that bargaining outcomes are not second-best whenever the first-best outcome is not

implementable. Moreover, this result contrasts with prior bargaining games with two-

sided private information (e.g. Cho, 1990), in which efficient equilibria exist if and

only if the environment admits an efficient mechanism satisfying IR, IC and budget

balance.3

2In Online Appendix F, I show that all equilibria of the game (separating or not) are inefficient.
3Indeed, the equilibria in Cho (1990) are inefficient only when gains from trade are not common
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The last main result compares equilibrium outcomes in this model with a model

in which the evolution of the seller’s cost is publicly observed, as in Ortner (2017).

Stationary equilibria of the game with publicly changing costs retain several features

of the Coasian model. Equilibrium outcomes are efficient in the frequent-offers limit.

Moreover, the seller is unable to extract rents from high value buyers: her limiting

profits are exactly what she would earn if it was common knowledge that the buyer

had the lowest possible value. This contrasts with the model with privately observed

costs, in which trade is inefficiently delayed, and the seller extracts rents. Hence,

privately observed costs lead to lower social welfare, higher seller revenues and lower

buyer surplus (especially for high value buyers) relative to settings with public costs.

Related literature. This paper fits into the literature on dynamic bargaining with

private information. Early contributions in this literature illustrate how, in settings

with one-sided private information, the uninformed party’s inability to commit to

future offers limits the rents she can extract (Bulow (1982), Fudenberg et al. (1985),

Gul et al. (1985), Gul and Sonnenschein (1988)). Stationary equilibria satisfy the

Coase conjecture when offers are frequent (Coase, 1972): the seller’s initial price is

very low, and buyer and seller reach an immediate agreement.

Several papers have identified economic forces that push towards inefficient bar-

gaining outcomes within the one-sided private information framework. Bargaining

inefficiencies can arise when bargainers strategically delay trade to signal their types

(Admati and Perry, 1987), when bargainers use non-stationary strategies (Ausubel

and Deneckere, 1989), when the seller faces capacity constraints (Kahn, 1986, McAfee

and Wiseman, 2008), or when values are interdependent (Evans, 1989, Vincent, 1989,

Deneckere and Liang, 2006, Gerardi and Maestri, 2017). Costly delays can also arise

in the presence of deadlines (Güth and Ritzberger, 1998, Hörner and Samuelson, 2011,

knowledge. We know from Myerson and Satterthwaite (1983) that such environments do not admit
an efficient mechanism satisfying IR, IC and budget balance (and hence do not admit efficient
equilibria).
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Fuchs and Skrzypacz, 2013), when bargainers have outside options (Board and Pycia,

2014), or when bargainers seek to build a reputation for being obstinate (Myerson,

2013, Abreu and Gul, 2000).4

A smaller literature studies how delays and inefficiencies arise when there is two-

sided private information (Cramton, 1984, 1992, Chatterjee and Samuelson, 1987,

1988, Cho, 1990, Ausubel and Deneckere, 1992). The current paper adds to this

literature by analyzing a model in which one of the bargaining sides receives new

private information over time. The analysis illustrates how such evolving private

information affects bargaining outcomes, and gives rise to new distortions.

The current paper also relates to Ortner (2017), who studies a continuous-time

durable goods monopoly model in which the seller’s cost is publicly observed, and

changes stochastically over time.5 Ortner (2017) shows that time-varying costs allow

the seller to extract rents when buyer values are discrete. With a continuum of buyer

types (as in the current paper), the seller is unable to extract rents, and the market

outcome is efficient. The results for public costs in the current paper show that the

conclusions in Ortner (2017) also hold in the frequent-offers limit of discrete-time

games.

Fuchs and Skrzypacz (2010) and Daley and Green (2020) study bargaining games

with one-sided private information in which players may receive public news while

negotiating. Their results shed light into how the arrival of public information affects

bargaining outcomes and can lead to costly delays and inefficiencies. In contrast,

the current paper highlights the inefficiencies generated by the arrival of new private

information.

Hwang (2018) studies how the arrival of new private information affects trading

dynamics between a long-run seller and a sequence of short-term buyers. I instead

study how new private information affects bargaining dynamics between two long-run

4See also Abreu and Pearce (2007), Fanning (2016, 2018), Sanktjohanser (2017).
5See also Acharya and Ortner (2017), who study how public shocks affect equilibrium dynamics

in environments with perfectly persistent private information.

5



agents. Kennan (2001) studies a repeated bargaining game with imperfectly persistent

one-sided private information, and shows that this may give rise to path-dependent

bargaining outcomes.

Lastly, several papers construct models to rationalize sales in durable goods mar-

kets. Conlisk et al. (1984) and Sobel (1984, 1991) propose theories of sales driven by

entry of new consumers. Board (2008), Board and Skrzypacz (2016) and Dilmé and

Li (2019) show that sales can be part of an optimal selling scheme when demand is

time-varying. Dilmé and Garrett (2017) show that sellers might extract additional

rents by offering random price discounts. The current paper adds to this literature

by providing a theory of sales driven by changes in the seller’s cost of production.

The paper proceeds as follows. Section 2 introduces the model. Section 3 char-

acterizes the efficient outcome and the commitment solution. Section 4 characterizes

the set of separating PBE. Section 5 studies the frequent-offers limit of welfare maxi-

mizing separating PBE and derives several comparative statics. Section 6 shows that,

under certain conditions, the game admits an efficient mechanism satisfying IC, IR

and budget balance. Section 7 compares this model to a model in which costs are

publicly observed. Section 8 discusses extensions and other equilibria. Proofs are

collected in the Appendix and the Online Appendix.

2 Model

A seller with the technology to deliver a good faces a buyer. The buyer’s valuation

for the seller’s good, v, is her private information, and is drawn from distribution F

with support [v, v] and continuous density F ′ = f satisfying f(v) > 0 for all v ∈ [v, v].

I assume that v > 0. Time is discrete, with t ∈ T (∆) = {0,∆, 2∆, ...,∞}.

The seller’s cost of delivering the good (or, equivalently, her opportunity cost

of selling it) changes over time. The seller’s cost can take two values: cH > 0 or

cL = 0. At t = 0, the seller’s cost c0 takes value cH with probability q ∈ (0, 1) and
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cL with probability 1 − q. For all times t ∈ T (∆), prob(ct+∆ = cH |ct = cH) = e−λ∆

and prob(ct+∆ = cL|ct = cL) = 1, where λ > 0 is a strictly positive constant.

The assumption that low cost cL is absorbing simplifies the exposition, but is not

necessary; Section 8 shows how results generalize when cL is not absorbing. The

seller is privately informed about her production cost: she privately observes her

current cost realization at the start of each period t ∈ T (∆).

The timing within each period t is as follows. At t = 0, the buyer privately learns

her valuation and the seller privately learns her initial cost. Then, the seller offers

price p0 ∈ R+, and the buyer chooses to accept or reject this price. At any time t > 0,

if the buyer hasn’t yet accepted a price, the seller first privately observes current cost

ct. After observing ct, the seller offers price pt ∈ R+, and the buyer chooses to accept

or reject this price. If the buyer accepts the seller’s offer at time t, trade happens and

the game ends, with the buyer obtaining payoff e−rt(v − pt) and the seller obtaining

payoff e−rt(pt − ct), where r > 0 is the common discount rate.

Histories and strategies. At any period t before agreement is reached, the seller’s

history hSt = {cs, ps}s<t records all previous cost realizations and all previous prices,

and the buyer’s history hBt = {v, {ps}s<t} records her valuation and all previous prices.

A (pure) strategy for the seller σS : hSt ×ct 7→ pt maps seller’s histories hSt and current

cost ct into a price. A (pure) strategy for the buyer σB : hBt × pt 7→ {accept, reject}

maps buyer’s histories hBt and the seller’s current price pt into a decision of whether

or not to accept price pt.

Solution concept. For most of the paper, I focus on separating Perfect Bayesian

Equilibrium (PBE) under which, at every seller history, the seller’s price reveals her

current cost.6 Formally, let (σ, µ) be a PBE, where σ = (σS, σB) are players’ strategies

and µ = (µS, µB) are players’ beliefs: µS(hSt ) is the seller’s beliefs over the buyers’

type after history hSt , and µB(hBt ) the buyer’s beliefs over the seller’s cost at time t

6Section 8 discusses other equilibria.
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after history hBt . I look for PBE (σ, µ) with the property that, for every seller history

hSt , suppσB(hSt )(cH) ∩ suppσB(hSt )(cL) = ∅. That is, for every history hSt , the seller

charges a different price if her cost at time t is cH than if it is cL. As a result, for

every on-path buyer history hBt tpt, µB(hBt tpt) assigns probability 1 to either ct = cL

or ct = cH .

I impose one additional restriction on the buyer’s beliefs: if at any history hBt

the buyer assigns probability 1 to the seller’s current cost being cL, then I require

that for all histories that follow hBt , the buyer continues to assign probability 1 to

the seller’s cost being cL. This restriction is natural, since cost cL is absorbing.7 Let

ΣS(∆) denote the set of PBE satisfying these conditions, under which the seller uses

a pure action while her costs are cH .8

Successive skimming. Any PBE must satisfy the skimming property : if at time t

a buyer with valuation v ∈ [v, v) finds it optimal to accept the current price pt, then

a buyer with valuation v′ > v also finds it optimal to accept pt. The reason for this is

that it is more costly for high-value buyers to delay trade.9 The skimming property

implies that, after any buyer history hBt t pt, there exists a cutoff κt+∆ such that a

buyer with valuation v > κt+∆ accepts the current offer pt, and a buyer with valuation

v < κt+∆ rejects the offer. Hence, if the buyer rejects all of the seller’s offers {ps}s≤t
up to time t, the seller believes that the buyer’s valuation is distributed according to

prob(v ≤ v̂) = F (v̂)
F (κt+∆)

for all v̂ ∈ [v, κt+∆].

3 Benchmarks

This section derives two benchmarks: (i) the first-best outcome, and (ii) the seller’s

optimal commitment outcome.

7This condition is similar to the “Never Dissuaded Once Convinced” condition often used in
bargaining models with private information (e.g., Osborne and Rubinstein, 1990).

8In Appendix A, I briefly study equilibria in which the seller mixes while her costs are cH .
9See Lemma 1 in Fudenberg et al. (1985) for a formal proof.
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First-best. Define ρ(∆) ≡ e−r∆(1−e−λ∆)

1−e−(r+λ)∆ to be the expected discounted time until

costs fall to cL, when current cost is cH . Let v∗(∆) be the solution to v∗(∆)− cH =

ρ(∆)v∗(∆). Under the first-best outcome, the seller sells to a buyer with valuation

v ≥ v∗(∆) at t = 0, regardless of the initial cost, and sells to a buyer with valuation

v < v∗(∆) the first time costs fall to cL. Define τL ≡ min{t ∈ T (∆) : ct = cL} to be

the random time at which costs fall to cL. The following proposition summarizes the

first-best outcome.

Proposition 1 (First best). Under the first-best, a buyer with valuation v ≥ v∗(∆)

buys at time t = 0, and a buyer with valuation v < v∗(∆) buys at time τL.

Throughout the paper, I maintain the following assumption.

Assumption 1. v∗(∆) ∈ (v, v).

Since v∗(∆) > cH , Assumption 1 is consistent both with gains from trade being

common knowledge (i.e., v ≥ cH) and with settings in which some buyer types can

only trade when costs are low (i.e, v < cH).

Commitment solution. Suppose next that the seller can commit to a mechanism

at time t = 0, after learning her initial cost c0. Let φ(v) ≡ v − 1−F (v)
f(v)

denote the

buyer’s virtual valuation.

Proposition 2 (Commitment solution). Suppose φ(·) is strictly increasing. Under

the commitment solution, the seller sells to a buyer with φ(v) ≥ v∗(∆) at time t = 0,

and to a buyer with φ(v) ∈ [0, v∗(∆)] at time τL. A buyer with φ(v) < 0 never buys.

The proof of Proposition 2 is in Online Appendix E. As is standard in screening

models, under the commitment solution the seller inefficiently delays trade with lower

value buyers to reduce the informational rents of higher value buyers. These ineffi-

ciencies appear in two ways. First, a buyer with value v ∈ [v∗(∆), φ−1(v∗(∆))) trades

inefficiently late. Second, a buyer with value v ∈ [v, φ−1(0)) never trades.10

10The proof of Proposition 2 shows that the same result holds if the seller can commit to a
mechanism prior to learning her initial cost.
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4 Separating Equilibria

This section studies equilibrium set ΣS(∆). I start with a few preliminary observa-

tions. Note that in any PBE in ΣS(∆), when costs fall to cL the buyer’s beliefs about

the seller’s cost remain concentrated at cL at all future periods. Hence, the continu-

ation game is strategically equivalent to the one-sided incomplete information game

in Fudenberg et al. (1985) and Gul et al. (1985). This game has a unique equilibrium

(since v > cL = 0), which is weakly stationary: the buyer’s acceptance rule at histo-

ries at which the current price is the lowest among all past prices depends solely on

her valuation (see Fudenberg et al. (1985) and Gul et al. (1985)). For any κ ∈ [v, v],

let pL(κ) denote the price that a seller posts in the one-sided incomplete informa-

tion game when her belief cutoff is κ, and let UL(κ) denote the seller’s equilibrium

continuation profits given belief cutoff κ.

Consider next equilibrium behavior at periods at which costs are high. Note that

for any (σ, µ) ∈ ΣS(∆), on-path behavior at times t with ct = cH is characterized

by a sequence {pHt , κHt }t∈T (∆) such that: pHt is the price that the seller charges at

time t if ct = cH , and κHt is the seller’s belief cutoff at the start of time t if her

cost last period was cH . Hence, on the equilibrium path, at any time t ∈ T (∆) with

ct = cH , the buyer accepts the seller’s price if her valuation lies in [κHt+∆, κ
H
t ); and the

conditional probability with which buyer and seller trade is
F (κHt )−F (κHt+∆)

F (κHt )
. For any

sequence {pHτ , κHτ }, and for all times t, let UH
t ({pHτ , κHτ }) be the seller’s continuation

payoff if ct = cH , when play is given by {pHτ , κHτ }:

UH
t ({pHτ , κHτ }) = (pHt − cH)

F (κHt )− F (κHt+∆)

F (κHt )
+ e−(r+λ)∆F (κHt+∆)

F (κHt )
UH
t+∆({pHτ , κHτ })

+ e−r∆(1− e−λ∆)
F (κHt+∆)

F (κHt )
UL(κHt+∆).

Theorem 1. There exists ∆ > 0 such that for all ∆ ≤ ∆: (i) ΣS(∆) is non-

empty; and (ii) for every equilibrium (σ, µ) ∈ ΣS(∆), there exists a weakly stationary
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equilibrium (σws, µws) ∈ ΣS(∆) that induces the same outcome as (σ, µ).

To establish Theorem 1, I show that in any equilibrium in ΣS(∆), for all t ∈ T (∆),

prices and belief cutoffs {pHτ , κHτ } satisfy the following three conditions:

κHt+∆ − pHt = e−(r+λ)∆(κHt+∆ − pHt+∆) + e−r∆(1− e−λ∆)(κHt+∆ − pL(κHt+∆)), (1)

F (κHt )− F (κHt+∆)

F (κHt )
pHt ≤ UL(κHt )− e−r∆

F (κHt+∆)

F (κHt )
UL(κHt+∆), (2)

UH
t ({pHτ , κHτ }) ≥ ρ(∆)UL(κHt ). (3)

I further show that, for all ∆ ≤ ∆ (where ∆ is the cutoff in Theorem 1), and for any

sequence {pHτ , κHτ } satisfying (1)-(3) with {κHτ } decreasing, there exists an equilibrium

(σ, µ) ∈ ΣS(∆) that induces {pHτ , κHτ }. Hence, for ∆ small, these three conditions fully

characterize ΣS(∆).

Equation (1) is the standard indifference condition of the marginal buyer: for all

periods t with ct = cH , the marginal buyer κHt+∆ is indifferent between trading at the

current price pHt , or waiting and trading at time t+ ∆.

Inequality (2) shows that the probability (F (κHt ) − F (κHt+∆))/F (κHt ) with which

buyer and seller trade at a period t with ct = cH cannot be too large. As a result,

equilibrium trade is slow relative to the first-best outcome. To see why (2) holds,

suppose that the seller’s belief cutoff at t is κHt , and that her cost falls from cH to

cL = 0 at this period. The seller’s profit from posting price pL(κHt ) and revealing that

her cost is cL is UL(κHt ). The seller’s profit from mimicking a high cost seller for one

period, and revealing her cost at t+ ∆, is

F (κHt )− F (κHt+∆)

F (κHt )
pHt + e−r∆

F (κHt+∆)

F (κHt )
UL(κHt+∆).

Inequality (2) guarantees that this deviation is not profitable.

Lastly, equation (3) shows that the seller’s equilibrium payoff when her cost is cH

must be at least as large as what she would get by delaying trade until her cost falls
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to cL, and playing the continuation equilibrium from that point onwards.

Proposition 3. In any equilibrium in ΣS(∆), a buyer with value v < v∗(∆) only

trades when the seller’s cost is low: if {pHτ , κHτ } is induced by (σ, µ) ∈ ΣS(∆), then

for all τ , κHτ ≥ v∗(∆).

Proposition 3 shows that any inefficiency takes the form of too much delay: trade

cannot happen earlier than under the first-best.

I end this section by noting that, in any equilibrium, the probability with which

buyer and seller trade while seller’s cost is high is bounded by inequality (2). This

delayed trade is socially costly. Therefore, under the most efficient equilibrium in

ΣS(∆), constraint (2) binds at (almost) all periods t with κHt > κHt+∆.

5 Frequent-offers Limit

This section studies the frequent-offers limit of welfare maximizing equilibria. For

each ∆ > 0, let (σ∆, µ∆) be an equilibrium in ΣS(∆) achieving the largest social

welfare (among equilibria in ΣS(∆)). Let {pHt (∆), κHt (∆)} denote the prices and

belief cutoffs induced by (σ∆, µ∆) at periods at which the seller’s costs are cH .

Recall that, when the seller’s costs fall to cL, continuation play under any equilib-

rium in ΣS(∆) is equivalent to the continuation equilibrium in a game with one-sided

private information. By Fudenberg et al. (1985) and Gul et al. (1985), as ∆→ 0, the

seller’s price converges to v (regardless of her belief cutoff), the buyer buys immedi-

ately at this price, and the seller obtains profits v. Define v̂ ≡ lim∆→0 v
∗(∆) = r+λ

r
cH .

Theorem 2. There exists functions pH : R+ → R+ and κH : R+ → [v, v] such that,

for all t ∈ T (∆), lim∆→0 p
H
t (∆) = pH(t) and lim∆→0 κ

H
t (∆) = κH(t).
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Functions pH(t) and κH(t) satisfy

−dp
H(t)

dt
= r(κH(t)− pH(t)) + λ(v − pH(t)), (4)

−dκ
H(t)

dt
=
F (κH(t))

f(κH(t))

rv

(pH(t)− v)
, (5)

for all t ≤ t̂ = inf{t ≥ 0 : κH(t) = v̂}, with boundary conditions κH(0) = v and

pH(t̂) = cH + λ
r+λ

v. For all t > t̂, dpH(t)
dt

= dκH(t)
dt

= 0.

Theorem 2 shows that the frequent-offers limit of welfare maximizing equilibrium

is characterized by a system of differential equations. The intuition behind equation

(4) is as follows. The buyer’s benefit from delaying her purchase for an instant at

time t while ct = cH is

−dp
H(t)

dt
+ λ(pH(t)− v).

Indeed, the seller’s price falls at rate dpH(t)
dt

if costs remain high, and drops from pH(t)

to v if costs fall to cL. By equation (4), this benefit must equal the cost r(κH(t)−pH(t))

that the marginal buyer type κH(t) incurs from delaying trade for an instant.

To see the intuition for (5), note that the equation can be written as

− dκH(t)

dt

f(κH(t))

F (κH(t))
(pH(t)− v) = rv. (6)

The left-hand side of equation (6) is the net benefit that a seller whose cost fell to

cL = 0 at time t obtains from pretending that her cost is cH for an instant longer.

Indeed, the seller makes a sale with instantaneous probability −dκH(t)
dt

f(κH(t))
F (κH(t))

if she

pretends to have cost cH , and sells at price pH(t) instead of v. The right-hand side

of (6) is the cost in terms of delayed trade that the seller incurs by following such a

mimicking strategy. The speed of trade −dκH(t)
dt

f(κH(t))
F (κH(t))

under a welfare maximizing

equilibrium is such that the net gain from pretending to have a high cost is equal to

the cost of delayed trade.

Finally, functions pH(t) and κH(t) satisfy two boundary conditions: κH(0) = v
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and pH(t̂) = cH + λ
r+λ

v. The first boundary condition holds since at t = 0 the seller

believes that v ∼ F (recall that suppF = [v, v]).

To understand the second boundary condition, note that in the frequent-offers

limit, while costs are cH the seller trades with the buyer until her belief cutoff reaches

the efficient cutoff v̂ = r+λ
r
cH ; i.e., until time t̂ = inf{t ≥ 0 : κH(t) = v̂}. Price pH(t̂)

at which a buyer with type v̂ trades leaves this buyer indifferent between buying at

t̂, or waiting and buying at price v when costs fall to cL:

v̂ − pH(t̂) =
λ

r + λ
(v̂ − v)⇐⇒ pH(t̂) = cH +

λ

r + λ
v,

where the second equality uses v̂ = r+λ
r
cH .

The dynamics in Theorem 2 are broadly consistent with dynamics typically ob-

served in markets for new durable goods. During the early stages, prices typically

fall gradually, but at a faster rate than costs, and market penetration raises slowly

(Conlon, 2012).

Relation to models with two-sided private information. Theorem 2 allows

for a comparison between the current model and separating stationary equilibria of

models with two-sided private information. Cho (1990) shows that, in such models,

separating stationary equilibria satisfy a version of the Coase conjecture: when gains

from trade are common knowledge (i.e., seller’s highest cost is lower than buyer’s

lowest value), bargaining outcomes are efficient, and the seller cannot extract rents

from high value buyers.

In the current model, in contrast, bargaining inefficiencies persist even when gains

from trade are common knowledge. Indeed, information revelation constraint (2) (or

(6) in the frequent-offers limit) bounds the rate at which buyer and seller trade while

costs are high even when gains from trade are common knowledge (i.e., even when

cH < v).11

11Even when gains from trade are common knowledge (i.e., v > cH), under Assumption 1 lower
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De-coupling equation (4). The system of differential equations (4)-(5) in Theorem

2 is coupled. This makes it difficult to derive comparative statics results from these

equations. I now show how to transform (4)-(5) to obtain a de-coupled ODE for

prices.

For each κ ∈ [v̂, v], let PH(κ) denote the price at which a buyer with value

κ trades when costs are cH in the frequent-offers limit; that is, for all t ∈ [0, t̂],

PH(κH(t)) = pH(t). Combining (4) and (5), and using dpH(t)
dt

= dPH(κH(t))
dκH

dκH(t)
dt

,

PH(·) solves:

∀κ ∈ [v̂, v],
dPH(κ)

dκ
=
(
r(κ− PH(κ)) + λ(v − PH(κ))

) f(κ)

F (κ)

(PH(κ)− v)

rv
, (7)

with PH(v̂) = cH + λ
r+λ

v.

Comparative statics. I now use Theorem 2 and equation (7) to study equilibrium

properties and derive several comparative statics. Recall that −dκH(t)
dt

f(κH(t))
F (κH(t))

is the

speed of trade under the limiting equilibrium. The first result shows how prices and

speed of trade change with changes in (i) cost cH , (ii) value distribution F , and (iii)

rate λ at which costs fall.

Proposition 4. (i) As cH increases, price PH(κ) increases for all κ > v̂, and the

speed of trade falls for all t < t̂.

(ii) As F increases in terms of its reversed hazard rate, price PH(κ) increases for

all κ > v̂, and the speed of trade falls for all t < t̂.

(iii) As λ increases, price PH(κ) increases for all κ > v̂ close to v̂, and the speed of

trade falls for all t close to t̂.

The first part of Proposition 4 shows that the prices at which the different buyer

types trade when costs are high increase with an increase in cH . Since prices are now

type buyers delay their trade until costs fall to cL under the first-best outcome.
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higher, by equation (6) the rate at which buyer and seller trade when costs are high

must be adjusted downwards to deter a low cost seller from pretending to have a high

cost. The second and third parts of Proposition 4 establish similar results for changes

in the value distribution and in the rate at which the seller’s cost falls.

The last result in this section studies equilibrium outcomes as the buyer’s lowest

value v becomes small.

Proposition 5. In the limit as v → 0, trade under the limiting welfare maximizing

separating equilibrium only occurs when the seller’s costs are low, at a price of zero.

Proposition 5 shows that inefficiencies grow in the limit as the lowest valuation

goes to zero. The result follows from equation (6): as v → 0, the speed at which

buyer and seller trade while costs are cH must converge to zero to deter a low cost

seller from pretending to have a high cost. Hence, in the limit trade occurs only when

the seller’s costs fall to cL.

Proposition 5 allows for further comparisons between the current model and pre-

vious models in the literature. When the seller’s production cost is fixed and publicly

known, the seller’s profits converge to zero as the buyer’s lowest valuation v con-

verges to zero (Fudenberg et al., 1985, Gul et al., 1985). But the limiting equilibrium

outcome is efficient: all buyers trade immediately at price equal to marginal cost.

For models with two-sided private information and with time-invariant costs, the

results in Cho (1990) imply that, in any separating stationary equilibrium, the seller’s

profits also converge to zero as the buyer’s lowest value converges to zero. However,

inefficiencies “explode” in this limit: only the seller with the lowest possible cost

makes sales.12

Proposition 5 illustrates how these results generalize when the seller is privately

informed about her time-varying production cost. As in the two cases described above,

the seller’s profits go to zero as the buyer’s lowest value v goes to zero. Moreover, as

in Cho (1990), inefficiencies also grow in this “gapless” limit. The difference, however,

12Ausubel and Deneckere (1992) establish a related result.
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is that seller and buyer eventually trade with probability 1 in this model, when costs

fall to cL.

6 An Efficient Mechanism

This section shows that, under certain conditions, the environment that I study ad-

mits a mechanism satisfying IC, IR, and budget balance that attains the first-best.

Consider the following direct mechanism, which I denote MFB. At t = 0, buyer

reports her type v ∈ [v, v] and seller reports her initial cost c0 ∈ {cL, cH}. If the seller

reports c0 = cL, then buyer and seller trade at t = 0 at a price of v, regardless of the

buyer’s report.

If the seller instead reports c0 = cH , then at t = 0: (i) if buyer reported v ∈

[v∗(∆), v], she trades at price cH + ρ(∆)v; (ii) if buyer reported v ∈ [v, v∗(∆)), she

pays the seller a price ρ(∆)v at t = 0 but doesn’t trade yet. Then, at each period

t ∈ T (∆), t > 0, the seller reports her cost ct ∈ {cL, cH}. If at t > 0 the seller reports

ct = cH , nothing happens. The first period t > 0 at which the seller reports ct = cL,

a buyer who reported v ∈ [v, v∗(∆)) trades, and pays price cL(= 0) to the seller at

this point.

Proposition 6. Suppose that (1 − ρ(∆))v ≥ (1 − F (v∗(∆)))cH . Then, mechanism

MFB is budget balance, satisfies IC and IR, and implements the first-best outcome.

The existence of an efficient mechanism satisfying IC, IR and budget balance dis-

tinguishes the current model from prior bargaining games with two-sided asymmetric

information. For instance, separating equilibria in Cho (1990) are inefficient only

when the distribution of buyer values and the distribution of seller costs overlap.

But we know from Myerson and Satterthwaite (1983) that such a framework does

not admit an efficient mechanism satisfying IC, IR and budget balance. In contrast,

separating equilibria in this model are always inefficient, regardless of whether the
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conditions in Proposition 6 hold.13

Proposition 6 and Theorem 2 show that the inefficiencies that arise in equilibrium

are in some cases strictly larger than those implied by feasibility. This is reminiscent

of Deneckere and Liang (2006), who study a bargaining model with correlated values

and show that equilibria fail to be second-best whenever the first-best is not imple-

mentable. The difference, however, is that in Deneckere and Liang (2006) equilibria

are first-best efficient whenever the first-best is implementable (provided values are

positively correlated).

7 Publicly Observable Costs

This section compares equilibrium outcomes described in Sections 4 and 5 with equi-

librium outcomes of a model in which the seller’s changing cost is publicly observable,

as in Ortner (2017). Let Σpub(∆) denote the set of weakly stationary PBE of the game

with publicly observable costs. Note that, in any (σ, µ) ∈ Σpub(∆), continuation play

when costs are cL is identical to continuation play in a model with one-sided private

information. In particular, as ∆ → 0, the seller’s price when costs are cL converges

to v, and the buyer accepts this price immediately.

For each ∆ > 0, let (σ∆, µ∆) ∈ Σpub(∆) be a weakly stationary equilibrium of

the game with public costs, and let Upub(σ∆, µ∆; ∆) denote the seller’s profits under

(σ∆, µ∆) at t = 0, conditional on her initial cost being cH . Recall that τL is the first

time the seller’s cost falls to cL.

Theorem 3. Suppose the seller’s costs are publicly observable. Then, as ∆→ 0:

(i) the equilibrium outcome under (σ∆, µ∆) converges to the first-best outcome;

(ii) if c0 = cH , the seller’s initial price under (σ∆, µ∆) converges to cH + λ
r+λ

v; and

13Proposition F.1 in Online Appendix F shows that all equilibria of this game (separating or not)
are inefficient.
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(iii) if c0 = cH , seller’s profits Upub(σ∆, µ∆; ∆) converge to λ
r+λ

v.

Theorem 3 generalizes the classic Coase conjecture (Coase, 1972, Fudenberg et al.,

1985, Gul et al., 1985) to settings in which production costs publicly change over time.

As the time period vanishes, the equilibrium outcome becomes efficient, and the seller

is unable to extract rents from high value buyers: her profits when c0 = cH are λ
r+λ

v,

which is exactly what she would obtain if the buyer’s value was v with probability

1.14

Interestingly, even if the seller earns exactly what she would earn if the buyer had

the lowest value v, different types of buyers trade at different times, and at different

prices: when initial costs are cH , buyers with value above v̂ buy at time t = 0 at price

cH + λ
r+λ

v > v, and buyers with value below v̂ buy at time τL at price v. However,

the profit margin λ
r+λ

v that the seller makes on a high value buyer is exactly equal to

the expected discounted profit margin from selling to a low value buyer when costs

fall to cL.

Theorem 3 contrasts sharply with the results in Theorems 1 and 2: the seller is

able to extract rents from high value buyers when she privately observes her cost,

and the market outcome is inefficient. Indeed, with privately observed costs, trade

is inefficiently delayed to satisfy the information revelation constraint in (2). As in

the commitment solution in Proposition 2, this inefficiently delayed trade reduces the

rents of high value buyers, and allows the seller to obtain larger profits.

Theorem 3, together with Theorems 1 and 2, imply that the buyer is worse-off

when the seller privately observes her evolving cost of production. However, this

evolving private information affects different buyer types differently: buyers with

valuation above v̂ are strictly worse-off when the seller privately observes her costs,

whereas buyers with valuation below v̂ are indifferent (since, in both cases, they trade

at time τL at price v).

14Indeed, if the buyer’s valuation was v with probability 1, the seller would optimally wait until
time τL, would charge price v at that point, and her expected discounted profits would be λ

r+λv.
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It is worth highlighting that the frequent-offers limiting equilibrium of the model

with public costs cannot rationalize the price dynamics typically observed in markets

for new durable goods. In those markets, during the early stages prices tend to fall

at a faster pace than costs, leading to falling profit margins. In contrast, Theorem 3

shows that prices fall in tandem with costs when costs are public, and profit margins

increase over time (from λ
r+λ

v when c = cH , to v when c = cL = 0).

Relation to Ortner (2017). Ortner (2017) studies a durable goods monopoly

model in which the seller’s costs are publicly observed and change stochastically over

time. The key results in that paper are: (i) time-varying costs allow the seller to

extract rents when buyer values are discrete; (ii) when there is a continuum of buyer

types (as in the current model), the seller is unable to extract rents and the market

outcome is efficient, as in Theorem 3.

The key difference is that Ortner (2017) casts the model directly in continuous

time, and introduces a new equilibrium notion to get around well-known difficulties

in analyzing continuous-time games with observable actions. Hence, Theorem 3 is

a new result, which shows that the conclusions in Ortner (2017) still hold in the

frequent-offers limit of discrete-time games.

8 Discussion

I end the paper with a discussion of two issues: (i) how the results extend when low

cost cL is not absorbing, and (ii) other (non-separating) equilibria.

Increasing costs. The model assumes that cost cL is absorbing. This assump-

tion greatly simplifies the analysis and exposition. Indeed, it implies that in any

equilibrium in ΣS(∆), continuation play when the seller’s cost falls is equivalent to

equilibrium play in a model with one-sided private information. Hence, in any sepa-

rating equilibrium, as ∆→ 0 the seller’s price converges to v when costs are low, and
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the buyer trades immediately.

In Online Appendix G, I study the case in which costs evolve as prob(ct+∆ =

cH |ct = cH) = e−λ∆ and prob(ct+∆ = cL|ct = cL) = e−γ∆ with λ, γ > 0. I show that,

in any weakly stationary separating equilibrium, the seller’s price also converges to

v as ∆ → 0 whenever costs are cL, and trade is immediate. Indeed, when costs are

cL, the Coasian incentive to accelerate trade constraints the seller’s ability to extract

rents from high value buyers.

With increasing costs, while ct = cH prices must still satisfy equation (1). Online

Appendix G shows that, in this setting, the seller’s IC constraint (2) becomes:

F (κHt )− F (κHt+∆)

F (κHt )
pHt ≤ UL(κHt )− e−(r+γ)∆F (κHt+∆)

F (κHt )
UL(κHt+∆)

− e−r∆(1− e−γ∆)
F (κHt+∆)

F (κHt )
UH(κHt+∆). (8)

The last term in (8) takes into account the possibility that the seller’s cost increases

next period if her current cost is cL, in which case the seller gets a continuation profit

UH(κHt+∆).15

Other equilibria. Throughout the paper, I focused on separating equilibria, under

which the seller’s price each period perfectly reveals her current cost realization. Such

equilibria are intuitive, tractable, and help rationalize observed pricing dynamics in

markets for new durable goods. Moreover, such equilibria represent a natural point

of comparison to prior papers in the literature, like Cho (1990) and Ortner (2017).

However, the game admits many other equilibria. For instance, the game admits

semi-separating equilibria, in which a seller with ct = cH posts price pHt , and a seller

whose cost fell to cL posts price pHt with probability 1 − αt and price pL(κHt ) with

probability αt ∈ (0, 1).16 The game also admits pooling equilibria, in which both

15Online Appendix G briefly shows how Theorem 2 extends to this environment.
16Under such an equilibrium: (i) once the seller posts price pL(κHt ), she reveals that her cost is

cL, and the continuation equilibrium is as in Gul et al. (1985), Fudenberg et al. (1985); and (ii)
inequality (2) holds with equality at all periods t in which αt ∈ (0, 1).
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types of sellers post the same price at times t = 0, ..., τ −∆; and buyer and seller play

a continuation equilibrium in ΣS from time τ onwards.

In Online Appendix F, I show that every PBE of the game (separating or not), or

every limiting sequence of PBE as ∆→ 0, is inefficient. That is, even if the first-best

is feasible under certain conditions (Proposition 6), equilibrium outcomes are always

inefficient.

Appendix

A Proofs of Theorem 1 and Proposition 3

In any PBE in ΣS, when costs falls to cL, continuation play coincides with equilibrium

play in the one-sided incomplete information game in Fudenberg et al. (1985) and Gul

et al. (1985).17 Hence, I focus on characterizing equilibrium behavior at periods t with

ct = cH .

By the skimming property, any PBE in ΣS induces a decreasing sequence of belief

cutoffs {κHt } such that along the path of play, at any time t with ct = cH , (i) the

seller believes that the buyer’s type lies in [v, κHt ], and (ii) the buyer buys at time t

if and only if her valuation lies in [κHt+∆, κ
H
t ).

Lemma A.1. Fix a PBE (σ, µ) ∈ ΣS. Consider a seller history hSt with cs = cH for

all s < t such that the seller’s belief cutoff κt at time t is strictly larger than v. Let

pHt be the price that the seller charges under (σ, µ) at history hSt if ct = cH , and let

κt+∆ be the highest consumer type that buys at time t when ct = cH . Then, κt and

κt+∆ satisfy

pHt
F (κt)− F (κt+∆)

F (κt)
≤ UL(κt)− e−r∆

F (κt+∆)

F (κt)
UL(κt+∆). (9)

17For ease of exposition, throughout Appendix A I drop the dependence on time period ∆.
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Proof. Consider a seller whose cost changed from cH to cL after history hSt . The

profits that this seller obtains by revealing her cost are UL(κt). The profits that this

seller would make by posting price pHt that she would have posted if ct = cH , and then

from t + ∆ onwards playing the continuation strategy with common knowledge cost

cL and belief cutoff κt+∆ are pHt
F (κt)−F (κt+∆)

F (κt)
+ e−r∆ F (κt+∆)

F (κt)
UL(κt+∆). A seller whose

cost changed to cL at period t has an incentive to reveal her cost only if (9) holds. �

Recall that ρ = e−r∆(1−e−λ∆)

1−e−(r+λ)∆ . Fix a PBE in ΣS, and consider a seller history hSt

with cs = cH for all s < t leading to belief cutoff κHt = κ. Note that at such a

history, a seller with cost ct = cH can obtain a payoff equal to ρUL(κ) by posting

prices higher than κ at all periods until her costs fall to cL, and then playing her

continuation strategy. Hence, the seller’s continuation profits at this history under

(σ, µ) cannot be lower than ρUL(κ).

Lemma A.2. Fix a PBE (σ, µ) ∈ ΣS, and consider a seller history hSt with belief

cutoff κt. If ct = cH , then κt+∆ ≥ min{κt, v∗}. In particular, if κt ≤ v∗ and ct = cH ,

the seller makes a sale with probability zero at time t (i.e., κt+∆ = κt).

Proof. Towards a contradiction, suppose that ct = cH and κt+∆ < min{κt, v∗} ≤ v∗.

Let {κt+τ∆}∞τ=0 be a weakly decreasing sequence such that for all τ ≥ 0, if the seller’s

cost is cH at time t+ τ∆, under (σ, µ) the seller sells to the buyer when her valuation

is in [κt+(τ+1)∆, κt+τ∆). Let {pHt+τ∆}∞τ=0 denote the sequence of prices that the seller

charges at each time t + τ∆ if ct+τ∆ = cH . Recall that pL(κ) is the price that the

seller charges if her cutoff belief is κ and her costs are cL. By Fudenberg et al. (1985)

and Gul et al. (1985), pL(κ) is weakly increasing in κ.

Note first that, for all τ ≥ 0, it must be that

κt+(τ+1)∆ − pHt+τ∆ ≥ ρ(κt+(τ+1)∆ − pL(κt+(τ+1)∆)). (10)

Indeed, a buyer with value κt+(τ+1)∆ can guarantee a payoff of at least ρ(κt+(τ+1)∆ −
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pL(κt+(τ+1)∆)) by delaying her purchase until the seller’s cost falls to cL. Note further

that,

κt+(τ+1)∆ − cH < ρκt+(τ+1)∆,

where the inequality follows since κt+(τ+1)∆ ≤ κt+∆ < v∗ and since v∗ − cH = ρv∗.

Combining this inequality with inequality (10),

pHt+τ∆ ≤ (1− ρ)κt+(τ+1)∆ + ρpL(κt+(τ+1)∆) < cH + ρpL(κt+(τ+1)∆) (11)

Equation (11) implies that the profit margin pHt+τ∆ − cH that the seller earns from

selling to consumers with value v ∈ [κt+(τ+1)∆, κt+τ∆) when her costs are cH is strictly

lower than the expected discounted profit margin ρpL(κt+(τ+1)∆) that the seller would

earn if she waited until her costs fell to cL = 0 and then charged price of pL(κt+(τ+1)∆).

For all s ∈ T (∆), let UH
s denote the seller’s on-path continuation payoff at time s

if cs = cH under equilibrium (σ, µ). For all κ ∈ [v, v], recall that UL(κ) is the seller’s

continuation payoff under (σ, µ) at a history with belief cutoff κ and at which her

costs are cL, respectively. I now use equation (11) to show that UH
t < ρUL(κt). This

implies that (σ, µ) cannot be an equilibrium, since at time t the seller can earn ρUL(κt)

by waiting until her costs fall to cL and then playing the continuation equilibrium

from that point onwards.
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Note that, for all τ ≥ 0,

UH
t+τ∆ = (pHt+τ∆ − cH)

F (κt+τ∆)− F (κt+(τ+1)∆)

F (κt+τ∆)
+ e−(r+λ)∆F (κt+(τ+1)∆)

F (κt+τ∆)
UH
t+(τ+1)∆

+ e−r∆
F (κt+(τ+1)∆)

F (κt+τ∆)
(1− e−λ∆)UL(κt+(τ+1)∆)

< ρpL(κt+(τ+1)∆)
F (κt+τ∆)− F (κt+(τ+1)∆)

F (κt+τ∆)
+ e−(r+λ)∆F (κt+(τ+1)∆)

F (κt+τ∆)
UH
t+(τ+1)∆

+ e−r∆
F (κt+(τ+1)∆)

F (κt+τ∆)
(1− e−λ∆)UL(κt+(τ+1)∆)

= ρ

(
pL(κt+(τ+1)∆)

F (κt+τ∆)− F (κt+(τ+1)∆)

F (κt+τ∆)
+
F (κt+(τ+1)∆)

F (κt+τ∆)
UL(κt+(τ+1)∆)

)
− e−(r+λ)∆ρ

F (κt+(τ+1)∆)

F (κt+τ∆)
UL(κt+(τ+1)∆) + e−(r+λ)∆F (κt+(τ+1)∆)

F (κt+τ∆)
UH
t+(τ+1)∆

(12)

where the strict inequality follows from (11), and the last equality uses ρ = e−r∆(1−

e−λ∆) + e−(r+λ)∆ρ. Note next that, for all τ ≥ 0,

UL(κt+τ∆) ≥ pL(κt+(τ+1)∆)
F (κt+τ∆)− F (κt+(τ+1)∆)

F (κt+τ∆)
+
F (κt+(τ+1)∆)

F (κt+τ∆)
UL(κt+(τ+1)∆).

(13)

Indeed, a seller with cost c = cL and with belief cutoff κt+τ∆ can earn the right-

hand side of (13) by posting price pL(κt+(τ+1)∆) and then playing her continuation

strategy.18 Combining (13) with (12), for all τ ≥ 0,

UH
t+τ∆ < ρ

(
UL(κt+τ∆)− e−(r+λ)∆F (κt+(τ+1)∆)

F (κt+τ∆)
UL(κt+(τ+1)∆)

)
+ e−(r+λ)∆F (κt+(τ+1)∆)

F (κt+τ∆)
UH
t+(τ+1)∆.

(14)

Using equation (14) repeatedly for all τ ≥ 0 yields

UH
t <

∞∑
τ=0

e−(r+λ)τ∆ρ

(
F (κt+τ∆)

F (κt)
UL(κt+τ∆)− e−(r+λ)∆F (κt+(τ+1)∆)

F (κt)
UL(κt+(τ+1)∆)

)
= ρUL(κt).

18This follows since the equilibrium of the game with one-sided incomplete information is weakly
stationary (Gul et al., 1985).
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But this cannot be, since a seller whose cost is cH at time t can obtain ρUL(κt) by

waiting until her costs fall to cL = 0 and then playing her continuation strategy. �

For any equilibrium (σ, µ) ∈ ΣS, let

κ(σ,µ) = inf{κ ∈ [v, v] : ∃ on-path history (hSt tcH) at which type κ buys under (σ, µ).}

Note that κ(σ,µ) is the lowest valuation at which the buyer buys when costs are cH

under equilibrium (σ, µ). By Lemma A.2, κ(σ,µ) ≥ v∗ for all (σ, µ) ∈ ΣS.

Fix a PBE (σ, µ) ∈ ΣS. Let {κHt } be the sequence of belief cutoffs induced by

(σ, µ) at histories at which the seller’s costs are cH . Under (σ, µ), a high cost seller

stops selling whenever her cutoff beliefs about the buyer’s valuation reach κ(σ,µ), so

κHt ≥ κ(σ,µ) for all t.

Let t̂ denote the time at which a high cost seller sells to a buyer with valuation

κ(σ,µ), provided that t̂ is finite, and let κH
t̂+∆

= κ(σ,µ). Note that, for all periods

t ≥ t̂ + ∆ a high cost seller does not make sales. Hence κHt = κH
t̂+∆

for all t ≥ t̂ + ∆

(if t̂ is infinite, this is vacuous).

Let {pHt }t̂t=0 be the prices that the seller charges at times t ≤ t̂ under (σ, µ) at

histories at which her cost is high. For all t ≤ t̂−∆, these prices satisfy:

κHt+∆ − pHt = e−(r+λ)∆(κHt+∆ − pHt+∆) + e−r∆(1− e−λ∆)(κHt+∆ − pL(κHt+∆)). (15)

Indeed, prices {pHt }t̂t=0 are such that a buyer with valuation κHt+∆ is indifferent between

buying at time t or waiting and buying at period t+ ∆.

For all κ ∈ [v, v], define p̂(κ) ≡ κ(1 − ρ) + ρpL(κ). Price p̂(κ) is such that a

buyer with valuation κ is indifferent between buying at p̂(κ) when costs are cH and

waiting until costs fall to cL and buying at price pL(κ). Note that p̂(κ) is increasing

in κ (since pL(κ) is increasing in κ). Note further that, if t̂ is finite, it must be that

pH
t̂

= p̂(κ(σ,µ)) = κ(σ,µ)(1 − ρ) + ρpL(κ(σ,µ)). If t̂ is finite, it is without loss to set
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pHt = pH
t̂

for all t ≥ t̂+ ∆.

Given sequences {pHt , κHt }, for all times s let UH
s ({pHt , κHt }) be continuation profits

that a seller obtains if cs = cH , when play is given by {pHt , κHt }:

UH
s ({pHt , κHt }) = (pHs − cH)

F (κHs )− F (κHs+∆)

F (κHs )
+ e−(r+λ)∆F (κHs+∆)

F (κHs )
UH
s+∆({pHt , κHt })

+ e−r∆(1− e−λ∆)
F (κHs+∆)

F (κHs )
UL(κHs+∆).

If an equilibrium (σ, µ) ∈ ΣS induces sequences {pHt , κHt }, it must be that

∀s, UH
s ({pHt , κHt }) ≥ ρUL(κHs ). (16)

Indeed, a seller whose cost is high by time s and whose belief cutoff is κHs can ob-

tain a payoff of ρUL(κHs ) by waiting until her costs fall to cL and then playing the

continuation equilibrium from that point onwards.

To prove Theorem 1, I first establish the following result.

Theorem A.1. (i) Suppose sequences {pHτ , κHτ } are induced by an equilibrium (σ, µ) ∈

ΣS. Then, {κHτ } is decreasing, and for all t, {pHτ , κHτ } satisfy equations (1), (2)

and (3).

(ii) There exists ∆ > 0 such that, if ∆ ≤ ∆, for any sequences {pHτ , κHτ } satisfying

(1)-(3) with {κHτ } decreasing, there exists an equilibrium (σ, µ) ∈ ΣS that induces

{pHτ , κHτ }.

Proof. The arguments above imply that conditions (1)-(3) must hold in any PBE

(σ, µ) ∈ ΣS.

I now turn to the proof of part (ii) of the Theorem. Fix sequences {pHτ , κHτ },

with {κHτ } decreasing, satisfying conditions (1)-(3). I now show show that there

exists ∆ > 0 such that, for all ∆ ≤ ∆, there exists a PBE (σ, µ) ∈ ΣS that induces

{pHτ , κHτ }.
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Let κ = limt→∞ κ
H
t . By Lemma A.2, κ ≥ v∗. For all κ ∈ [κ, v], let pH(κ) denote

the price at which a buyer with type κ buys under {pHt , κHt }. For all κ ∈ [v, κ), let

pH(κ) = pL(κ), where pL(κ) is the price that a buyer with type κ is willing to pay in

the game with one-sided private information. The buyer’s strategy under the proposed

equilibrium (σ, µ) is as follows. For all histories hBt tpt with prob(ct = cH |hBt tpt) = 1,

a buyer with type κ buys iff pt ≤ pH(κ). For all other histories, a buyer with type κ

buys iff pt ≤ pL(κ).

Buyer’s beliefs under (σ, µ) are as follows. If at all periods s ≤ t the seller offered

price pHs , the buyer at time t believes that the seller’s cost is cH with probability 1. In

any other case, the buyer at time t believes that the seller’s cost is cL with probability

1.

The seller’s strategy is as follows. On the equilibrium path, for all t with ct = cH ,

she charges price pHt . For all off-path histories hSt t cH , the seller posts a price

higher than v (and no buyer type buys). For all t with ct = cL, the seller plays the

continuation equilibrium of the game with one-sided private information.

Since {pHτ , κHτ } satisfies (15), optimal buyer behavior induces belief cutoffs {κHτ },

given the seller’s strategy. Hence, the buyer’s strategy is sequentially rational at

histories at which she believes that the seller’s cost is high. Moreover, buyer’s strategy

is sequentially rational at histories at which she believes that the seller’s cost is low

(since, at such histories, buyer uses the equilibrium strategy of the game with one-

sided private information; and since seller uses the equilibrium strategy of the game

with one-sided private information whenever her cost is cL).

I now show that, for ∆ small enough, the seller’s strategy is also sequentially

rational. Note first that, since {pHt , κHt } satisfy (9), the seller does not find it optimal

to deviate at a period t such that ct−∆ = cH and ct = cL. Moreover, she doesn’t find

it optimal to deviate at a period t with ct−∆ = cL and ct = cL (since, at such histories,

buyer and seller are using the equilibrium strategy of the game with one-sided private

information).
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By the Coase conjecture (Gul et al., 1985), for every η > 0 there exists ∆η > 0

such that, for all ∆ ≤ ∆η, price pL(κ) that the seller charges when costs are c = cL = 0

is strictly smaller than v + η for all κ. Pick η′ > 0 such that v + η′ − cH < ρv; since

v < v∗ = cH
1−ρ (by Assumption 1), such an η′ exists. Let ∆ = ∆η′ , and suppose

∆ ≤ ∆. Note that if at a period s with cs = cH the seller posts a price different from

pHs , the highest profit she can obtain is ρUL(κHs ).19 Since {pHt , κHt } satisfies (16), the

seller finds it optimal to post price pHs . �

Proof of Theorem 1. Note first that, for all ∆ > 0, there always exist se-

quences {pHτ , κHτ } satisfying the conditions in Theorem A.1(i). For instance, sequences

{pHτ , κHτ } with κHτ = v and pHτ = p for all τ , with p satisfying

v − p = e−(r+λ)∆(v − p) + e−r∆(1− e−λ∆)(v − pL(v))

satisfy (1)-(3). Hence, by Theorem A.1(ii), for all ∆ ≤ ∆, ΣS is non-empty.

Finally, note that the arguments in the proof of Theorem A.1 imply that, for

all ∆ ≤ ∆ and for any (σ, µ) ∈ ΣS, there exists a weakly stationary equilibrium

(σws, µws) ∈ ΣS that induces the same outcome as (σ, µ). �

Proof of Proposition 3. Follows from Lemma A.2. �

Mixed strategy equilibria. Theorem A.1 characterizes equilibria under which the

seller uses a pure action while her costs are cH .

The game also admits separating equilibria under which the seller mixes while her

19This follows since pL(κ) ∈ [v, v+η′] for all κ ∈ [v, v] whenever ∆ ≤ ∆, and since v+η′−cH < ρv.
Hence, the seller’s profit margin p−cH from any sale she makes while costs are high following such a
deviation is strictly smaller than ρv. Since pL(κ) ≥ v for all κ, the seller’s most profitable deviation
is to wait until costs fall to cL and then play the continuation equilibrium, obtaining a payoff of
ρUL(κHs ) ≥ ρv.
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costs are cH . In any such equilibrium, the (now random) sequence {pHt , κHt } must

still satisfy (9) and (15). Indeed, Lemma A.1 applies to mixed strategy separating

equilibria as well. And inequality (16) must hold in any separating equilibrium,

pure or mixed. In addition to these conditions, if the seller mixes at some period t

with ct = cH , she must be indifferent among any price that she posts with positive

probability.

Welfare maximizing equilibria. Let (σ, µ) be an equilibrium in ΣS that delivers

the largest social surplus (among all equilibria in ΣS). Under (σ, µ), constraint (9)

must be satisfied with equality at (almost) all times t. As a result, there exists a

finite period t̂ at which, under (σ, µ), a buyer with value κ(σ,µ) buys if ct̂ = cH ; (and

so κH
t̂+∆

= κ(σ,µ)).

Moreover, under (σ, µ), the price pH
t̂

at which the seller sells at time t̂ if ct̂ = cH

must be equal to p̂(κ(σ,µ)) = (1 − ρ)κ(σ,µ) + ρpL(κ(σ,µ)). Indeed, if the buyer rejects

price pH
t̂

, buyer and seller don’t trade until costs fall to cL. Price p̂(κ(σ,µ)) is the

price that leaves consumer κ(σ,µ) indifferent between buying at time t̂ with ct̂ = cH ,

or waiting until costs fall to cL and buying at that point (at price pL(κ(σ,µ))).

B Proof of Theorem 2

For each ∆ > 0, let (σ∆, µ∆) be an equilibrium in ΣS(∆) achieving the largest social

welfare. Let {pHt (∆), κHt (∆)}t∈T (∆) denote the prices and belief cutoffs induced by

(σ∆, µ∆) at periods at which the seller’s costs are cH , and let κ(σ∆,µ∆) be the lowest

value buyer who trades while costs are cH under (σ∆, µ∆).

Lemma B.1. κ(σ∆,µ∆) − v∗(∆)→ 0 as ∆→ 0.

Proof. By Proposition 3, for all ∆ ≥ 0 we have κ(σ∆,µ∆) ≥ v∗(∆). Towards a

contradiction, suppose the result is false. Hence, there exists a sequence {∆n} → 0

and an ε > 0 such that limn→∞ κ
(σ∆n ,µ∆n ) − v∗(∆n) > ε.
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For each n, let t̂n be the time at which a buyer with value κn ≡ κ(σ∆n ,µ∆n ) buys

under (σ∆n
, µ∆n

) if ct = cH for all t ≤ t̂n. The price at which a buyer with value κn

buys under (σ∆n
, µ∆n

) when costs are cH is p̂(κn) = (1− ρ(∆n))κn + ρ(∆n)pL(κn).

For each n, fix κ̂n ∈ (v∗(∆n), κn) such that

p̂(κ̂n)

(
F (κn)− F (κ̂n)

F (κn)

)
≤ UL(κn)− e−r∆nF (κ̂n)

F (κn)
UL(κ̂n).

Let {κ̃Ht (∆n)} be such that, for all t ≤ t̂n+∆n, κ̃Ht (∆n) = κHt (∆n), (where {κHt (∆n)}

is the sequence of belief cutoffs under (σ∆n
, µ∆n

)) and for all t ≥ t̂n + 2∆n, κ̃Ht (∆n) =

κ̂n. Let {p̃Ht (∆n)} be such that p̃Ht (∆n) = p̂(κ̂n) for all t ≥ t̂n + ∆n, and such that,

for all t < t̂n + ∆n,

κ̃Ht+∆n(∆n)− p̃Ht (∆n) = e−(r+λ)∆n

(κ̃Ht+∆n(∆n)− p̃Ht+∆n(∆n))

+ e−r∆
n

(1− e−λ∆n

)(κ̃Ht+∆n(∆n)− pL(κ̃Ht+∆n(∆n))). (17)

That is, {p̃Ht (∆n), κ̃Ht (∆n)} satisfies (15). Note that the inefficiencies under {p̃Ht (∆n), κ̃Ht (∆n)}

are smaller than under {pHt (∆n), κHt (∆n)}, since trade is delayed by less under the

former. The rest of the proof shows that, for n large enough, {p̃Ht (∆n), κ̃Ht (∆n)}

can be supported by an equilibrium in ΣS(∆n). This leads to a contradiction, since

(σ∆n
, µ∆n

) was assumed to be a welfare maximizing equilibrium in ΣS(∆n).

As a first step, I show that p̃Ht (∆n) < pHt (∆n) for all t ≤ t̂n. Since sequences

{κHt (∆n), pHt (∆n)} satisfy (9) for all t ≤ t̂n, and since κ̃Ht (∆n) = κHt (∆n) for all

t ≤ t̂n+∆n, p̃Ht (∆n) < pHt (∆n) for all t ≤ t̂n implies that sequences {κ̃Ht (∆n), p̃Ht (∆n)}

satisfy (9).
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Note that20

κ̃Ht̂n+∆n − p̃Ht̂n = e−(r+λ)∆n

(κ̃Ht̂+∆n − p̃Ht̂n+∆n) + e−r∆
n

(1− e−λ∆n

)(κ̃Ht̂n+∆n − pL(κ̃Ht̂n+∆n))

> e−(r+λ)∆n

(κ̃Ht̂n+∆n − p̂(κ̃Ht̂n+∆n
)) + e−r∆

n

(1− e−λ∆n

)(κ̃Ht̂n+∆n − pL(κ̃Ht̂n+∆n))

= e−(r+λ)∆n

ρ(κ̃Ht̂n+∆n − pL(κ̃Ht̂n+∆n)) + e−r∆
n

(1− e−λ∆n

)(κ̃Ht̂n+∆n − pL(κ̃Ht̂n+∆n))

= ρ(κ̃Ht̂n+∆n − pL(κ̃Ht̂n+∆n)),

where the strict inequality uses p̃H
t̂n+∆n = p̂(κ̃H

t̂n+2∆n) < p̂(κ̃H
t̂n+∆n), the second equality

uses p̂(κ̃H
t̂n+∆n) = κ̃H

t̂n+∆n(1−ρ)+ρpL(κ̃H
t̂n+∆n), and the last equality uses ρ = e−r∆(1−

e−λ∆)+ρe−(r+λ)∆. Since κ̃H
t̂n+∆n = κH

t̂n+∆n , and since pH
t̂n

= p̂(κH
t̂n+∆n) = (1−ρ)κH

t̂n+∆n+

ρpL(κH
t̂n+∆n), it follows that p̃H

t̂n
< pH

t̂n
.

I now use this to show that p̃Ht (∆n) < pHt (∆n) for all t < t̂n. For all t ≤ t̂n, prices

{pHt (∆n)} satisfy

κHt+∆n(∆n)− pHt (∆n) = e−(r+λ)∆n

(κHt+∆n(∆n)− pHt+∆n(∆n))

+ e−r∆
n

(1− e−λ∆n

)(κHt+∆n(∆n)− pL(κHt+∆n(∆n))).

Combining this equation with (17), for all t < t̂n,

pHt (∆n)− p̃Ht (∆n) = e−(r+λ)∆n

(pHt+∆n(∆n)− p̃Ht+∆n(∆n)),

where I used κ̃Ht (∆n) = κHt (∆n) for all t ≤ t̂n + ∆n. Since p̃H
t̂n
< pH

t̂n
, it follows that

pHt (∆n) > p̃Ht (∆n) for all t < t̂n. Hence, {κ̃Ht (∆n), p̃Ht (∆n)} satisfies (9).

I now show that, for n sufficiently large, {κ̃Ht (∆n), p̃Ht (∆n)} also satisfies (16). I

start by showing that p̃Ht (∆n) > p̃Ht+∆n(∆n) for all t < t̂n + ∆n, so prices p̃Ht (∆n) are

decreasing. This implies that p̃Ht (∆n) > p̃H
t̂n+∆n(∆n) = p̂(κ̂n) for all t ≤ t̂n. Since

p̂(κ̂n) = (1− ρ(∆n))κ̂n + ρ(∆n)pL(κ̂n), κ̂n > v∗(∆n) = cH
1−ρ(∆n)

, and pL(κ̂n) ≥ v, this

further implies that p̂(κ̂n) − cH > ρ(∆n)v. Hence, if prices p̃Ht (∆n) are decreasing,

20In what follows, I drop the dependence on the time period ∆n when there is no risk of confusion.
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then p̃Ht (∆n)− cH > ρ(∆n)v for all t ≤ t̂n + ∆n.

Recall that

p̃Ht̂n+∆n = p̂(κ̃Ht̂n+2∆n) = (1− ρ(∆n))κ̃Ht̂n+2∆n + ρ(∆n)pL(κ̃Ht̂n+2∆n)

⇐⇒ κ̃Ht̂n+2∆n − p̃Ht̂n+∆n = ρ(∆n)(κ̃Ht̂n+2∆n − pL(κ̃Ht̂n+2∆n))

⇐⇒ κ̃Ht̂n+2∆n − p̃Ht̂n+∆n = e−(r+λ)∆n

(κ̃Ht̂n+2∆n − p̃Ht̂n+∆n) + e−r∆
n

(1− e−λ∆n

)(κ̃Ht̂n+2∆n − pL(κ̃Ht̂n+2∆n)),

(18)

where the last line uses ρ(∆) = e−r∆(1−e−λ∆)

1−e−(r+λ)∆ . Moreover, p̃H
t̂n

satisfies (17), and so

κ̃Ht̂n+∆n − p̃Ht̂n = e−(r+λ)∆n

(κ̃Ht̂n+∆n − p̃Ht̂n+∆n) + e−r∆
n

(1− e−λ∆n

)(κ̃Ht̂n+∆n − pL(κ̃Ht̂n+∆n))

Combining this with (18) yields

p̃Ht̂n − p̃
H
t̂n+∆n = (1− e−r∆n

)(κ̃Ht̂n+∆n − κ̃Ht̂n+2∆n) + e−r∆
n

(1− e−λ∆n

)(pL(κ̃Ht̂n+∆n)− pL(κ̃Ht̂n+2∆n
)) > 0,

where the strict inequality follows since κ̃H
t̂n+∆n > κ̃H

t̂n+2∆n and pL(·) is weakly increas-

ing.

Towards an induction, suppose that p̃Ht′ > p̃Ht′+∆n for all t′ = t + ∆n, ..., t̂n. I now

show that p̃Ht > p̃Ht+∆n . Since p̃Ht and p̃Ht+∆n satisfy (17), it follows that

p̃Ht − p̃Ht+∆n = (1− e−r∆n

)(κ̃Ht+∆n − κ̃Ht+2∆n) + e−(r+λ)∆n

(p̃Ht+∆n − p̃Ht+2∆n)

+ e−r∆
n

(1− e−λ∆n

)(pL(κ̃Ht+∆n)− pL(κ̃Ht+2∆n)) > 0.

By the Coase conjecture, for all κ, UL(κ) → v as ∆ → 0; i.e., the seller earns

a profit margin of v on each sale she makes when her costs are cL. Since the profit

margin (p̃Ht − cH) that she earns on each sale when her cost is cH is larger than ρv,

in the limit as n → ∞ the seller’s profits from selling when her costs are cH are

larger than what she would get by waiting until her costs fall to cL and then playing
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the continuation equilibrium. Hence, constraint (16) is satisfied under sequences

{p̃Ht (∆n), κ̃Ht (∆n)} when n is sufficiently large.

The arguments above show that, for n large enough, {κ̃Ht (∆n), p̃Ht (∆n)} satis-

fies all the conditions in Theorem A.1(ii). Hence, for n large enough, there exists

(σ, µ) ∈ ΣS(∆n) that induces {κ̃Ht (∆n), p̃Ht (∆n)}. But this contradicts the fact that,

for all n, (σ∆n
, µ∆n

) is a welfare maximizing equilibrium in ΣS(∆n) (recall that ineffi-

ciencies under {p̃Ht (∆n), κ̃Ht (∆n)} are smaller than under {pHt (∆n), κHt (∆n)}). There-

fore, κ(σ∆,µ∆) − v∗(∆)→ 0 as ∆→ 0. �

For all κ ∈ [v, v] and ∆ > 0, let UL(κ; ∆) be the seller’s continuation profits when

her cost is cL and her belief cutoff is κ. Define πL(κ; ∆) ≡ F (κ)UL(κ; ∆).

Lemma B.2 (no atoms). Fix a sequence {∆n} → 0. For each n, let (σ∆n
, µ∆n

)

be a welfare maximizing equilibrium in ΣS(∆n), and let {κHt (∆n), pHt (∆n)} be the

sequences of prices and belief cutoffs induced by (σ∆n
, µ∆n

). There exists B > 0 such

that, for all t ∈ T (∆n),

lim sup
n→∞

F (κHt (∆n))− F (κHt+∆n(∆n))

∆n
≤ B.

Hence, for all t ∈ T (∆n), κHt (∆n)− κHt+∆n(∆n)→ 0 as n→∞.

Proof. Note first that, for all n, there exists t̂n such that
F (κHt (∆n))−F (κHt+∆n (∆n))

∆n = 0

for all t > t̂n; i.e., t̂n is the last period at which the seller makes sales when costs are

high.

Consider next t ≤ t̂n. By Lemma A.1, and using πL(κ; ∆) = F (κ)UL(κ; ∆),

(F (κHt (∆n))− F (κHt+∆n(∆n)))pHt (∆n) ≤ πL(κHt (∆n); ∆n)(1− e−r∆n

)

+ e−r∆
n

(πL(κHt (∆n); ∆n)− πL(κHt+∆n(∆n); ∆n)).

(19)

Let pL(κ; ∆) be the price that a low cost seller would charge when her cutoff beliefs
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are κ in a setting with time period ∆. Note that, since pL(κ; ∆) ∈ [v, pL(v; ∆)] for all

κ,

πL(κHt (∆n); ∆n)− πL(κHt+∆n(∆n); ∆n) ≤ pL(v; ∆n)(F (κHt (∆n))− F (κHt+∆n(∆n))).

Combining this with (19),

F (κHt (∆n))− F (κHt+∆n(∆n))

∆n
(pHt (∆n)−e−r∆n

pL(v; ∆n)) ≤ πL(κHt (∆n); ∆n)
1− e−r∆n

∆n
.

(20)

Next, recall from the proof of Lemma B.1 that prices pHt (∆n) are decreasing: for

all t < t̂n, pHt (∆n) > pH
t̂n

(∆n) = p̂(κ(σ∆n ,µ∆n )) ≥ p̂(v∗(∆n)) = (1 − ρ(∆n))v∗(∆n) +

ρ(∆n)pL(v∗(∆n); ∆n). Since lim∆→0 ρ(∆) = λ
r+λ

, lim∆→0 v
∗(∆) = r+λ

r
cH and lim∆→0 p

L(v; ∆) =

v, it follows that

lim inf
n→∞

pHt (∆n)− e−r∆n

pL(v; ∆n) ≥ cH +
λ

r + λ
v − v = cH −

r

r + λ
v > 0.

The strict inequality holds since, by Assumption 1, v∗(∆) ∈ (v, v), and so lim∆→0 v
∗(∆) =

r+λ
r
cH > v.

Using this in inequality (20)

lim sup
n→∞

F (κHt (∆n))− F (κHt+∆(∆n))

∆n
≤ lim sup

n→∞

1

pHt (∆n)− e−r∆npL(v; ∆n)
πL(κHt (∆n); ∆n)

1− e−r∆n

∆n

≤ r + λ

(r + λ)cH − rv
rv,

where the last inequality uses lim∆→0 π
L(κ; ∆) = F (κ)v ≤ v. �

Proof of Theorem 2. Note first that, by (15), sequences {κHt (∆), pHt (∆)}t∈T (∆)
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are such that, for all t < t̂,

κHt+∆(∆)− pHt (∆) = e−(r+λ)∆(κHt+∆(∆)− pHt+∆(∆))

+ e−r∆(1− e−λ∆)(κHt+∆(∆)− pL(κHt+∆(∆); ∆)). (21)

For each t ∈ [0,∞), let pH(t) = lim∆→0 p
H
t (∆) and κH(t) = lim∆→0 κ

H
t (∆) (if

needed, take a convergent subsequence, which exists by Helly’s Selection Theorem).

Dividing both sides of (21) by ∆ and rearranging,

pHt (∆)− pHt+∆(∆)

∆
= κHt+∆(∆)

(1− e−r∆)

∆
− pHt+∆(∆)

(1− e−(r+λ)∆)

∆

+ e−r∆
(1− e−λ∆)

∆
pL(κHt+∆(∆); ∆). (22)

Taking limits on both sides of (22) as ∆ → 0 and using lim∆→0 p
L(κ,∆) = v and

lim∆→0 κ
H
t (∆)− κHt+∆(∆) = 0 (Lemma B.2),

lim
∆→0

pHt (∆)− pHt+∆(∆)

∆
= −dp

H(t)

dt
= rκH(t)− (r + λ)pH(t) + λv.

Under the most efficient equilibrium, it must be that inequality (9) holds with

equality for almost all t ∈ T (∆). Using πL(κ; ∆) = F (κ)UL(κ; ∆),

pHt (∆)(F (κHt (∆))− F (κHt+∆(∆))) = πL(κHt (∆); ∆)− πL(κHt+∆(∆); ∆)

+ (1− e−r∆)πL(κHt+∆(∆); ∆). (23)

Note next that, for all κ, κ′ ∈ [v, v] with κ > κ′, the following inequalities hold:

πL(κ; ∆)− πL(κ′; ∆) ≥ v(F (κ)− F (κ′))

πL(κ; ∆)− πL(κ′; ∆) ≤ pL(v; ∆)(F (κ)− F (κ′)).

The inequalities follow since, for all belief cutoffs κ̃, pL(κ̃; ∆) ∈ [v, pL(v; ∆)]. Com-
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bining these inequalities with (23), and dividing through by ∆, yields

v
F (κHt (∆))− F (κHt+∆(∆))

∆
+

1− e−r∆

∆
πL(κHt+∆(∆); ∆)

≤pHt (∆)
F (κHt (∆))− F (κHt+∆(∆))

∆

≤pL(v; ∆)
F (κHt (∆))− F (κHt+∆(∆))

∆
+

1− e−r∆

∆
πL(κHt+∆(∆); ∆).

Taking the limit as ∆ → 0 and using lim∆→0 p
L(v; ∆) = v and lim∆→0 π

L(κ; ∆) =

vF (κ),

pH(t) lim
∆→0

F (κHt (∆))− F (κHt+∆(∆))

∆
= v lim

∆→0

F (κHt (∆))− F (κHt+∆(∆))

∆
+ rvF (κH(t))

⇐⇒ lim
∆→0

F (κHt (∆))− F (κHt+∆(∆))

∆
= −dκ

H(t)

dt
f(κH(t)) =

rvF (κH(t))

pH(t)− v
.

The boundary condition for κH(·) is κH(0) = v. To derive the boundary condition

for pH(·), let v̂ = lim∆→0 v
∗(∆) = r+λ

r
cH . By Lemma B.1, belief cutoffs κH(t) reaches

v̂ = r+λ
r
cH at finite time t̂ = inf{t ≥ 0 : κH(t) = v̂}. The price at which the seller

sells to a buyer with valuation v̂ must be such that this buyer is indifferent between

buying now, or waiting until costs fall to cL and getting the good at price v. Hence,

pH(t̂) = r
r+λ

v̂ + λ
r+λ

v = cH + λ
r+λ

v. �

C Proofs of Propositions 4, 5 and 6

Proof of Proposition 4. I start by showing that κ − PH(κ) > λ
r+λ

(κ − v) for

all κ > v̂. Since PH(κH(t)) = pH(t) for all t ≤ t̂, this is equivalent to showing that

κH(t)− pH(t) > λ
r+λ

(κH(t)− v) for all t < t̂, or that

∀t < t̂, D(t) ≡ r(κH(t)− pH(t)) + λ(v − pH(t)) > 0.
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Using equation (4),

D′(t) = r
dκH(t)

dt
− (r + λ)

dpH(t)

dt

= r
dκH(t)

dt
+ (r + λ)[r(κH(t)− pH(t)) + λ(v − pH(t))]

= r
dκH(t)

dt
+ (r + λ)D(t). (24)

Note that pH(t̂) = v̂ − λ
r+λ

(v̂ − v) = κH(t̂)− λ
r+λ

(κH(t̂)− v), and so D(t̂) = 0. Since

dκH(t)
dt

< 0 for all t ≤ t̂, it follows that D′(t̂) < 0. Hence, D(t) > 0 for all t < t̂

close to t̂. Towards a contradiction, suppose there exists t < t̂ with D(t) ≤ 0, and

let t̃ = sup{t < t̂ : D(t) ≤ 0}. Since D(t) is continuous, D(t̃) = 0. Moreover, since

D(t) > 0 for all t ∈ (t̃, t̂), it must be that D′(t̃) ≥ 0. Using (24), and noting that

dκH(t)
dt
|t=t̃ < 0 and D(t̃) = 0,

D′(t̃) = r
dκH(t)

dt
|t=t̃ + (r + λ)D(t̃) < 0,

a contradiction. Hence, D(t) > 0 for all t < t̂. And so κ − PH(κ) > λ
r+λ

(κ − v) for

all κ > v̂.

I now show part (i). For each cH , let v̂(cH) = λ+r
r
cH be the efficient cutoff for cost

cH , and let PH(κ; cH) denote the solution to (7) and boundary condition for cost cH .

Fix c′H > cH , so v̂(c′H) > v̂(cH). Note that v̂(cH)− PH(v̂(cH); cH) = λ
r+λ

(v̂(cH)−

v). By the arguments above, κ − PH(κ; cH) > λ
r+λ

(κ − v) for all κ > v̂(cH); in

particular, v̂(c′H)−PH(v̂(c′H); cH) > λ
r+λ

(v̂(c′H)− v) = v̂(c′H)−PH(v̂(c′H); c′H), and so

PH(v̂(c′H); c′H) > PH(v̂(c′H); cH).

I now show that PH(κ; c′H) > PH(κ; cH) for all κ ∈ [v̂(c′H), v]. Towards a

contradiction, suppose the result is not true, and let κ̃ = inf{κ ∈ [v̂(c′H), v] :

PH(κ; c′H) ≤ PH(κ; cH)}. Since PH(κ; c′H) and PH(κ; cH) are continuous and since

PH(v̂(c′H); c′H) > PH(v̂(c′H); cH), it must be that κ̃ > v̂(c′H) and PH(κ̃; c′H) = PH(κ̃; cH).

But then, PH(·; c′H) and PH(·; cH) both solve ODE (7), with PH(κ̃; c′H) = PH(κ̃; cH);
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and so PH(·; c′H) = PH(·; cH), a contradiction. Hence, PH(κ; c′H) > PH(κ; cH) for

all κ ∈ [v̂(c′H), v]. Finally, by equation (5), the speed of trade falls when prices

pH(t) = PH(κH(t)) increase.

I now turn to part (ii). Fix distributions F1 and F0 such that F1 dominates F0

in terms of the reversed hazard rate. Let PH(κ;Fi) denote the solution to (7) and

boundary condition under distribution Fi.

I start by showing that PH(κ;F1) > PH(κ;F0) for all κ > v̂. Note first that

PH(v̂;Fi) = cH + λ
r+λ

v = v̂ − λ
r+λ

(v̂ − v) for i = 0, 1. Using (7), for i = 0, 1,

dPH(κ;Fi)

dκ
|κ=v̂ = 0,

d2PH(κ;Fi)

dκ2
|κ=v̂ = r

fi(v̂)

Fi(v̂)

PH(v̂)− v
rv

.

Since f1(v)
F1(v)

> f0(v)
F0(v)

for all v, d2PH(κ;F1)
dκ2 |κ=v̂ >

d2PH(κ;F0)
dκ2 |κ=v̂. Hence, there exists ṽ > v̂

such that PH(κ;F1) > PH(κ;F0) for all κ ∈ (v̂, ṽ).

Towards a contradiction, suppose that the result is not true, and let κ̃ = inf{κ >

v̂ : PH(κ;F1) ≤ PH(κ;F0)}. Since PH(κ;F1) and PH(κ;F0) are continuous, PH(κ̃;F1) =

PH(κ̃;F0). Since PH(κ;F1) > PH(κ;F0) for all κ ∈ (v̂, κ̃), it must be that dPH(κ;F1)
dκ

|κ=κ̃ ≤
dPH(κ;F0)

dκ
|κ=κ̃. But PH(κ̃;F1) = PH(κ̃;F0) and f1(κ̃)

F1(κ̃)
> f0(κ̃)

F0(κ̃)
, together with ODE

(7) implies dPH(κ;F1)
dκ

|κ=κ̃ > dPH(κ;F0)
dκ

|κ=κ̃, a contradiction. Therefore, PH(κ;F1) >

PH(κ;F0) for all κ > v̂. Lastly, since prices are higher under F1 than under F0, by

equation (6) the rate at which the seller makes sales is slower under F1 than under

F0.

I now turn to part (iii). For each λ, let v̂(λ) = λ+r
r
cH , and let PH(κ;λ) denote

the solution to (7) and boundary condition for λ. Note that dPH(κ;λ)
dκ

|κ=v̂(λ)= 0. Note

further that

d

dλ
PH(v̂(λ);λ) =

∂

∂λ

(
cH +

λ

r + λ
v

)
=

r

(λ+ r)2
v > 0.
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Hence, for all λ′ > λ close enough to λ, it must that PH(v̂(λ′);λ′) > PH(v̂(λ′);λ).

Since PH(·;λ′) and PH(·;λ) are continuous, there exists κ̃ > v̂(λ′) such that PH(κ;λ′) >

PH(κ;λ) for all κ ∈ (v̂(λ′), κ̃). Next, note that by equation (5), the speed of trade

falls when prices pH(t) = PH(κH(t)) increase. Hence, for all t with κH(t) ∈ (v̂(λ′), κ̃),

the speed of trade is lower under λ′. �

Proof of Proposition 5. Equation (6) and the fact that, for all t ≤ t̂, pH(t) ≥

pH(t̂) = cH + λ
r+λ

v > v,21 together imply that −dκH(t)
dt

f(κH(t))
F (κH(t))

goes to zero for all t as

v → 0. Note then that, in the limit as v → 0, the seller only trades with the buyer

once costs are cL, at price v → 0. �

Proof of Proposition 6. It is easy to check that mechanism MFB: (a) is budget

balance, (b) satisfies IC for the buyer, (c) satisfies IR for buyer and seller, and (d)

implements the efficient outcome under truthful reporting. I now show that the

mechanism also satisfies IC for the seller. Consider first a seller who reported c0 = cH

at t = 0. Then, for all t > 0, the seller strictly prefers to report ct = cH if her current

cost is cH , while she is indifferent between reporting cL or cH if her cost is cL. Hence,

truthful reporting is (weakly) optimal.

Consider next time t = 0. A seller with initial cost cH obtains a payoff of ρ(∆)v

from reporting truthfully, and gets a payoff of v − cH from reporting c0 = cL. Recall

than v∗(∆) = cH
1−ρ(∆)

> v, where the inequality follows from Assumption 1. Hence,

ρ(∆)v > v − cH , so a seller with initial cost cH strictly prefers to report truthfully.

A seller with initial cost cL gets a payoff of v if she reports truthfully. Her payoff

from reporting c0 = cH is (1− F (v∗(∆)))(cH + ρ(∆)v) + F (v∗(∆))ρ(∆)v. Reporting

truthfully is optimal when (1− ρ(∆))v ≥ (1− F (v∗(∆)))cH . �

21By Assumption 1, v < v̂ = r+λ
r cH .
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D Proof of Theorem 3

I start with some preliminary observations. Note that, in any equilibrium (σ∆, µ∆) ∈

Σpub(∆) of the game with public costs, when the seller’s costs fall to cL the continu-

ation equilibrium is the same as in the game in which it is common knowledge that

the seller’s costs are cL.

This observation implies that Lemma A.2 continues to hold when costs are public.

In particular, in any (σ∆, µ∆) ∈ Σpub(∆), the seller sells with probability zero at any

period t with ct = cH and κt ≤ v∗(∆). The reason for this is twofold. First, in any

(σ∆, µ∆) ∈ Σpub(∆) and for any cutoff beliefs κ, the seller’s profits when costs are cH

cannot be lower than ρUL(κ), since the seller can wait until costs fall to cL and then

play the continuation equilibrium. Second, price pHt at which a buyer with valuation

κHt+∆ buys when costs are high must be such that κHt+∆ − pHt ≥ ρ(κHt+∆ − pL(κHt+∆)).

Indeed, a buyer with valuation κHt+∆ can get a payoff at least as large as ρ(κHt+∆ −

pL(κHt+∆)) by waiting until costs fall to cL and buying at that time. With these two

observations, the proof of Lemma A.2 goes through as is. I summarize this discussion

in the following Lemma.

Lemma D.1. Fix a PBE (σ, µ) ∈ Σpub(∆), and consider a period t with belief cutoff

κt. If ct = cH , then κt+∆ ≥ min{v∗(∆), κt}. In particular, if κt ≤ v∗(∆) and ct = cH ,

the seller makes a sale with probability zero at time t.

For each ∆ > 0, let (σ∆, µ∆) ∈ Σpub(∆). For any on-path belief cutoff κ, let

pH(κ; ∆) denote the price that the seller charges under (σ∆, µ∆) when costs are cH

and the seller’s belief cutoff is κ. Let UH(κ; ∆) denote the seller’s continuation prof-

its under (σ∆, µ∆) when costs are cH and the seller’s belief cutoff is κ. Lastly, let

{κHt (∆), pHt (∆)}t∈T (∆) denote the sequence of belief cutoffs and prices induced by

(σ∆, µ∆) on the equilibrium path when the seller’s costs are cH .

Lemma D.2 (Efficiency). As ∆→ 0, the equilibrium outcome of (σ∆, µ∆) converges

to the efficient outcome: for all t > 0, lim∆→0 κ
H
t (∆) = v̂.
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Proof. The proof adapts arguments in Liu (2015) to the current setting. Consider a

period t with belief cutoff κHt (∆) and with ct = cH . For each v ∈ [v, κHt (∆)], let τ∆(v)

denote the random time at which a buyer with valuation v buys under (σ∆, µ∆). The

seller’s continuation profits UH(κHt (∆); ∆) at this history satisfies:

F (κHt (∆))UH(κHt (∆); ∆) = E

[∫ κHt (∆)

v

e−rτ
∆(v)(φκHt (∆)(v)− cτ∆(v))f(v)dv|ct = cH

]
,

where E[·|ct = cH ] is the expectation over future cost realizations, and where for each

κ and v ≤ κ, φκ(v) = v − F (κ)−F (v)
f(v)

is the virtual valuation of a buyer with type v

under truncated distribution F (v)
F (κ)

. The reason why this expression holds is that, at

any PBE, incentive compatibility must hold at every history. Note that, for every

s ∈ T (∆), s > t,

F (κHt (∆))UH(κHt (∆); ∆) ≥
∫ κHt (∆)

κHs (∆)

(φκHt (∆)(v)− cH)f(v)dv

+ e−r∆E

[∫ κHs (∆)

v

e−r(τ
∆(v)−s)(φκHt (∆)(v)− cτ∆(v))f(v)dv |ct = cH

]
(25)

Indeed, the right-hand side of (25) is the profits that the seller would obtain if she

accelerated trade and sold to all buyer types v ∈ [κHs (∆), κHt (∆)] at time t and then

played the continuation equilibrium.22

By Helly’s Selection Theorem, there exists a sequence ∆n → 0 and functions κHt ,

pHt and τ(v) such that, as n→∞, κHt (∆n) and pHt (∆n) converge pointwise to κHt and

pHt , and τ∆n(v) converges pointwise to τ(v). By Lemma D.1, κHt ≥ lim∆→0 v
∗(∆) = v̂

for all t ≥ 0. Since κHt is decreasing in t, to establish the result it suffices to show

that κH0+ = limt↘0 κ
H
t = v̂.

Towards a contradiction, suppose that the result is not true, so κH0+ > v̂. Let κHsn

22By stationarity of the equilibrium, such a deviation does not affect the prices that the different
types of buyers are willing to accept.
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be an increasing sequence converging to κH0+ . By dominated convergence, and using

(25), for all sn it must be that

E

[∫ κH
0+

v

e−rτ(v)(φκH
0+

(v)− cτ(v))f(v)dv|c0+ = cH

]

≥
∫ κH

0+

κHsn

(φκH
0+

(v)− cH)f(v)dv + E

[∫ κHsn

v

e−r(τ(v)−sn)(φκH
0+

(v)− cτ(v))f(v)dv |c0+ = cH

]
.

(26)

Since κHsn ↗ κH0+ > v̂, for all n large enough we have that φκH
0+

(v) = v− F (κH
0+ )−F (v)

f(v)
> v̂

for all v ∈ [κHsn , κ
H
0+ ]. It follows that, for all n large, for all v ∈ [κHsn , κ

H
0+ ] and for all

random times τ > 0, φκH
0+

(v) − cH > E[e−rτ (φκH
0+

(v) − cτ )|c0 = cH ].23 Since the

seller’s continuation payoff 1
F (κHsn )

E
[∫ κHsn

v
e−rτ(v)(φκH

0+
(v)− cτ(v))f(v)dv |c0+ = cH

]
at

state κHsn is non-negative,24 it follows that for all n large enough

∫ κH
0+

κHsn

(φκH
0+

(v)− cH)f(v)dv + E

[∫ κHsn

v

e−r(τ(v)−sn)(φκH
0+

(v)− cτ(v))f(v)dv |c0+ = cH

]

>E

[∫ κH
0+

v

e−rτ(v)(φκH
0+

(v)− cτ(v))f(v)dv|c0+ = cH

]
,

which violates (26). �

Proof of Theorem 3. Part (i) follows from Lemmas D.1 and D.2, together with

the fact that, when c0 = cL = 0, by the Coase conjecture all buyers buy immediately

in the limit as ∆→ 0.

For every ∆, let κH(∆) be such that {κHt (∆)} converges to κH(∆) as t → ∞.

That is, κH(∆) is the lowest valuation at which the buyer buys when the seller’s

23Indeed, for all v with φκ(v) > v̂, the solution to supτ E[e−rτ (φκ(v)− cτ )|c0 = cH ] is τ = 0.
24The seller’s continuation payoff 1

F (κH
sn

)
E
[∫ κH

sn
v

e−rτ(v)(φκH
0+

(v)− cτ(v))f(v)dv |c0+ = cH

]
is

bounded below by λ
r+λv > 0, which is the payoff from waiting until costs fall to cL = 0 and

posting price v.

43



costs are cH and the time period is ∆. The price p at which the seller sells to a

buyer with valuation κH(∆) when her cost is cH must be such that κH(∆) − p =

ρ(∆)(κH(∆)− pL(κH(∆)))⇐⇒ p = p̂(κH(∆)).

By Lemma D.2, κH(∆) → v̂ = r+λ
r
cH as ∆ → 0. Since pL(κ) → v for all κ as

∆ → 0, it follows that lim∆→0 p̂(κ
H(∆)) → rv̂+λv

r+λ
= cH + λ

r+λ
v. Therefore, when

c0 = cH the limiting initial price is cH + λ
r+λ

v, establishing part (ii).

The limiting profits that the seller makes when c0 = cH are then

lim
∆→0

Upub(σ∆, µ∆; ∆) = (1− F (v̂))

(
cH +

λ

r + λ
v − cH

)
+ F (v̂)

λ

r + λ
v =

λ

r + λ
v,

establishing part (iii). �

Online Appendix – Not for publication

E Proof of Proposition 2

Proof of Proposition 2. Suppose first that the seller can commit to a mechanism

at time t = 0−, before learning her initial cost. For each v ∈ [v, v], let τ(v) ∈ R+∪{∞}

denote the random time at which a buyer with type v buys under this commitment

solution, and let p(v) denote the price at which consumer with value v buys.

The seller’s expected profits are

E
[∫ v

v

e−rτ(v)(p(v)− cτ(v))f(v)dv

]
= E

[∫ v

v

e−rτ(v)(φ(v)− cτ(v))f(v)dv

]
,

where E[·] denotes the expectation with respect to cost process {ct}, and where the

equality follows since, by incentive compatibility, E[e−rτ(v)p(v)] = E
[
e−rτ(v)v −

∫ v
v
e−rτ(x)dx

]
for all v ∈ [v, v]. Note that, for each v, the solution to maxτ E[e−rτ (φ(v) − cτ )] is:

τ = 0 if φ(v) ≥ v∗(∆); τ = τL = inf{t : ct = cL = 0} if φ(v) ∈ [0, v∗(∆)]; and τ =∞
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if φ(v) < 0. Hence, if the seller can commit before learning her initial cost, a buyer

with φ(v) ≥ v∗(∆) buys at time t = 0, a buyer with φ(v) ∈ [0, v∗(∆)] buys at time

τ = τL = inf{t : ct = cL = 0}, and a buyer with φ(v) < 0 never buys. Let vH be

such that φ(vH) = v∗(∆) and let vL = inf{v ∈ [v, v] : φ(v) ≥ 0}. This commitment

solution can be implemented with the following path of prices: the seller charges price

pH = vH − ρ(∆)(vH − vL) while her cost is cH , and charges price pL = vL when her

cost reaches cL.

Suppose next that the seller can only commit to a mechanism after learning her

initial cost c0. Under a direct mechanism: at t = 0 the buyer reports her value

v ∈ [v, v] and the seller reports her initial cost c0 ∈ {cL, cH}; at any time t > 0, the

seller reports her cost ct ∈ {cL, cH}.

Consider the following direct mechanism. If the seller’s initial cost report is cL:

(i) buyer and seller trade immediately at price pL = vL if buyer reported v ≥ vL;

(ii) if buyer reported v < vL, she never trades, and pays nothing to the seller. If the

seller’s initial cost report is cH : (i) buyer and seller trade immediately at price pH

if buyer reported v ≥ vH ; (ii) if buyer reported v ∈ [vL, vH ], she pays ρ(∆)vL to the

seller at time t = 0, and then gets the good the first time the seller reports that her

cost fell to cL = 0, at additional price cL = 0; (iii) if buyer reported v < vL, she never

trades, and pays nothing to the seller.

Note that, conditional on truth-telling, this mechanism gives the same expected

payoff to all buyer types than the commitment solution discussed above; and hence

it is incentive compatible for the buyer to report truthfully, conditional on the seller

reporting truthfully. Moreover, it also gives the same expected revenues to the seller.

I now show that it is incentive compatible for the seller to report truthfully. To see

why, note first that a seller who reported c0 = cH finds it weakly optimal to report

her cost ct truthfully for all t > 0. Next, note that a seller whose initial cost is cH

finds it optimal to report truthfully. Indeed, her payoff from reporting truthfully is

(1 − F (vH))(vH − ρ(∆)(vH − vL) − cH) + (F (vH) − F (vL))ρ(∆)vL, while her payoff
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from reporting initial cost cL is (1− F (vL))(vL − cH). Hence, reporting truthfully is

optimal if

(1− F (vH))(vH − ρ(∆)(vH − vL)− cH) + (F (vH)− F (vL))ρ(∆)vL ≥ (1− F (vL))(vL − cH)

⇐⇒ (1− F (vH))(vH(1− ρ(∆))− cH)− (1− F (vL))(vL(1− ρ(∆))− cL) ≥ 0.

Since φ(vH) = v∗(∆) = cH/(1− ρ(∆)), and since φ(·) is strictly increasing, it follows

that vH = arg maxv(1−F (v))(v(1− ρ(∆))− cH). Hence, the inequality above holds.

A seller with c0 = cL earns profits vL(1− F (vL)) by reporting truthfully at t = 0.

Note that, since vL = inf{v ∈ [v, v] : φ(v) ≥ 0} and since φ(v) is strictly increasing,

vL = arg maxv v(1 − F (v)). If a seller with c0 = cL reports cost cH at t = 0, her

profits are

pH(1−F (vH))+ρ(∆)vL(F (vH)−F (vL)) = vH(1−ρ(∆))(1−F (vH))+ρ(∆)vL(1−F (vL)),

where I used pH = (1− ρ(∆))vH + ρ(∆)vL. Note that

vL(1− F (vL))− (vH(1− ρ(∆))(1− F (vH)) + ρ(∆)vL(1− F (vL)))

=(1− ρ(∆))(vL(1− F (vL))− vH(1− F (vH)) ≥ 0,

where the inequality uses vL = arg maxv v(1−F (v)). Hence, a seller with initial cost

cL finds it optimal to report truthfully at t = 0. �

F Inefficient equilibria

I now show that every PBE of the game, or any limiting PBE as ∆→ 0, is inefficient.

Note that any (σ, µ) ∈ Σ(∆) (or any limit of equilibria (σn, µn) ∈ Σ(∆n) with ∆n → 0)

induces an outcome τ : [v, v]× {cL, cH} → R+ and p : [v, v]× {cL, cH} → R+, where
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τ(v, c0) (resp. p(v, c0)) is the random time (resp. expected price) at which a buyer

with value v buys when the seller’s initial cost is c0.

Since the seller is making all the offers, prices p(v, c0) must satisfy p(v, c0) ≥ v for

all v ∈ [v, v] and c0 ∈ {cL, cH}: in any PBE, all buyer types accept a price v with

probability 1.25 This implies that, in any PBE, the profits of a seller with initial cost

cH are bounded below by ρv. Indeed, a seller with initial cost cH can wait until her

cost falls to cL, charge price v, and make a sale with probability 1, earning ρv.

Recall that the first-best outcome τFB : [v, v]×{cL, cH} → R+ has τFB(v, cL) = 0

for all v, and τFB(v, cH) = 1v<v∗τL, where τL = inf{t : ct = cL}.

Proposition F.1. Let τ : [v, v] × {cL, cH} → R+ and p : [v, v] × {cL, cH} → R+ be

an outcome induced by a PBE (σ, µ) ∈ Σ(∆), or the limiting outcome induced by a

sequence of PBE (σn, µn) ∈ Σ(∆n) with ∆n → 0. Then, τ 6= τFB.

Proof. Suppose by contradiction that the result is not true, so τ = τFB. Let U(v)

be the utility that a buyer with type v gets under this outcome:

U(v) = E[qe−rτ
FB(v,cH)(v − p(v, cH)) + (1− q)e−rτFB(v,cL)(v − p(v, cL))].

By incentive compatibility, U(v) satisfies:

U(v) = U(v) +

∫ v

v

E[qe−rτ
FB(x,cH) + (1− q)e−rτFB(x,cL)]dx (27)

for all v ∈ [v, v]. Since p(v, c) ≥ v for all v, U(v) = 0.

Consider first v < v∗, and note that

U(v) = qρ(v − p(v, cH)) + (1− q)(v − p(v, cL))

= qρ(v − v) + (1− q)(v − v), (28)

25This follows from the arguments in Lemma 1 in Gul et al. (1985), or Lemma S10 in Ortner
(2017).
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where the first equality uses the properties of τFB(v, c0) and the second follows from

equation (27), using U(v) = 0. Since p(v, c0) ≥ v for c0 ∈ {cL, cH} and for all v,

equation (28) implies p(v, cL) = p(v, cH) = v for all v < v∗.

Consider next v ≥ v∗, and note that

U(v) = q(v − p(v, cH)) + (1− q)(v − p(v, cL))

= q[ρ(v∗ − v) + (v − v∗)] + (1− q)(v − v), (29)

where again the first equality uses the properties of τFB(v, c0) and the second follows

from equation (27), using U(v) = 0. Equation (29) implies that, for all v ≥ v∗,

qp(v, cH) + (1− q)p(v, cL) = q[v∗ − ρ(v∗ − v)] + (1− q)v = q(cH + ρv) + (1− q)v,

where the last equality uses v∗− cH = ρv∗. Since p(v, cL) ≥ v for all v, it follows that

p(v, cH) ≤ cH + ρv. I now show that p(v, cL) = v and p(v, cH) = cH + ρv for almost

all v ≥ v∗. Suppose not, so there exists a positive measure of buyer types v ≥ v∗

with p(v, cH) < cH + ρv. Since p(v, cH) = v for all v < v∗, the profits of seller with

c0 = cH under outcome (τ, p) are

(1− F (v∗))E[p(v, cH)− cH |v ≥ v∗] + F (v∗)ρv < ρv.

But this cannot be, since a seller with c0 = cH can obtain ρv by waiting until her

costs fall to cL and charging price v. Hence, p(v, cH) = cH + ρv and p(v, cL) = v for

almost all v ≥ v∗.

By the arguments above, under outcome (τ, p) a seller with c0 = cL earns profits

v. The profits that this seller can obtain by mimicking a seller with c0 = cH , and then

playing as if her cost fell to cL at time s∆ are (1 − F (v∗))(cH + ρv) + e−rs∆F (v∗)v,

which is strictly larger than v for all s∆ small enough (since, by Assumption 1,

v∗ = cH
1−ρ > v ⇐⇒ cH + ρv > v), a contradiction. Hence, τ 6= τFB. �
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G Increasing costs

This appendix studies a version of the model in which the evolution of {ct} satisfies

prob(ct+∆ = cH |ct = cH) = e−λ∆ and prob(ct+∆ = cL|ct = cL) = e−γ∆.

Recall that v∗ is such that v∗ − cH = ρv∗, where ρ is defined as in the main text.

Note first that Proposition 1 continues to hold in this setting: under the first-best

solution, the seller sells to a buyer with value v ≥ v∗ at t = 0, and sells to a buyer

with value v < v∗ the first time her cost falls to cL. I maintain Assumption 1, so

v∗ ∈ (v, v).

I focus on PBE (σ, µ) that satisfy the following conditions. First, as in the main

text, I restrict attention to separating equilibria: for all histories hSt , suppσB(hSt )(cH)∩

suppσB(hSt )(cL) = ∅. Second, I consider weakly stationary equilibria; i.e., equilibria

in which the buyer’s purchasing decision at histories at which the seller’s current price

offer is the lowest (given buyer’s current beliefs) depends solely on her value and her

beliefs about the seller’s costs. With a slight abuse of notation, I let ΣS denote the

set of PBE satisfying these conditions.

For each PBE (σ, µ) ∈ ΣS, let UH
(σ,µ)(κ) and UL

(σ,µ)(κ) denote, respectively, the

seller’s profits under (σ, µ) when her belief cutoff is κ and her cost is cH and cL. Note

first that, in any PBE (σ, µ) ∈ ΣS, it must be that UH
(σ,µ)(κ) ≥ ρUL

(σ,µ)(κ). Indeed,

under a weakly stationary equilibrium, a seller with a high cost can always delay

trade until her cost falls, and earn continuation profits UL
(σ,µ)(κ).

The following result generalizes Lemma A.1 to the current environment:

Lemma G.1. Consider a seller history hSt such that the seller’s belief cutoff κt at

time t is strictly larger than v. Let pHt be the price that the seller charges under

(σ, µ) ∈ ΣS at history hSt if ct = cH , and let κt+∆ be the highest consumer type that
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buys at time t when ct = cH . Then, κt and κt+∆ satisfy

pHt
F (κt)− F (κt+∆)

F (κt)
≤ UL

(σ,µ)(κt)− e−(r+γ)∆F (κt+∆)

F (κt)
UL

(σ,µ)(κt+∆)

− e−r∆(1− e−γ∆)
F (κt+∆)

F (κt)
UH

(σ,µ)(κt+∆). (30)

Proof. Consider a seller whose cost changed from cH to cL at time t, after history hSt .

The profits that this seller obtains by revealing her cost are UL
(σ,µ)(κt). The profits

that this seller would make by posting price pHt that she would have posted if ct = cH ,

and then from t+∆ onwards playing the continuation strategy with belief cutoff κt+∆

are

pHt
F (κt)− F (κt+∆)

F (κt)
+e−(r+γ)∆F (κt+∆)

F (κt)
UL

(σ,µ)(κt+∆)+e−r∆(1−e−γ∆)
F (κt+∆)

F (κt)
UH

(σ,µ)(κt+∆).

A seller whose cost changed to cL at period t has an incentive to reveal her cost only

if (30) holds. �

Fix (σ, µ) ∈ ΣS. For each κ̃, let pH(κ̃) (resp. pL(κ̃)) be the price that the seller

charges when her belief cutoff is κ̃ and her cost is cH (resp. cL) under (σ, µ). Let hSt

be a history in which the seller’s belief cutoff is κt and her current cost is cH , and let

κt+∆ ≤ κt be the lowest valuation that buys at price pH(κt). Note that the following

equality must hold:

κt+∆ − pH(κt) = e−r∆(1− e−λ∆)(κt+∆ − pL(κt+∆)) + e−(r+λ)∆(κt+∆ − pH(κt+∆)).

(31)

For each ∆ > 0, let (σ∆, µ∆) be an equilibrium in ΣS in a game with time-period

∆. For each ∆ > 0 and each t ∈ T (∆), let κt(∆) denote the (random) sequence of

belief cutoffs under (σ∆, µ∆) at time t.26 Let pL(κ; ∆) and pH(κ; ∆) be the price that

26Note that κt(∆) is random even if the seller uses a pure strategy, since behavior until time t
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the seller offers under (σ∆, µ∆) when costs are cL and cH , respectively, and her belief

cutoff is κ.

The next result shows that, in any equilibrium in ΣS, as ∆ → 0 buyer and seller

trade immediately whenever the seller’s cost are cL. Let τ∆
L denote the first time in

T (∆) that the seller’s costs are cL,

Lemma G.2. For all t > τ∆
L , lim∆→0 κt(∆) = v.

Proof. Consider period τ∆
L with belief cutoff κτ∆

L
= κ and with ct = cL. For each

v ∈ [v, κ], let τ∆(v) denote the random time at which a buyer with valuation v buys.

The seller’s continuation profits UL(κ; ∆) at this history satisfy:

F (κ)UL(κ; ∆) = E

[∫ κHt (∆)

v

e−rτ
∆(v)(φκ(v)− cτ∆(v))f(v)dv|ct = cL

]
,

where E[·|ct = cH ] is the expectation over future cost realizations, and where for each

κ and v ≤ κ, φκ(v) = v − F (κ)−F (v)
f(v)

is the virtual valuation of a buyer with type v

under truncated distribution F (v)
F (κ)

. This expression holds since incentive compatibility

must hold at every history.

For every s ∈ T (∆), s > τ∆
L , let κLs (∆) denote the seller’s belief cutoff at time s

under (σ∆, µ∆), conditional on cτ = cL for all τ ∈ [τ∆
L , s]. Let pL(κLs (∆),∆) be the

price that the seller charges at time s under (σ∆, µ∆) conditional on cτ = cL for all

τ ∈ [τ∆
L , s].

For all such s ∈ T (∆), s > τ∆
L , it must be that

F (κ)UL(κ; ∆) ≥
∫ κ

κLs (∆)

(φκ(v)− cL)f(v)dv

+ e−r∆E

[∫ κLs (∆)

v

e−r(τ
∆(v)−s)(φκ(v)− cτ∆(v))f(v)dv |ct = cL

]
(32)

might depend on past cost realizations.
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Indeed, the right-hand side of (32) is the profits that the seller would obtain if she

accelerated trade and sold to all buyer types v ∈ [κs(∆), κ] at time t and then played

the continuation equilibrium.27

By Helly’s Selection Theorem, there exists a sequence ∆n → 0 and functions κLt ,

pLt and τ(v) such that, as n→∞, κLt (∆n) and pLt (∆n) converge pointwise to κLt and

pLt , and τ∆n(v) converges pointwise to τ(v). Since κLt is decreasing in t, to establish

the result it suffices to show that κH
τ+
L

= lims↘0 κ
H
τL+s = v.

Towards a contradiction, suppose that the result is not true, so κL
τ+
L

> v. Let κLsn

be an increasing sequence converging to κL
τ+
L

. By dominated convergence, and using

(32), for all sn it must be that

E

[∫ κL
τ+
L

v

e−rτ(v)(φκL
τ+
L

(v)− cτ(v))f(v)dv|c0+ = cL

]

≥
∫ κL

τ+
L

κLsn

(φκL
τ+
L

(v)− cL)f(v)dv + E

[∫ κLsn

v

e−r(τ(v)−sn)(φκL
τ+
L

(v)− cτ(v))f(v)dv |c0+ = cL

]
.

(33)

Since κLsn ↗ κL
τ+
L

> v, for all n large enough we have that φκL
τ+
L

(v) = v−
F (κL

τ+
L

)−F (v)

f(v)
>

v > cL = 0 for all v ∈ [κLsn , κ
L
τ+
L

]. It follows that, for all n large, for all v ∈ [κLsn , κ
L
τ+
L

]

and for all random times τ > 0, φκL
τ+
L

(v)− cL > E[e−rτ (φκL
τ+
L

(v)− cτ )|c0 = cL].28 Since

the seller’s continuation payoff 1
F (κLsn )

E
[∫ κLsn

v
e−rτ(v)(φκL

τ+
L

(v)− cτ(v))f(v)dv |c0+ = cL

]
at state κLsn is non-negative, it follows that for all n large enough

∫ κL
τ+
L

κLsn

(φκL
τ+
L

(v)− cH)f(v)dv + E

[∫ κLsn

v

e−r(τ(v)−sn)(φκL
τ+
L

(v)− cτ(v))f(v)dv |c0+ = cL

]

>E

[∫ κL
τ+
L

v

e−rτ(v)(φκL
τ+
L

(v)− cτ(v))f(v)dv|c0+ = cL

]
,

27By stationarity of the equilibrium, such a deviation does not affect the prices that the different
types of buyers are willing to accept.

28Indeed, for all v with φκ(v) > cL, the solution to supτ E[e−rτ (φκ(v)− cτ )|c0 = cL] is τ = 0.
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which violates (33). �

The following result follows from Lemma G.2.

Corollary G.1. For any κ ∈ [v, v], pL(κ; ∆)→ v and UL(κ; ∆)→ v as ∆→ 0.

By arguments similar to those in the proof of Theorem 2, and using Corollary G.1,

one can show that in the limit as ∆→ 0, under a most efficient separating equilibrium,

the evolution of prices when costs are cH still satisfies equation (4). Moreover, the

limiting speed of trade now satisfies:

−dκ
H(t)

dt
=
F (κH(t))

f(κH(t))

(r + γ)v − γUH(κH(t))

(pH(t)− v)
,

where UH(κH(t)) is the limiting payoff of a seller with cost cH and belief cutoff κH(t).
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