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Abstract

We develop a Ricardian model of trade in which countries innovate ideas that

diffuse globally. The forces of innovation and diffusion combine to shape

expenditure substitution patterns. Innovation makes a country technologi-

cally distinct, reducing their substitutability with other countries, while dif-

fusion generates technological similarity and increases head-to-head compe-

tition. In the special case of an innovation-only model where countries do

not share ideas, productivities are independent across space, and expenditure

is CES. Consequently, departures from CES expenditure reveal diffusion pat-

terns. Our theoretical results provide a mapping between the dynamics of

observable expenditure and the dynamics of innovation and knowledge dif-

fusion.
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1 Introduction

A central feature of growth is that new ideas improve production technologies. At

the same time, as Romer (1990) emphasized, ideas are inherently non-rivalrous. In

principle, sharing ideas should lead to similarity in production methods and pro-

ductivity. However, not all people, firms, and countries are equally able to adopt

new ideas in their original form, or to adopt them at all. Barriers to adoption can

be large (Parente and Prescott, 1994), making ideas excludable, and hence, creating

dissimilarities in production methods and productivity. The dynamics of innova-

tion and knowledge diffusion can then shape similarities and differences in tech-

nology across countries. However, it has been challenging to disentangle directly

from the data the dynamics of knowledge — in particular, the effects coming from

innovating new ideas versus adopting existing ideas that were created elsewhere.1

In this paper, we formalize how the footprints of knowledge dynamics are reflected

in the dynamics of expenditure patterns, and more specifically, in the substitution

patterns of expenditure shares between countries. From a Ricardian perspective,

these observable outcomes are the consequence of the distribution of productivity

across production locations and goods at any point in time. Since heterogeneity

in productivity determines patterns of comparative advantage and specialization,

expenditure should reflect the creation and spread of ideas. Specifically, countries

with more similar technologies should specialize in the same or very similar goods,

and hence, they should have more elastic expenditure substitution patterns with

each other.2

To capture this concept, we connect a Ricardian model of trade featuring a max-

stable multivariate Fréchet distribution of productivity over space to a model of

global innovation and knowledge diffusion. The creation and spread of ideas

across locations and time changes the world-wide productivity distribution, which,

in turn, determines observed patterns of expenditure and substitution elasticities.
1For efforts to measure technology adoption and knowledge diffusion directly see Comin and

Hobijn (2004), Comin and Hobijn (2010), and Bloom et al. (2021). Also see Comin and Mestieri
(2014) for a review.

2As an example, take the case of U.S. imports of washing machines, documented in Flaaen et al.
(2020). When antidumping duties were imposed to imports from Korea and Mexico in 2012, and
from China in 2016, imports from the affected sources sharply decreased but quickly reallocated to
other countries — to China in 2012 and to Vietnam and Thailand in 2016. These large substitution
effects suggest that those countries were close competitors, and produced very similar goods with
the same technologies — in fact, the same firms (LG and Samsung) operated affiliate plants in all
those countries.
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In our model, innovation makes a country technologically distinct, reducing their

substitutability with other countries, while diffusion between countries generates

technological similarity and increases head-to-head competition. In the special

case of an innovation-only model where countries do not share ideas, productiv-

ities are independent across space, and expenditure has a Constant-Elasticity-of-

Substitution (CES). It follows that departures from CES expenditure reveal diffu-

sion patterns. These departures from CES are precisely what the empirical liter-

ature estimates regarding trade substitution patterns (see, among others, Broda

et al., 2008; Feenstra et al., 2018; Bas et al., 2017; Adao et al., 2017; Lind and Ra-

mondo, 2021).

The model starts by clearly separating innovation from diffusion. Ideas of differ-

ent quality are discovered over time by individual locations according to a Poisson

process. Conditional on an innovation’s discovery location and time, other loca-

tions learn about the idea through time. While any location can use an idea, lead-

ing to non-rivalry, locations may differ in their ability to apply the idea, leading to

partial excludability. Over time, the applications of each idea across locations may

change, which, together with the creation of new ideas, determines the dynamics

of knowledge.

The concept of the applicability of an idea in a particular location is key for dis-

tinguishing innovation from diffusion and for obtaining max-stable multivariate

Fréchet productivity with an arbitrary correlation over space. We establish this

result by applying the spectral representation theorem for max-stable processes,

which generates max-stable processes from Poisson processes.3

A max-stable Fréchet distribution of productivity delivers closed-form solutions

for expenditure shares. In particular, this distribution spans the entire class of Gen-

eralized Extreme Value (GEV) demand systems (McFadden, 1978). This class fea-

tures rich substitution elasticities, departs from Independence of Irrelevant Alter-

natives (IIA), approximates any demand system satisfying gross substitutes (Fos-

gerau et al., 2013), and encompasses the large body of quantitative trade models

3De Haan (1984) establishes the existence of a spectral representation for max-stable processes
that are continuous in probability in terms of an underlying Poisson process. Penrose (1992) ex-
tends the result to max-stable processes that are right-continuous in probability. Stoev and Taqqu
(2005) further extend the representation to max-stable processes that are separable in probabil-
ity, while Wang and Stoev (2010) provides classification results for this representation. Finally,
Kabluchko (2009) establishes the existence of spectral representations on arbitrary index sets. The
spectral representation theorem for max-stable processes has previously been used by Dagsvik
(1994) in the context of decision theory.
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inspired by Eaton and Kortum (2002).

Loosely speaking, a lack of correlation in productivity across locations reflects

knowledge acquired mainly through innovation, while high correlation in pro-

ductivity reflects knowledge acquired mainly through diffusion.4 In turn, high

correlation in productivity leads to high substitutability in expenditure, while low

correlation leads to low elasticities of substitution. In the extreme, if ideas are never

shared between countries, there can be no similarity in technology, productivity is

independent across countries, expenditure is CES, and IIA holds — as is the case

in Eaton and Kortum (2001).

Relatedly, at the heart of Ricardian trade models lies head-to-head competition:

Producers of the same good compete for a market, with the lowest-cost source

supplying the market. Because in our model diffusion occurs in a particular idea

to produce a given good, it is diffusion that tightens up head-to-head competi-

tion across suppliers in different locations, and hence, leads to increases in substi-

tutability.

Overall, the link that we establish between GEV demand and the underlying inno-

vation and diffusion of ideas provides a framework to infer knowledge dynamics

from data on expenditure and costs shifters over time.

Related literature. This paper builds on the literature that generates Fréchet pro-

ductivity from Poisson processes. The basic idea was introduced in Kortum (1997)

and used in the context of a trade model by Eaton and Kortum (2001). If the pro-

duction technology is determined by the best idea, and if ideas become available

according to a Poisson process, after a sufficiently long period of time productivity

can be approximated by an extreme value distribution. We depart from this ap-

proach by leveraging the spectral representation of max-stable processes. In this

way, we are able to: (1) generalize from the case of independent Fréchet while pre-

serving the max-stability property key to the tractability of models of head-to-head

competition; and (2) provide exact rather than asymptotic results.

The literature that followed Kortum (1997) and Eaton and Kortum (2001), such as

Buera and Oberfield (2020), has been restricted to the case of independent Fréchet.

As a consequence, the resulting models struggle to capture how the offsetting

4Our model can also capture diffusion that occurs through the activity of multinational firms.
These firms bring their home technologies to the countries where they operate, making them avail-
able for production in that location.
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forces of innovation and diffusion shape correlation in productivity. In those mod-

els, diffusion is modeled as sampling ideas across goods, rather than within, so

that sharing ideas does not increase head-to-head competition among suppliers.5

A key feature of our model is that, because ideas are specific to goods, diffusion

occurs within a good across locations. In this way, this knowledge flow increases

head-to-head competition among suppliers, leading to more substitution in expen-

diture and higher elasticities.

Our treatment of diffusion is closer to the model in Eaton and Kortum (1999). In

their model, as in ours, ideas are specific to goods, have a common quality com-

ponent across countries, and diffuse with a lag to other countries. Their model,

however, does not include trade flows, and hence, the pattern of comparative ad-

vantage across countries is not relevant. We expand the model to include Ricardian

trade so that comparative advantage across countries matters.

Papers such as Perla et al. (2021) and Sampson (2016b) introduce models where

(endogenous) innovation, diffusion, and trade interact to generate growth.6 While

our model features exogenous innovation and diffusion, we depart from their

modeling approach and use tools from the literature on max-stable processes to-

gether with Ricardian trade as in Eaton and Kortum (2002) and Lind and Ramondo

(2021). This allows us to generate expenditure functions that are not restricted

to CES. Similarly to previous work by the same authors (Perla and Tonetti, 2014;

Sampson, 2016a), we model diffusion as a process in which not only the ideas cur-

rently used in production are evaluated for adoption, but any idea is. In this way,

countries can develop better applications of an idea created elsewhere but not used

anywhere.

Finally, our approach to the modeling of global innovation and diffusion has simi-

lar consequences for productivity to the ones in the model by Benhabib et al. (2021)

where, loosely speaking, "[i]nnovation stretches the distribution [of productivity],

while adoption compresses it." We go a step further and, in the context of an open

economy, we link these distributions to Ricardian trade.

5This is also the case in Cai et al. (2020). The main difference is that their model of innovation
and diffusion incorporates trade in many sectors. Additionally, while in Buera and Oberfield (2020),
international trade is a vehicle for diffusion, in Cai et al. (2020), as in our model, it is not.

6Using a multi-sector model, the focus of Sampson (2016b) is, similarly to Cai et al. (2020)’s, on
how innovation and diffusion affect comparative advantage across sectors and countries.
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2 Set Up

Time is continuous and indexed by t ∈ R. The world economy has a finite number

of locations, ` ∈ L ≡ {1, . . . , L}. Each location represents a labor market with wage

W`(t), populated by a unit measure of individuals. These individuals are immobile

across locations, inelastically supply their labor, consume a continuum of tradable

goods, v ∈ [0, 1], and have CES preferences with elasticity of substitution η > 0.

Production of each good v in location ` is done with an only-labor constant-return-

to-scale technology,

Y`(t, v) = Z`(t, v)L`(t, v),

where Z`(t, v) is good-location-time specific productivity. We focus on the case of

frictionless trade so that there is a common market for goods. This simplifies the

notation to only one location subscript without changing any of our results.

Following Eaton and Kortum (2002) (EK), we model productivity as a random

draw across goods and locations. Over time, productivity is a stochastic process,

{Z`(t, v)}(`,t)∈L×R.

We proceed as follows. First, we develop a model of innovation and diffusion

where productivity is the result of locations creating and adopting ideas, and where

innovation tends to reduce technological similarity, while diffusion tends to in-

crease it. Next, we show that this structure, combined with a Poisson assumption

on innovation and an independence assumption on diffusion, is necessary and suf-

ficient to characterize a global distribution of productivity that exhibits correlation

over space and time and has the property of max stability.7 This property is key

to ensure closed-form expressions for aggregate expenditure and prices in models

of head-to-head competition. The model encompasses the special case of indepen-

dent productivity across production locations, as in EK, but allows for richer pat-

terns of technological similarity across locations, as in Lind and Ramondo (2021).

7Productivity is a max stable process on L×R with Fréchet marginal distributions if for any integer
J and υj ≥ 0, (`j , tj) ∈ L× R for j = 1, . . . , J the distribution of maxj=1,...,J υjZ`j (tj , v) is Fréchet.
See Stoev and Taqqu (2005).
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2.1 Ideas and productivity

For each good, there exists an infinite, but countable, set of ideas: i = 1, 2, . . . . This

set contains all the ideas that will ever exists for a good. Each idea represents a

physical production technique (e.g., a blueprint) and may be applied in different

locations. The productivity of each idea has two components. First, the quality of

the idea, Qi(v), represents the overall efficiency of idea i applied to good v and is

common to all locations. Second, the idea’s productivity has a location and time

specific component, Ai`(t, v), which we refer to as the applicability of the idea in

location ` at time t. This term captures the costs of technology adoption, which may

differ across both locations and time, creating differences in the productivity of the

idea (see Parente and Prescott, 1994), and also adjustments needed to implement

an idea in a different location from the one that innovated it, or at a different time.

Together, quality and applicability combine to shape the productivity of idea i at

location ` at time t: Qi(v)Ai`(t, v). The first term generates heterogeneity in produc-

tivity across ideas, while the second term generates, for each idea, heterogeneity in

productivity across locations. The applicability of an idea is the key concept in our

model. It will allow us to cleanly distinguish between innovation and diffusion,

introduce time-varying technological similarity (or lack-of) across locations, and

time-varying correlation (or lack of) in productivity over space.

Ideas can be used anywhere, which makes them non-rival. They are, however,

partially excludable due to differences in applicability across locations: some ideas

are more productive in some locations than in others. For example, a location is

completely excluded from using an idea if its applicability at a point in time is zero.

Among locations with knowledge of an idea — i.e. with positive applicability —

technological similarity arises from similarity in applicability.

Finally, productivity for good v in location ` at time t is the result of choosing the

best idea available to them. The following assumption summarizes the structure

for productivity.

Assumption 1 (Technology Adoption). For each v ∈ [0, 1], there exists an infinite,

but countable, set of ideas, i = 1, 2, . . . , with quality, Qi(v) > 0, and applicabilities,

Ai`(t, v) ≥ 0 for each ` ∈ L and t ∈ R, such that productivity is given by

Z`(t, v) = max
i=1,2,...

Qi(v)Ai`(t, v). (1)
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If a new idea i to produce a good v becomes available to a location ` at time t (i.e.

applicability goes from zero to a positive number), this idea gets adopted only if

its overall efficiency is higher than the efficiency of an already available idea. The

overall efficiency of an idea can be high because its qualityQi(v) is high, or because

its applicabilityAi`(t, v) in that location ` at time t is high. However, if that location

does not have a very good application of a high-quality idea, some other location

could easily overtake it by drawing a better application of the idea.

Changes in productivity over time reflect changes in the applicability of ideas, ei-

ther due to the innovation of new ideas, or the diffusion of existing ideas, as de-

scribed next.

2.2 Innovation and diffusion

The applicability of an idea in a location can change over time due to innovation

and diffusion. We define innovation and diffusion in terms of whether or not an

idea is known. An idea is unknown if all locations are currently excluded from

using the idea, meaning that its applicability is zero everywhere. In contrast, if

some location has positive applicability, then the idea is known.

Innovation occurs when an idea first becomes known to some location. Formally,

the time when an idea first arrives in location ` is ti`(v) ≡ inf{t ∈ R | Ai`(t, v) > 0},
while the time when an idea is innovated — its discovery time — is the first time

when the idea becomes available to some location, t∗i (v) ≡ min` ti`(v).

Given an idea’s discovery, diffusion is defined as any subsequent change in ap-

plicability. While innovation makes an idea available for the very first time some-

where — applicability goes from zero to some positive number for the very first

time — diffusion either makes the idea available to new locations, or changes the

way an idea is applied in locations with prior knowledge of the idea.

Hence, distinguishing between innovation and diffusion entails grouping ideas

according to their discovery time. Keeping track of innovation entails measuring

the accumulation of known ideas, while keeping track of diffusion means measur-

ing the joint distribution of applicability across locations conditional on discovery

times.

The diagram in Figure 1 illustrates how our structure captures the difference be-
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Figure 1: Ideas, innovation, and diffusion.

Notes: The figure represents two ideas with productivity Qi(v)A1`(t, v) and Q2(v)A2`(t, v) (y-axis)
for a given good, three locations ` = L1, L2, L3, and three time periods t = 1, 2, 3.

tween innovation and diffusion. There are three locations and we depict two ideas

applied to a given good v. The y-axis shows the productivity of each idea in each

location, Qi(v)Ai`(t, v). These productivities differ across locations and times only

due to differences and changes in the idea’s applicability Ai`(t, v); the idea’s qual-

ity Qi(v) does not change over time and is common across locations. At time t = 1,

idea 1 is known everywhere so that A1`(1, v) > 0 for all `. No location has inno-

vated idea 2 so that A2`(1, v) = 0 for all `. Initially, all locations adopt idea 1 since

this idea is the best available in each location. At time t = 2, idea 2 gets innovated

in L1 — indicated by the blue point going from zero in t = 1 to a positive num-

ber in t = 2 only for L1. Either because this is a high-quality idea or L1 has high

applicability, this idea gets adopted by L1 as it is now the best idea available to

them. At t = 3, idea 2 diffuses from L1 to L3 — indicated by the blue point for

L3 going from zero at t = 2 to positive at t = 3, with L1 already having a positive

blue dot at t = 2. The applicability of idea 2 in L3 is high enough that this idea

gets adopted, but not high enough to overcome the high productivity in L1. This

lower applicability of idea 2 in L3 after diffusion can represent the costs to L3 of

adapting the idea from its original form in the innovator location L1.

We next put stochastic structure to both the quality and applicability of ideas. We

first put structure on the process of innovation.

Assumption 2 (Poisson Innovation). The innovation history, {Qi(v), t∗i (v)}i=1,2,...,
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consists of the points of a Poisson process. Ideas with quality q get innovated at time

t∗ with intensity θq−θ−1dqΛ(dt∗) for some θ > 0 and measure Λ.

The expected number of ideas discovered up to time t with quality above q is

q−θΛ(t) where Λ(t) ≡
∫ t
−∞ Λ(dt∗) denotes the expected number of known ideas

with quality of at least 1.8 Here, Λ(dt∗) controls the overall arrival rate of ideas,

while θ controls the arrival rate of low versus high quality ideas. Among ideas

known at time t with minimum quality of q, quality is independent of time and

distributed Pareto with shape θ and lower bound q.9 A lower θ means a fatter tail

so that locations sometimes innovate very good ideas.

An intuitive way of thinking about the quality distribution is that qualities are

drawn at the beginning of time and lie “dormant” until discovery. Assumption

2 means that there are many more low-quality ideas waiting to be discovered, so

that, most likely, a location will discover a low-quality idea. However, occasionally,

they get a really good idea.

Our structure departs from the previous literature (Kortum, 1997) in that locations

do not draw the idea’s quality (distributed Pareto), conditional on the idea’s (Pois-

son) arrival. Rather, ideas of different qualities arrive at different rates as indicated

by Assumption 2. What do we gain with this structure? Rather than using extreme

value theory, which leads asymptotically to independent Fréchet distributions for

productivity, our structure for technology leads to exact results and to max-stable

Fréchet productivity with arbitrary correlation. As we show in Section 3, the Pareto

tail of quality will determine the shape of the Fréchet distribution.

To characterize diffusion, we keep track of an idea’s applicability over time. We

only require the following assumption on diffusion.

Assumption 3 (Independent Diffusion). Applicability is measurable in time, inde-

pendent of quality, and independent and identically distributed across ideas conditional on

discovery time with
∫ t
−∞ E[Ai`(t, v)θ | t∗i (v) = t∗]Λ(dt∗) <∞ for all t ∈ R.

Apart from regularity conditions — that ideas are independent and applicabilities

are measurable and on-average finite — Assumption 3 means that improvements

in applicability are just as likely to occur for low quality as for high quality ideas.

8
∫∞
q

∫ t
−∞ θq−θ−1Λ(dt∗)dq = q−θΛ(t).

9P[Qi(v) ≤ q | Qi(v) > q, t∗i (v) ≤ t] =
q−θΛ(t)−q−θΛ(t)

q−θΛ(t)
= 1−

(
q/q
)−θ.
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Although this restriction means that locations cannot only select the highest qual-

ity ideas to learn about, it does not limit how the applicability of an idea in one

location relates to the applicability of that idea in a different location. In this way,

many models of diffusion are consistent with Assumption 3.

An important implication of independence between quality and applicability is

that we only need to condition the distribution of applicability on the discovery

time of an idea in order to keep track of how the idea diffuses. As a consequence,

the state variable for the world economy at time t is given by the measure of ideas

with quality of at least 1 and applicability below some vector (a1, . . . , aL) discov-

ered up to t,

M(a1, . . . , aL; t) ≡
∫ t

−∞
P[Ai`(t, v) ≤ a` ∀` | t∗i (v) = t∗]Λ(dt∗). (2)

For the rest of the paper, we characterize outcomes in terms of this state variable,

and specific examples of innovation and diffusion processes place further structure

on M over time.

Besides Assumption 3, we require no further structure on the dynamics of diffu-

sion to ensure max-stability of the productivity distribution. However, to clearly

separate the effects of innovation from the effects of diffusion and to ensure thatM

evolves continuously over time, it is useful to impose one additional restriction.

We assume that each idea is innovated in a unique discovery location, `∗i (v), and at

a unique time. Formally, for each idea, there exists a location, `∗i (v), such that for

` = `∗i (v), t∗i (v) = ti`(v) and ∀` 6= `∗i (v), t∗i (v) < ti`(v). This assumption implies

that ideas arrive to locations other than the discovery location with a lag. As a

consequence, no idea is initially shared and all shared knowledge arises from dif-

fusion. The unique discovery time implies that discovery times are continuously

distributed, and we denote the rate at which ideas with quality above one are dis-

covered in `∗ by λ`∗(t) ≡ P[`∗i (v) = `∗ | t∗i (v) = t∗]∂Λ(t)/∂t. The count of ideas

with quality above q discovered up until time t in location `∗ is itself a Poisson pro-

cess with intensity θq−θ−1dqλ`∗(t)dt. Hence, among ideas discovered at time t, the

probability of discovery in location ` is P [`∗(v) = ` | t∗i (v) = t] = λ`(t)/
∑

`′ λ`′(t).

Together, the assumptions on a unique location and time of discovery for an idea

imply that the function in (2) becomes additively separable across discovery loca-
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tions,

M(a1, . . . , aL; t) =
L∑

`∗=1

∫ t

−∞
F (a1, . . . , aL | t∗, `∗; t)λ`∗(t∗)dt∗, (3)

where F (a1, . . . , aL | t∗, `∗; t) ≡ P[Ai`(t, v) ≤ a` ∀` | t∗i (v) = t∗, `∗i (v) = `∗] denotes

the conditional distribution of applicability across all locations.

The dynamics of the joint distribution of applicability can then be decomposed

into an innovation effect and a diffusion effect as follows:

∂

∂t
M(a1, . . . , aL; t) =

L∑
`∗=1

F ∗(a`∗ | `∗, t; t)λ`∗(t)dt︸ ︷︷ ︸
Innovation Effect

+
L∑

`∗=1

∫ t

−∞

∂

∂t
F (a1, . . . , aL | `∗, t∗; t)λ`∗(t∗)dt∗︸ ︷︷ ︸

Diffusion Effect

,

(4)

where F ∗(a`∗ | `∗, t; t) ≡ P[Ai`∗(t, v) ≤ a`∗ | `∗i (v) = `∗, t∗i (v) = t] denotes the con-

ditional distribution of applicability in the discovery location. The first term in

(4) captures how the innovation of new ideas at time t impacts the evolution of

M . Applicability is concentrated in the discovery location, and the joint distribu-

tion of applicability among new ideas is simply the marginal distribution in the

discovery location. Hence, the overall effect of innovation is additively separable

across locations because ideas arrive as a Poisson process (Assumption 2) and have

a unique discovery location. In contrast, the second term captures the diffusion of

ideas that were innovated in the past: though separable across discovery locations

(indexed by `∗), this term is not separable across production locations (indexed by

`). Conditional on the discovery time and location of an idea, the effect of diffusion

is captured by the evolution of the joint distribution of applicability.

So far, our model delivers a simple expression for the global evolution of knowl-

edge, with a clear distinction between the contributions of innovation and diffu-

sion. Diffusion allows ideas, which are not shared initially, to be shared across

production locations, while innovation reduces the prevalence of shared ideas. Al-

though our model is parsimonious, it captures the non-rival trait of ideas — they

can be shared across locations — while also allowing for excludability — some

locations have limited access to ideas. In turn, the dynamics of innovation and dif-

fusion give rise to a max-stable Fréchet distribution of productivity over time and

space, as we show next.

We have left out the underpinnings of innovation, which we treat as exogenous. A

micro-founded model of innovation can be introduced by endogeneizing the vari-
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able λ`∗(t). This variable is key in growth models, and ends up depending, for in-

stance, on the number of researchers in a country, or the strength of the patent sys-

tem. The goal of these papers is to study the determinants of growth and, in open

economies, how trade liberalization affects economic growth. We also have put

minimal structure on diffusion, but further assumptions on applicability would

give rise to different models of diffusion. Again, the goal of many of those pa-

pers is to study the determinants of technology gaps across countries, the speed of

convergence to the technology frontier, and the role of trade in closing those gaps.

Our goal here is different: We are less interested in proposing a new model of en-

dogenous innovation and diffusion in an open economy, but rather in developing

general tools that allow for a tractable characterization of the global evolution of

knowledge, which clearly distinguishes between innovation and diffusion, as well

as its consequences for the world production possibility frontier.

3 Productivity as Max-Stable Fréchet

We now provide a closed-form characterization for the distribution of productiv-

ity across locations and its evolution over time, which arises from the dynamics of

innovation and diffusion. The key result is that the structure for innovation and

diffusion in Section 2 generates productivity that is distributed max-stable mul-

tivariate Fréchet across locations. In turn, this distribution leads to closed-form

results for expenditure shares.

Proposition 1 (Max-stable Fréchet Productivity). Productivity is a measurable max-

stable process with Fréchet marginal distributions if and only if Assumptions 1, 2, and 3

hold. In this case, the joint distribution of productivity across locations at time t is max-

stable multivariate Fréchet,

P [Z1(t, v) ≤ z1, . . . , ZL(t, v) ≤ zL] = exp

[
−
∫

max
`∈L

aθ`z
−θ
` dM(a1, . . . , aL; t)

]
. (5)

Proof. See Appendix A.

Necessity follows from applying the spectral representation of max-stable pro-

cesses in Wang and Stoev (2010). Essentially, this representation ensures that there

always exists a Poisson process with the properties in Assumptions 2 and 3 for

which productivity arises from maximizing over the points of the process (As-
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sumption 1). The proof of sufficiency is constructive and uses properties of Pois-

son processes. To illustrate how Assumptions 1, 2, and 3 imply that productivity

is max-stable Fréchet and generates the closed form in (5), it is useful to sketch the

proof for a point in time t.

First, because each location adopts the best idea available to them under Assump-

tion 1, the distribution of productivity across locations is given by

P [Z1(v) ≤ z1, . . . , ZL(v) ≤ zL] = P
[

max
i=1,2,... s.t. t∗i (v)≤t

Qi(v)Ai`(t; v) ≤ z` ∀` ∈ L
]
,

which can be expressed as a void probability,

P [Z1(v) ≤ z1, . . . , ZL(v) ≤ zL] = P
[
Qi(v) > min

`∈L

z`
Ai`(t; v)

for no i s.t. t∗i (v) ≤ t

]
.

(6)

This expression says that no known idea can have quality above minimum pro-

ductivity adjusted for the idea’s applicability in each location.

We exploit properties of Poisson processes to solve for the expression in (6). Be-

cause {Qi(v), t∗i (v)}i=1,2,... forms a Poisson process under Assumption 2 and ap-

plicabilities are conditionally independent under Assumption 3, the collection of

qualities, discovery times, and applicabilities, {Qi(v), t∗i (v), {Ai`(t, v)}(`,t)∈L×R}i=1,2,...,

contains the points of a marked Poisson process where the stochastic process for

applicability, {Ai`(t, v)}(`,t)∈L×R, is the mark of the i’th point. Here, quality and dis-

covery times capture the process of innovation, while the evolution of the marks

conditional on quality and discovery captures diffusion. In turn, the subset of

known ideas at time t is itself a (thinned) Poisson process with mean measure

given by q−θM(a1, . . . , aL; t).10 This mean measure can be used to solve for (6),

which can be calculated using the expected number of known ideas with quality

above min`∈L
z`
a`

and integrated over applicability levels to get (5). Changes in the

distribution of productivity over time arise from changes in the measure of ideas

due to innovation and diffusion: the Poisson arrival of ideas captures innovation,

while the evolution of an idea’s applicability conditional on its discovery (i.e. its

mark) captures diffusion.

The resulting world-wide productivity distribution in Proposition 1 at each point

10E
∑
i=1,2,···|t∗i (v)≤t 1{Qi(v) ≥ q, Ai`(t, v) ≤ a` ∀` ∈ L} = q−θM(a1, . . . , aL; t), a result that uses

the Pareto tail of quality and the independence between quality and discovery times in Assump-
tion 2, as well as the independence between quality and applicability in Assumption 3.
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in time is max-stable multivariate Fréchet, as described in Lind and Ramondo

(2021), and can be written as

P [Z1(t, v) ≤ z1, . . . , ZL(t, v) ≤ zL] = exp
[
−G(T1(t)z

−θ
1 , . . . , TL(t)z−θL ; t)

]
, (7)

where the shape is given by θ, scales are defined as

T`(t) ≡
∫
aθ`dM(a1, . . . , aL; t), (8)

and the correlation function is defined as

G(x1, . . . , xL; t) ≡
∫

max
`∈L

aθ`
T`(t)

x`dM(a1, . . . , aL; t). (9)

The link with the underlying knowledge process in Proposition 1 makes clear that:

the shape parameter θ, which regulates heterogeneity in productivity over the con-

tinuum of goods, is the same Pareto-tail parameter that regulates heterogeneity

in the quality of ideas — when quality is more fat-tailed (lower θ), there is more

dispersion in productivity across goods within each production location; the scale

parameter captures the average applicability of ideas in location ` at time t; and the

correlation function, G, which captures the dependence structure of productivity

across locations, reflects the patterns of similarity in applicability of M .11

We next turn to concrete examples to illustrate the interactions between innovation

and diffusion that generate correlation (or lack-of) in productivity.

3.1 From knowledge to productivity: examples

Suppose that ideas are never shared across locations after being innovated — ideas

stay in their discovery location. In this case, each ideas’ applicability is degenerate

at zero in all locations except for the discovery location at all times. Hence, the

11The correlation function has several important properties. First, it is homogenous of degree
one, ensuring that the joint distribution of productivity is max-stable. Second, the function G has
mixed partial derivatives that exist (almost everywhere) and are continuous up to order R, with
the r’th partial derivative of G with respect to r distinct arguments non-negative if r is odd and
non-positive if r is even. Finally, the function G is unbounded (G(x1, . . . , xL) → ∞ as x` → ∞ for
any ` = 1, . . . , L). See Lind and Ramondo (2021).
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measure of ideas in (3) becomes

M(a1, . . . , aL; t) =
L∑

`∗=1

∫ t

−∞
F ∗(a` | `∗, t∗; t)λ`∗(t∗)dt∗. (10)

Using Proposition 1, the joint productivity distribution is

P [Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] = exp

[
−

L∑
`=1

T`(t)z
−θ
`

]
, (11)

with scales given by the average applicability of ideas previously discovered in the

location, and an additive correlation function (see Appendix C).

The lack of shared ideas across locations, together with the Poisson assumption

on the arrival of ideas, leads to independent productivity across locations. This is

precisely what leads to independence of productivity in Eaton and Kortum (2001)

— an innovation-only model based on the Poisson arrival of ideas that never leave

their discovery location. It is also the reason for independence of productivity in

models of diffusion such as Buera and Oberfield (2020). In that model, locations

sample productivities in other locations and update their productivity depending

on the realization of a proportional adjustment, which is drawn from a Pareto dis-

tribution. In terms of our model, diffusion in Buera and Oberfield (2020) generates

an applicability level that is related to the sampled productivity level, but it also

generates a new quality level and therefore it is a completely new idea specific to

the new location. Effectively, diffusion generates new ideas that are never shared

and this leads to independent productivity over space in their framework.

The case presented above establishes that a necessary condition for correlation in

productivity is the sharing of ideas across locations. To make this concrete, con-

sider the extreme opposite case of ideas that are shared across all locations once

they diffuse. Further, assume that once an idea is known in a production location,

its applicability is distributed as a unit Fréchet, independent across locations, and

with shape σ > θ. The measure of ideas at time t is given by a combination of

non-shared and shared ideas,

M(a1, . . . , aL; t) =
L∑
`=1

[
(1− ξ`(t))e−a

−σ
` + ξ`(t)e

−
∑L
`′=1 a

−σ
`′

]
Λ`(t), (12)
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where Λ`(t) ≡
∫ t
−∞ λ`(s)ds and

ξ`(t) ≡
∫ t

−∞
P[∃`′ 6= ` s.t. Ai`′(t, v) > 0 | `∗i (v) = `, t∗i (v) = s]

λ`(s)

Λ`(t)
ds

is the fraction of ideas innovated in ` that have diffused to the rest of the world. In

this case, the productivity distribution is

P[Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] = exp

−
L∑
`=1

KND
` (t)z−θ` +KD(t)

(
L∑
`=1

z
− θ

1−ρ
`

)1−ρ
 ,

(13)

where ρ ≡ 1− θ/σ, KND
` (t) ≡ Γ(ρ)(1− ξ`(t))Λ`(t) is the stock of non-diffused ideas

from `, and KD(t) ≡ Γ(ρ)
∑L

`=1 ξ`(t)Λ`(t) is the global stock of diffused ideas (see

Appendix C for derivations). This case is a "convex" combination of the case of

independence and symmetric correlation. Productivity may be correlated across

production locations and the extent of correlation depends on the fraction of ideas

innovated by each location that have diffused to the rest of the world. In one ex-

treme, if there is no diffusion, then ξ`(t) = 0 for all discovery locations and this

case reduces to (11) where ideas are never shared and productivity is indepen-

dent Fréchet. On the other extreme, if all ideas diffuse immediately after being

innovated, then ξ`(t)→ 1 for all locations and we get a multivariate θ-Fréchet dis-

tribution with correlation parameterized by a common ρ ∈ [0, 1).12 The amount of

correlation in productivity reflects the heterogeneity in the applicability of an idea

across locations, captured by σ. As σ → θ, applicability is as fat-tailed as the qual-

ity component of an idea, ρ→ 0, and productivity is independent across locations,

despite the existence of diffusion. In contrast, as σ → ∞, there is no dispersion

in applicability across locations, and ρ → 1. In this case, productivity is perfectly

correlated across locations and diffusion equalizes productivity everywhere.

This example illustrates that not only the extent of diffusion determines the degree

of correlation in productivity, but also that different applications of the same idea

across production locations need to be relatively similar for correlation to arise.

That is, differences in applicability across production locations (controlled by σ)

12The case of instantaneous diffusion coincides with the case of multinational production in Ra-
mondo and Rodríguez-Clare (2013): Technologies from `∗ are correlated across production loca-
tions `, with correlation given by ρ, while technologies are independent across discovery locations
`∗. Our model of innovation and diffusion lays out the knowledge primitives behind the Fréchet
multinational production model.
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must be small relative to differences in quality across ideas (controlled by θ). If

applicability were as dispersed as idea quality, specific applications of an idea are

virtually new ideas because they generate productivity differences that are just as

large. Technological similarity only arises when differences in productivity due

to idea quality are large relative to heterogeneity in productivity due to location-

specific applications of ideas.

Summing up, departures from independent productivity require not only shared

ideas, but also relatively similar applicability of those ideas across locations. Put

differently, differences in productivity across locations using the same idea cannot

be too large.

As our examples demonstrate, Proposition 1 enables us to characterize the con-

sequences of the state of knowledge for technological similarity by providing a

closed-form solution for the joint distribution of productivity in terms of the un-

derlying measure of ideas. Correlation in productivity reflects the joint distribution

of applicability across production locations, a result of the dynamics of innovation

and diffusion. In turn, correlation in productivity determines the patterns of Ri-

cardian trade: Locations with very similar technology face strong head-to-head

competition with each other. These are very substitutable locations from the per-

spective of the importer. Additionally, only diffusion gets reflected in changes in

substitution patterns over time, as we show in the next section.

4 Expenditure Shares and Substitution Elasticities

We now proceed to characterize how innovation and diffusion shape expenditure

shares and their substitution patterns through the evolution of correlation in pro-

ductivity across space. Our results connect models of knowledge creation and

diffusion to the large empirical literature estimating trade elasticities. The main

takeaway is that departures from CES expenditure imply that ideas are shared

across space.

We present results for the case of no trade costs to simplify the analysis. In this

case, we normalize P (t) = 1. The extension to an economy with trade frictions is

straightforward and does not change the main intuition of the results.13

13With an iceberg-type trade cost to ship goods from production location ` to final destination n,
τ`n(t) ≥ 1, the price index would have the subscript n, Pn(t), expenditure shares would have ex-
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We assume that good markets are perfectly competitive. Given wages W`(t), head-

to-head competition means that the lowest-cost location serves the destination

market for good v at time t,

P (t, v) = min
`

W`(t)

Z`(t, v)
.

Thanks to max-stability, and further assuming that θ > η− 1, the share of expendi-

ture allocated to production location ` equals the probability that location ` is the

lowest-cost producer,

π`(t) =
T`(t)W`(t)

−θG`(T1(t)W1(t)
−θ, . . . , TL(t)WL(t)−θ; t)

G(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)
, (14)

where G` ≡ ∂G
∂x`

(see Lind and Ramondo, 2021).14 The demand system in (14)

has the same functional form as the choice probabilities in generalized extreme

value (GEV) discrete choice models (McFadden, 1978). The shape of these expen-

diture functions comes entirely from the correlation function. For example, the

case of no diffusion, which leads to an additive correlation function — and inde-

pendent productivity — entails CES expenditure (Arkolakis et al., 2012), π`(t) =

T`(t)W`(t)
−θ/

∑L
`′=1 T`′(t)W`′(t)

−θ.

Using (14), we can calculate the elasticity of expenditure in goods from ` to changes

in the wage in `′, for ` 6= `′,

ε`,`′(t) ≡
∂ lnπ`(t)

∂ lnW`′(t)
= −θT`

′(t)W`′(t)
−θG``′(T1(t)W1(t)

−θ, . . . , TL(t)WL(t)−θ; t)

G`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)
,

(15)

where G``′ ≡ ∂2G
∂x`∂x`′

. Because G``′ is negative, the cross-price elasticity of substitu-

tion is positive — (14) belongs to the gross substitutes class. When the correlation

function is additive and expenditure is CES, the cross-price elasticity is zero and

we get Independence of Irrelevant Alternatives (IIA). Any departure from CES

arises from some curvature in the correlation function, G``′/G`, and hence from

production locations sharing ideas. While no diffusion leads to the CES case, a

non-CES expenditure function, in the context of a Ricardian model, indicates the

porter and importer subscripts, π`n(t), and elasticities will reflect the substitution patterns between
production locations ` and `′ to serve a particular final destination n, ε`,`′,n(t).

14The expression in (14) arises from the property of max-stability implying that the conditional
and unconditional distributions of the maximum coincide. This is the same property that leads to
closed-form solutions in Eaton and Kortum (2002).
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presence of correlation in productivity across exporters, and hence, ideas’ sharing

across production locations.

4.1 Linking GEV expenditure to knowledge patterns

Using the result in Proposition 1 we can directly connect expenditure and elastici-

ties to the measure of ideas at each time t. The substitution patterns in expenditure

between location ` and `′ are related to how similar applicability of ideas is across

locations, captured by the functionM . Similar applicability translates into stronger

head-to-head competition and higher substitutability.

Proposition 2 (Expenditure shares and substitution elasticities). Under Assump-

tions 1, 2, and 3, if M is differentiable, expenditure shares are

π`(t) =

∫∞
0

W`(t)
q
M`

(
W1(t)
q
, . . . , WL(t)

q

)
θq−θ−1dq∑L

`′=1

∫∞
0

W`′ (t)
q
M`′

(
W1(t)
q
, . . . , WL(t)

q

)
θq−θ−1dq

(16)

where M` ≡ ∂M
∂a`

, and elasticities for `′ 6= ` are

ε``′(t) ≡
∂ lnπ`(t)

∂ lnW`′(t)
=

∫∞
0

W`(t)
q

W`′ (t)
q
M``′

(
W1(t)
q
, . . . , WL(t)

q

)
θq−θ−1dq∫∞

0
W`(t)
q
M`

(
W1(t)
q
, . . . , WL(t)

q

)
θq−θ−1dq

, (17)

where M``′ ≡ ∂2M
∂a`∂a`′

. For `′ = `, the elasticity is implied by
∑

`′∈L ε`,`′(t) = −θ.

Proof. See Appendix B.

In (16) and (17), the quantity a` = W`(t)
q

represents a level of applicability in `.

The corresponding cost that `′ needs to compete with ` is W`′ (t)
qa`

. The integrals in

(16) and (17) are over applicability levels at which all locations have the same unit

cost for a given quality of the idea. Consequently, the expenditure share for ` at

time t captures the share of ideas that the location uses to produce, relative to all

other locations — that is, the share of ideas for which location ` is the lowest-cost

producer. In turn, the cross-price elasticity reflects the amount of marginal ideas

(i.e. the ones with applicability levels at which all locations have marginal cost

equal to one given the quality of the idea), relative to the ideas for which location

` is the lowest-cost producer. Higher ε`,`′(t) reflects a larger share of head-to-head
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competitive ideas with `′. That is, substitution is high when the density of ideas

has more mass along the ray of identical marginal costs, relative to the mass of

ideas for which ` is the lowest-cost producer.

To better illustrate the workings of Proposition 2, we provide a numerical exam-

ple. We assume that the world has two locations of identical size (normalized to

one). To ease the notation, we suppress time subscripts. We assume a functional

form for the joint distribution of applicability across sourcing locations M(a1, a2)

and explore three cases.15 In the first case, diffusion is symmetric between the two

locations, but does not generates similar applicability levels between locations. In

the second case, diffusion is still symmetric but now leads to similar applicabil-

ity levels. Finally, in the third case, diffusion occurs asymmetrically: it generates

similar applicability when ideas come from location 1 but dissimilar applicability

when ideas come from location 2.

Figure 2 plots the three cases. The upper panels plot the density of ideas ∂2M(a1,a2)
∂a1∂a2

using surface heat maps to indicate the areas with more density. Additionally,

these panels show three rays from the origin indicating different levels of relative

wages, lnW2/W1, with the 45-degree line indicating wage equalization. The lower

panels show cross-price elasticities for different levels of relative wages across lo-

cations (in addition to the three levels plotted in the upper panels).

In the top left panel, the distribution of ideas has two peaks. For each of these

peaks, there is one country with a high average level of applicability while the

other country has a low level. We interpret these two groups as corresponding to

ideas discovered in each location, where it is difficult to adopt ideas discovered

elsewhere. Turning to the bottom left panel, we see the consequence for elastici-

ties. Starting from equal wages, there are few ideas where the two locations are

head-to-head competitors, and the elasticity is low. As the relative wage increases,

the mass of ideas where the locations are head-to-head competitors increases and

elasticities increase. Of course, in this symmetric case, equilibrium wages are equal

15We assume the measure of ideas takes the following form:

M(a1, a2) =

∫ 1

0

exp
[
−a−σ1 − (a2/φ)−σ

]
f(φ;α1, β1)dφ+

∫ 1

0

exp
[
−(a1/φ)−σ − a−σ2

]
f(φ;α2, β2)dφ,

where f(φ;α, β) is the density of a beta random variable. Our three examples vary the parameters
α and β such that: 1) α1 = α2 = 2 and β1 = β2 = 4; 2) α1 = α2 = 5 and β1 = β2 = 1; and 3) α1 = 5,
α2 = 2, and β1 = 1 and β2 = 4.
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Figure 2: Diffusion, relative wages, and cross-price elasticities.
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B. Cross-price elasticities
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Notes: Two sourcing locations. Left panel: symmetric diffusion, low similarity in ideas’ applicability.; Center
panel: symmetric diffusion, high similarity in ideas’ applicability. Right panel: asymmetric diffusion be-
tween locations. Upper panels: Surface plots of M12(a1, a2). Lower panels: Cross-price elasticities agains log
changes in relative wages.

(lnW2/W1 = 0), and the resulting cross-price elasticities are close to zero — there

is little mass of ideas around the 45-degree line.

The center panels illustrate a case of (symmetric) high similarity in applicability

between locations. In this case, the density of ideas is concentrated around the

45-degree line. For equal wages, cross-price elasticities are large and symmetric.

Finally, the right panels portray a case in which location 1 has high applicability

for all ideas, but location 2 has low applicability for some ideas. In this case, the

responses of log expenditure shares to changes in log relative wages are not sym-

metric. Even for equal wages, location 1 has a higher cross-price elasticity: since

their ideas have higher similarity, once they are available in location 2, this loca-
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tion becomes a fiercer head-to-head competitor — i.e. the share of competitive

ideas is higher for location 1 than for 2. The equilibrium relative wage depends on

the amount of knowledge diffused versus non-diffused as well as the parameters

governing similarity in applicability.

4.2 All-or-nothing diffusion: expenditure, elasticities, and wages

The model’s general equilibrium simply entails to equate income to expenditure

in each location. Under the assumptions of frictionless trade and equal-sized loca-

tions, the good market equilibrium condition is

W`(t) = π`(t)
∑
`′

W`′(t), (18)

for each ` and t. At any point in time, given the global state of knowledge, summa-

rized by the function M , the equilibrium exists and is unique due to expenditure

shares being in the gross substitute class.

To provide a solution for equilibrium expenditure shares, elasticities, and wages,

we consider the case of ideas that are shared across all location once they diffuse.

As in previous sections, we assume that once an idea is known in a production

location, its applicability is distributed as a unit max-stable Fréchet with shape σ,

independent across locations, and σ > θ. The measure of ideas at any point in time

is given by (12) and the productivity distribution is given by (13).

The expenditure share allocated to location ` at time t is

π`(t) = πND
` (t) + πD

` (t). (19)

The first term is the share of expenditure in goods from ` produced with ideas that

are unique to that location at time t— that is, those ideas that have not yet diffused

elsewhere,

πND
` (t) = KND

` (t)W`(t)
−θ. (20)

The second term is the share of expenditure in goods from ` produced with ideas

that have diffused from a different location up to time t,

πD
` (t) = KD(t)

[
W`(t)

W(t)ρ

]− θ
1−ρ

, (21)
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where ρ ≡ 1− θ/σ, and W(t)−
θ

1−ρ ≡
∑L

`′=1W`′(t)
− θ

1−ρ .

The elasticity of substitution for ` 6= `′ is

ε`,`′(t) =
ρθ

1− ρ
πD
` (t)

π`(t)

(
W`′(t)

W(t)

)− θ
1−ρ

, (22)

with ρθ/(1 − ρ) = σ − θ. This cross-price elasticity is positive when there exist

shared ideas across locations and σ > θ. It is clear that a sufficient condition for

the presence of shared ideas across locations is a non-CES demand system.

With no diffusion, KD(t) = 0 and expenditure is CES: cross-price elasticities are

zero and the own elasticity is equal to −θ. With σ → θ, which means that appli-

cability is relatively fat-tailed and ρ = 0, expenditure is also CES, and collapses

to π`(t) = W−θ
` (t)

[
KND
` (t) +KD(t)

]
. In turn, income follows the standard formula

for CES expenditure as in Arkolakis et al. (2012),W`(t) =
[
π`(t)/(K

ND
` (t) +KD

` (t))
]− 1

θ .

In this case, cross-elasticities are zero and, therefore, contain no information about

diffusion versus innovation: Only the scale parameters of the productivity distri-

bution reflect the state of knowledge.

With instant diffusion (and σ > θ), new ideas become immediately available to

other locations so that expenditure collapses to π`(t) = πD` (t) and the cross elastic-

ity is equal to (σ − θ) (W`′(t)/W(t))−σ. In this case, the amount of diffused ideas

only affects the elasticity through its effect on equilibrium wages, with locations

with relative low wages having higher elasticities — they are fiercer head-to-head

competitors.

Finally, in the limiting case of ρ → 1, applicability is the same in all locations.

Hence, diffused ideas will only be used by lower-wage locations, while higher-

wage locations will produce with their non-diffused ideas. In this case, because

productivity is not independent across locations, cross-price elasticities convey in-

formation about the diffusion process — they reflect the shape of the distribution

of applicability across ideas.

Summing up, similarity in applicability (σ) relative to quality (θ) regulates substi-

tution patterns between locations. Given wages, innovation — captured by the

prevalence of non-diffused ideas — decreases cross-price substitutability, while

diffusion — captured by the prevalence of shared ideas — increases it.

To solve for the equilibrium wages, we further assume that a subset of locations
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innovates while the remaining ones do not. Formally, we assume that KND
` (t) > 0

for ` = 1, . . . ,M and KND
` (t) = 0 for ` = M + 1, . . . , N . Let x∗ denote variable x for

the non-innovator locations. Specializing the equilibrium condition in (18) reveals

that the wage for innovator ` relative to a non-innovator is equal to their relative

expenditure share, W`(t) ≡ W`(t)/W
∗(t) = π`(t)/π

∗(t). We can then characterize

the equilibrium in terms of relative wages.

Specializing the expressions in (20) and (21) to the case of N −M identical non-

innovators, combining them as in (19), and taking the ratio of expenditures be-

tween an innovator ` and a non innovator, yields the following condition charac-

terizing the relative wage of each innovator to non innovators,

W`(t) = k`(t)W`(t)
−θW̃(t)−

θρ
1−ρ +W`(t)

− θ
1−ρ ≡ F (W`(t), t),

with W̃(t)−
θ

1−ρ ≡
∑M

`=1W`(t)
− θ

1−ρ + N −M and k`(t) ≡ KND
` (t)/KD(t). Since the

function F is strictly decreasing and F (1, t) > 1, the relative wage for any inno-

vator to non-innovators is unique and satisfies W(t) > 1. This is just saying that

equilibrium wages in innovator locations are strictly higher than in non-innovator

locations: W`(t) > W ∗(t), for all ` = 1, . . . ,M . Moreover, as k`(t) → 0 so that in-

novator `’s knowledge is all diffused, their wage equalizes with the wage in non-

innovator locations. Wages across the two types of locations diverge the larger the

share of non-diffused knowledge, since the innovator has more sources of poten-

tially better ideas to compete in the world market. Additionally, wages diverge

more the larger the number of non-innovator locations. Because all the adopt-

ing locations have equal access to diffused ideas simultaneously, the head-to-head

competition among those locations is fiercer the larger the number of competitors.

We can also calculate the relative wages between any two innovators ` and `′ at

time t,

W`(t)

W`′(t)
=

 k`(t) +
(
W`(t)/W̃(t)

)− θρ
1−ρ

k`′(t) +
(
W`′(t)/W̃(t)

)− θρ
1−ρ


1

1+θ

.

Relative to another innovator, the wage of innovator ` increases the higher its share

of non-diffused knowledge, but the effect is partially offset by the increase in its

relative wage with respect to non-innovator locations.

Inspecting (22) reveals that a lower share of diffused knowledge decreases the
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cross-price elasticities of innovators directly through higher k`(t) and through higher

relative wages. For non-innovators, a higher share of diffused knowledge makes

them more substitutable with an innovator since their relative wages are lower.

Non innovators are always more substitutable with other non-innovator locations

since wages across this set of locations are always equalized, making head-to-head

competition among them fiercer.16

Turning to the special case of no correlation in productivity, ρ = 0, the wage gap
between an innovator ` and a non-innovator location simply reflects the share of
non-diffused to diffused knowledge, W`(t) = (k`(t) + 1)

1
1+θ , and similarly for the

relative wage between two innovators, W`(t)/W`′(t) = (k`(t)/k`′(t))
1

1+θ . In turn,
expenditure shares,

π`(t) =
(k`(t) + 1)

1
1+θ∑

`′(k`′(t) + 1)
1

1+θ + (N −M)
and π∗(t) =

1∑
`(k`(t) + 1)

1
1+θ + (N −M)

,

reflect the share of world knowledge used in production in each location — dif-

fused knowledge in non-innovator locations, and a mix of diffused and non-diffused

knowledge for innovators.

In the limiting case of ρ → 1, the wage gap between innovator ` and any non-
innovator location isW`(t) = max

[
1, (k`(t)(N −M))

1
1+θ

]
, and expenditure shares

collapse to

π`(t) =
(k`(t)(N −M))

1
1+θ∑M

`′=1(k`′(t)(N −M))
1

1+θ + (N −M)
and π∗(t) =

1∑M
`=1(k`(t)(N −M))

1
1+θ + (N −M)

,

when k`(t) > (N −M)−1. These are analogous to the expressions for ρ = 0, the

difference being the type of knowledge used for production in each location. The

innovators only use non-diffused knowledge; as soon as their knowledge diffuses,

the adopting locations are the ones producing the good as they can do it cheaply.

For this reason, cross-price elasticities collapse to infinity for the non-innovators

and to zero for the innovators.

Summing up, this case demonstrates that expenditure elasticities at each point in

time and over time contain information about the global dynamics of knowledge,

which arises both from innovation and diffusion of ideas across locations. It is
16Using (22), the cross-price elasticities for each non-innovator location and an innovator `

with respect to location `′ are, respectively, ε∗`′(t) = ρθ
1−ρ

(
W`′(t)/W̃(t)

)− θ
1−ρ

, and ε`,`′(t) =

ε∗`′(t)

[
k`(t)

(
W`(t)/W̃(t)

) θρ
1−ρ

+ 1

]−1

.
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the cross-substitution elasticity alone, however, that reflects the presence of shared

knowledge across production locations. These elasticities are therefore key to sep-

arately identify innovation from diffusion of ideas.

4.3 All-or-nothing diffusion: from expenditure to knowledge

Using the case of ideas that are shared across all location once they diffuse, and

some additional assumptions on the evolution of diffused and non-diffused knowl-

edge, we now perform a simple estimation exercise. The goal is to illustrate in a

transparent way how one can estimate the evolution of knowledge from data on

expenditure and some cost shifters.

We assume that time is discrete and make two additional assumptions on the dif-

fusion and innovation processes. First, between any time t and t + 1, a constant

fraction of non-diffused ideas diffuses so that the law of motion for diffused knowl-

edge is

KD(t+ 1) = KD(t) +
L∑
`=1

δ`K
ND
` (t). (23)

Given the diffusion rate δ` and an initial condition on diffused knowledge, KD(1),

we can infer the level of diffused knowledge for any t.

Second, we assume that new ideas arrive in proportion to a location’s existing

stock of total knowledge, which consists of their non-diffused knowledge and the

global stock of diffused knowledge, KND
` (t) + KD(t). We assume that the ratio of

new ideas ideas in ` at time t + 1 relative to their knowledge at time t, α`(t + 1),

is random with mean λ`. To get a moment condition for estimation, we assume

shocks to innovation, u`(t+ 1), are unforecastable:

α`(t+ 1) = λ` + u`(t+ 1) where Etu`(t+ 1) = 0. (24)

The realized value of non-diffused knowledge in ` at time t+ 1 is then

KND
` (t+ 1) = (1− δ`)KND

` (t) + α`(t+ 1)
[
KD(t) +KND

` (t)
]
. (25)
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Table 1: Innovation and diffusion rates: estimates. US regions.

Innovation rates λ` Diffusion rates δ`

Far West 0.111 0.002
Mid East 0.103 0.002
New England 0.099 0.003
South East 0.095 0.012
Great Lakes 0.084 0.002
South West 0.082 0.013
Plains 0.073 0.011
Rocky Mountains 0.045 0.017

Notes: Period: 1948-2020. See Appendix D for estimation details.

From (19), (20), and (21), expenditure shares are linear in knowledge stocks,

π`(t) = KND
` (t)W`(t)

−θ +KD(t)W(t)−θ
[
W`(t)

W(t)

]−σ
. (26)

We combine the law of motions in (23) and (25), the moment condition in (24), and

the expression for expenditure in (26) to implement an estimation procedure for

{δ`}`∈L and {λ`}`∈L, and in this way obtain the dynamics of knowledge, {KD(t)}Tt=1

and {KND
` (t)}Tt=1 for each `. We set θ = 5, a value standard in the trade litera-

ture. We use data on income shares to proxy for expenditure — as implied by the

model’s frictionless equilibrium condition in (18) — and real GDP per capita to

proxy for real wages (i.e. our cost shifters), for eight regions within the United

States over the period from 1948 to 2020. Appendix D presents the details of the

estimation procedure. We also show that the special cases that lead to CES fit the

data worse than our baseline specification.

First, given θ = 5, we estimate σ = 24.8 implying that ρ = 0.798. This value

suggests high similarity for applicability among US regions in the second half of

the twentieth century.

Second, Table 1 reports estimates for innovation and diffusion rates for each US

region. The Far West, which includes California, together with the Mid East, which

includes the New York area, have the highest innovation rates, while the region of

the Rocky Mountains has the lowest innovation rates. Diffusion rates are more

similar across regions, but higher for low innovation regions.
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Figure 3: Evolution of diffused and non-diffused knowledge shares, by region.
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` (t), while the dash line represents

diffused knowledge,KD(t), which is common for all regions. Both are as shares of total knowledge∑
`K

ND
` (t) +KD(t).

Finally, what do these estimates imply for the stock of diffused and non-diffused

knowledge in each region over time? Figure 3 shows the stocks of non-diffused

knowledge for each region and diffused knowledge as a share total knowledge,∑
`K

ND
` (t) +KD(t), at each point in time. Some interesting patterns arise: The es-

timation captures the decline in the share of the Great Lakes region, which mainly

includes the Rust Belt, as a engine of innovation in the last part of the twenty cen-

tury; the steep rise of the West Coast in the 2010’s, presumably due to Silicon valley,

and the rise of the South East between 1965-1995, presumably due to firms moving

there. Finally, the share of diffused knowledge increases from 1.2 to 3.7 percent of

total US knowledge.

Admittedly one can have richer diffusion and innovation structures, as well as

richer spatial patterns (e.g. trade costs) to take to, for instance, bilateral expendi-

ture data across countries, or any other geographical unit. Our objective in per-

forming this simple estimation exercise has been to highlight, through the lense of

a particular model of knowledge, the information about knowledge flows embed-

ded in expenditure data. We did not need to use patent and citation data, or any

other data directly measuring technology creation and adoption, which is much
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more difficult to obtain not only for a large set of countries but also for long time

series. The link between knowledge and expenditure is made possible thanks to

our result linking a structure for ideas, which encompasses many growth models

of innovation and diffusion, to head-to-head competition models with GEV expen-

diture.

5 Conclusion

The trade literature has produced extremely rich estimates of substitution elastic-

ities for international expenditure patterns (see Broda et al., 2008; Costinot and

Rodrìguez-Clare, 2014; Feenstra et al., 2018; Bas et al., 2017; Adao et al., 2017,

among others). In this paper, we show that there is more content to be read from

those elasticities when trade flows are connected to technology primitives. To such

end, we present a parsimonious model of Ricardian trade that links the dynamics

of knowledge to the dynamics of substitution in expenditure. While innovation

makes a country technologically distinct, reducing their substitutability with other

countries, diffusion between countries generates technological similarity and in-

creases head-to-head competition. In the special case of an innovation-only model

where countries do not share ideas, productivities are independent across space,

and the demand system is CES. As a consequence, non-CES expenditure indicates

the presence of shared ideas across countries. Our theoretical result that estab-

lishes a mapping between max-stable Fréchet productivity distributions and the

structure of innovation and diffusion allows us to directly connect the dynamics of

observable expenditure patterns with the dynamics of innovation and knowledge

diffusion.
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A Proof of Proposition 1

Proof. We first prove sufficiency. Under Assumption 1, the distribution of productivity satisfy

P
[
Z`j (tj , v) ≤ zj ,∀j = 1, . . . , J

]
= P

[
max
i=1,2,...

Qi(v)Ai`j (tj , v) ≤ z`j ,∀j = 1, . . . , J

]
= P

[
Qi(v)Ai`j (tj , v) ≤ z`j ,∀j = 1, . . . , J, ∀i = 1, 2, . . .

]
= P

[
Qi(v) ≤ min

j=1,...,J

z`j
Ai`j (tj , v)

,∀i = 1, 2, . . .

]
= P

[
Qi(v) > min

j=1,...,J

z`j
Ai`j (tj , v)

, for no i = 1, 2, . . .

]
.

This last expression is a void probability.

We can use the marking theorem for Poisson processes (see Kingman, 1992) to calculate this void

probability. In particular, under Assumption 2 and Assumption 3 we can take {Qi(v), t∗i (v)}i=1,2,...

as a base Poisson process and take the stochastic process {Ai`(t, v)}`=1,...,L,t∈R as a mark of the i’th

point. Then the collection {Qi(v), t∗i (v), {Ai`(t, v)}`=1,...,L,t∈R}i=1,2,... is itself a Poisson process. In

particular, let J be an integer and fix some `j ∈ {1, . . . , L} and tj ∈ R for each j = 1, . . . , J . Then,

by the marking theorem for Poisson processes,

E
∞∑
i=1

1{Qi(v) > q, t∗i (v) ≤ t, Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J}

=

∫ ∞
q

∫ ∞
−∞

P
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
θq−θ−1dqΛ(dt∗)

= q−θ
∫ ∞
−∞

P
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗).

Using this result for the mean measure,

P
[
Qi(v) > min

j=1,...,J

z`j
Ai`j (tj , v)

, for no i = 1, 2, . . .

]
= exp

[
−
∫ ∞
−∞

∫
RJ+

∫ ∞
minj=1,...,J

zj
aj

θq−θ−1dqdP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗)

]

= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(
aj
zj

)θ
dP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗)

]
.

33



Now, let υj ≥ 0 for each j = 1, . . . , J . The distribution of maxj=1,...,J υjZ`j (tj , v) is

P
[

max
j=1,...,J

υjZ`j (tj , v) ≤ z
]

P
[
Z`j (tj , v) ≤ z/υj ∀j = 1, . . . , J

]
= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(υjaj
z

)θ
dP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
dΛ(t∗)

]

= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(υjaj)
θ dP

[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗)z−θ

]
.

Therefore, maxj=1,...,J υjZ`j (tj , v) is distributed Fréchet and productivity is a max-stable process.

Moreover, if we take J = L, `j = j and tj = t for each j = 1, . . . , L, we have

P [Z`(t, v) ≤ z`,∀` ∈ L]

= exp

[
−
∫ ∞
−∞

∫
RL+

max
`∈L

(
a`
z`

)θ
dP [Ai`(t, v) ≤ a` ∀` ∈ L | t∗i (v) = t∗] dΛ(t∗)

]

= exp

[
−
∫ t

−∞

∫
RL+

max
`∈L

(
a`
z`

)θ
dP [Ai`(t, v) ≤ a` ∀` ∈ L | t∗i (v) = t∗] dΛ(t∗)

]

= exp

[
−
∫
RL+

max
`∈L

(
a`
z`

)θ
dM(a1, . . . , aL; t)

]
,

where the second line uses the fact that applicability is zero at any time before an idea’s discovery

time, and the final line uses the definition ofM . Therefore, at any moment in time t, the distribution

of productivity across production locations is max-stable multivariate Fréchet with scale T`(t) ≡∫
aθ`dM(a1, . . . , aL; t) and correlation functionG(x1, . . . , xL; t) ≡

∫
max`=1,...,N

aθ`
T`(t)

x`dM(a1, . . . , aL; t).

It remains to show that productivity is a measurable stochastic process. From Assumption 1, pro-

ductivity satisfies

Z`(t, v) = max
i=1,2,...

Qi(v)Ai`(t, v).

Additionally, {Ai`(t, v) : Ω → R}(`,t)∈{1,...,L}×R is measurable by Assumption 3. Since the maxi-

mum of a countable collection of measurable functions is measurable, productivity is a measurable

stochastic process.

Necessity follows from Theorem 3.1 and Proposition 4.1 in Wang and Stoev (2010). The later en-

sures that productivity is separable in probability, which, combined with the former result, ensures

that a minimal spectral representation of productivity exists with respect to a standard Lebesgue

space. Also see Theorem 2 in Kabluchko (2009), which states that any max-stable process has a

spectral representation defined on a sufficiently rich background measure space.

Let {Z`(t, v)}(`,t)∈L×R be a max-stable process that is independent and identically distributed across

v ∈ [0, 1]. Denote the background probability space by (Ω,F ,P). Further assume that productivity

is measurable—for each fixed ω ∈ Ω the map (`, t)→ Z`(t, v) is (Borel) measurable. Then by Theo-

rem 3.1 and Proposition 4.1 in Wang and Stoev (2010), the equivalence of extremal integral spectral

representations, and De Haan (1984) spectral representations (see Stoev and Taqqu, 2005), there
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exists a θ > 0, a standard Lebesgue space ([0, 1],B([0, 1]), µ), measurable functions s 7→ A`(t, s)

for each (`, t) ∈ L × R with
∫ 1

0
A`(t, s)

θdµ(s) < ∞, and a Poisson process {Qi(v), si(v)}i=1,2,... for

each v with intensity θq−θ−1dqdµ(s) such that Z`(t, v) = maxi=1,2,...Qi(v)A`(t, si(v)). Moreover,

the mapping (`, t, s)→ A`(t, s) can be taken to be jointly B(L× R)⊗ B([0, 1])-measurable.

Since s → A`(t, s) is measurable, we can define a stochastic process {Ai`(t, v)}(`,t)∈L×R for each

i and v such that Ai`(t, v) = A`(t, si(v)) for all ` and t which is independent of Qi(v) and inde-

pendent and identically distribution across i (since {Qi(v), si(v)}i=1,2,... is Poisson with intensity

θq−θ−1dqdµ(s)). The joint measurability of (`, t, s)→ A`(t, s) then implies that Ai`(t, v) : Ω→ R is

B(L×R)-measurable for each ω ∈ Ω. In other words, {Ai`(t, v)}(`,t)∈L×R is a measurable stochastic

process for each i = 1, 2, . . . and v ∈ [0, 1].

Next, define

t∗i (v) ≡ min
`∈L

inf{t ∈ R | Ai`(t, v) > 0}

which is a hitting time. Since {Ai`(t, v)}(`,t)∈L×R is measurable and adapted to its natural filtra-

tion, it has a progressively-measurable modification. Taking {Ai`(t, v)}(`,t)∈L×R as this modifica-

tion, by the debut theorem, t∗i (v) is then a stopping time and is therefore a well-defined random

variable that is adapted to the natural filtration of {Ai`(t, v)}(`,t)∈L×R. As a result, the function

s → min`∈L inf{t ∈ R | A`(t, s) > 0} ≡ τ(s) is measurable. Then by the mapping theorem for

Poisson processes (see Klenke, 2013, Theorem 24.16), {Qi(v), t∗i (v)}i=1,2,... is a Poisson process with

intensity θq−θ−1dqΛ(dt) where Λ(B) ≡ µ(τ−1(B)) for each B ∈ B(R).

It remains to show that
∫ t
∞ E

[
Ai`(t, v)θ | t∗i (v) = t∗

]
Λ(dt∗) is finite. By Campbell’s theorem (see

Kingman, 1992), we have

E
∞∑
i=1

1{Qi(v) > 1}Ai`(t, v)θ = E
∞∑
i=1

1{Qi(v) > 1, t∗i (v) ≤ t}Ai`(t, v)θ

=

∫ t

∞
E
[
Ai`(t, v)θ | t∗i (v) = t∗

]
Λ(dt∗).

and we also have

E
∞∑
i=1

1{Qi(v) > 1}Ai`(t, v)θ = E
∞∑
i=1

1{Qi(v) > 1}A`(t, si(v))θ =

∫ 1

0

A`(t, s)
θdµ(s) <∞.

Together, these results imply that
∫ t
∞ E

[
Ai`(t, v)θ | t∗i (v) = t∗

]
Λ(dt∗) <∞.
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B Proof of Proposition 2

Proof. Using the definition of the correlation function G in (9), we calculate

T`(t)W`(t)
−θG`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)

=

∫
1

{
W`(t)

a`
≤ Wl(t)

al
∀l 6= `

}(
W`(t)

a`

)−θ
dM(a1, . . . , aL; t)

=

∫
1

{
al ≤

Wl(t)

W`(t)
a` ∀l 6= `

}(
W`(t)

a`

)−θ
dM(a1, . . . , aL; t)

=

∫ ∞
0

(
W`(t)

a`

)−θ
M

(
W1(t)

W`(t)
a`, . . . ,da`, . . . ,

WL(t)

W`(t)
a`

)
=

∫ ∞
0

(
W`(t)

a`

)−θ
M`

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`,

with

G(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t) =

L∑
`=1

T`(t)W`(t)
−θG`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t).

Using (14), we have

π`(t) =

∫∞
0

(
W`(t)
a`

)−θ
M`

(
W1(t)
W`(t)

a`, . . . , a`, . . . ,
WL(t)
W`(t)

a`

)
da`∑L

`′=1

∫∞
0

(
W`′ (t)
a`′

)−θ
M`′

(
W1(t)
W`′ (t)

a`′ , . . . , a`′ , . . . ,
WL(t)
W`′ (t)

a`′
)

da`′
.

Then, for `′ 6= `,

∂π`(t)

∂ lnW`′(t)
=

∫ ∞
0

(
W`

a`

)−θ
W`′(t)

W`(t)
a`M``′

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`.

These semi-elasticities can be re-expressed as elasticities by dividing by π`(t). We then do a change

of variables from a` to q = W`/a`.

C Independent Max-Stable Fréchet Applicability

To operationalize the closed form for the productivity distribution in Proposition 1, we focus on

the class of models where (conditional) applicability is distributed independent max-stable Fréchet
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with shape σ. In this case, the measure of ideas can be written as

M(a1, . . . , aL; t) = P [Ai1(t, v) ≤ aL, . . . , AiL(t, v) ≤ aL | t∗i (v) ≤ t] Λ(t) (27)

=

∫
exp

[
−

L∑
`=1

(
a`
φ`

)−σ]
dF(σ, φ1, . . . , φL; t)Λ(t),

where F is a distribution function for each t, and φ1/σ is the scale of Fréchet applicability. Here, we

are simply adding some smoothing to the max operator in (5) as follows. Due to max stability, the

conditional distribution of max`∈LAi`(t, v)θz−θ` (t, v) is also max-stable Fréchet with shape σ/θ. As

a consequence, we can smooth over the max operator in (5) to get

P [Z1(t, v) ≤ zL, . . . , ZL(t, v) ≤ zL] = exp

−∫ Γ(1− θ

σ
)

((
a`
φ`

)−σ) θ
σ

dF(σ, φ1, . . . , φL; t)Λ(t)

 ,
where ρ is defined as ρ ≡ 1− θ/σ. In practice, this smoothing is without loss of generality because

this expression limits to (5) if we consider σ →∞ and letM(a1, . . . , aL; t)→ limσ→∞∞ F(σ, a1, . . . , aL; t)Λ(t).

It also ensures that we have convenient closed forms for expenditure shares,

π`(t) =

∫
(W`(t)/φ)−σ∑L
`′=1(W`(t)/φ)−σ

[
L∑

`′=1

(
W`(t)/φ

P (t)

)−σ] θσ
dF(σ, φ1, . . . , φL; t).

This demand system is a generalization of the mixed-CES demand system used in Adao et al.

(2017), which arises as the limiting case as θ → 0.

The examples we use throughout the paper imply functional forms for the measure of ideas as in

(27). For example, the productivity distribution implied by the case of ideas that are shared across

all locations once they diffuse (all-or-nothing diffusion) corresponds to the case of

F(σ̃, φ1, . . . , φL; t) =

L∑
`∗=1

1{σ̃ ≤ σ, φ`∗ ≤ 1, φ` ≤ 0 ∀` 6= `∗} KND
`∗ (t)

Γ(1− θ/σ)Λ(t)

+ 1{σ̃ ≤ σ, φ` ≤ 1 ∀` ∈ L} KD(t)

Γ(1− θ/σ)Λ(t)
.

Using these results, we can derive (11),

− lnP [Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] =

∫
max
`
aθ`z
−θ
` d

L∑
`=1

∫ t

−∞
P[Ai`(t, v) ≤ a` | `∗i (v) = `, t∗i (v) = s]λ`(s)ds

=

L∑
`=1

[∫
aθ`

∫ t

−∞
dF ∗(a` | `∗, s; t)λ`(s)ds

]
z−θ` =

L∑
`=1

[∫
aθ`dM(a1, . . . , aL; t)

]
z−θ` ≡

L∑
`=1

T`(t)z
−θ
` ,
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and (13),

− lnP [Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] =

∫
max
`
aθ`z
−θ
` dM(a1, . . . , aL)

=

L∑
`=1

∫
aθ`z
−θ
` d

[
e−a

−σ
` (1− δ`(t))Λ`(t)

]
+

∫
max
`
aθ`z
−θd

[
L∏

`′=1

e−a
−σ
`′

L∑
`=1

δ`(t)Λ`(t)

]

=

L∑
`=1

Γ(ρ)(1− δ`(t))Λ`(t)z−θ +

(∑
`

z
− θ

1−ρ
`

)1−ρ

Γ(ρ)

L∑
`=1

δ`(t)Λ`(t).

D All-Or-Nothing Diffusion Model: Estimation

Multiplying (26) by W`(t)
θ, solving for KND

` (t), and using ρ = 1− θ/σ yields

KND
` (t) = π`(t)W`(t)

θ︸ ︷︷ ︸
≡C`(t)

−

(
W`(t)

− θ
1−ρ

W(t)−
θ

1−ρ

)ρ
︸ ︷︷ ︸

≡B`(t)

KD(t). (28)

As a result, given θ, ρ, andKD(t), we can recover non-diffused knowledge stocks from observations

of income shares and real wages. The variables C`(t) and B`(t) are sufficient statistics for the data

that we use to infer knowledge stocks, given θ and ρ.

Using (28) in (23) yields

KD(t+ 1) = KD(t) +
∑
`∈L

δ`
[
C`(t)−B`(t)KD(t)

]
,

which allows us to calculate the path for diffused knowledge given any diffusion rates, {δ`}`∈L, and

an initial stock of diffused knowledge, KD(1). As a consequence, we can recover all knowledge

stocks from the data for any values of θ, ρ, {δ`}`∈L, and KD(1).

We proceed to estimate these parameters based on the assumption that innovation rates are random

with conditional expectation of Etα`(t+ 1) = λ`. Recall that

KND
` (t+ 1) = (1− δ`)KND

` (t) + α`(t+ 1)
[
KD(t) +KND

` (t)
]
,

so that we can calculate shocks to innovation rates as

u`(t+ 1) ≡ α`(t+ 1)− λ` =
KND
` (t+ 1)− (1− δ`)KND

` (t)

KND
` (t) +KD(t)

− λ`.

Using the sample analog of Eu`(t+ 1) = 0, we can estimate λ` as

λ̂` =
1

T − 1

T−1∑
t=1

KND
` (t+ 1)− (1− δ`)KND

` (t)

KND
` (t) +KD(t)

,
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and estimate shocks to innovation as

û`(t+ 1) = α`(t+ 1)− λ̂`.

We can now estimate the mean squared error in innovation rates as 1
N(T−1)

∑T−1
t=1

∑
`∈L û`(t+ 1)2.

Note that, as we have concentrated out average innovation rates, this estimation criterion can be

calculated for any given values of θ, ρ, {δ`}`∈L, and KD(1).

However, the model implies additional inequality restrictions that must be accounted for when

estimating parameters. In particular, each KND
` (t) must be non-negative. However, because these

non-diffused knowledge stocks are decreasing in diffused knowledge (given the sufficient statistics

C`(t) and B`(t)), imposing this non-negativity constraint is equivalent to imposing the following

upper bound on KD(t):

KD(t) ≤ KD
(t) ≡ min

`∈L

C`(t)

B`(t)
.

When KD(t) = K
D

(t), there is some non-diffused knowledge stock that exactly equals zero. The

right panel of Figure 4 shows the evolution of the estimates diffused knowledge and the upper

bound.

In turn, this upper bound on diffused knowledge restricts what values of diffusion rates and initial

diffused knowledge are consistent with the data. Under the assumption that

∑
`∈L

δ`B`(t) < 1,

the whole trajectory for diffused knowledge is strictly increasing in the initial knowledge stock.

As a consequence, we can replace the restriction that KD(t) ≤ K
D

(t) for all t with a single upper

bound on the initial knowledge stock. For example, since ρ < 1 and W`(t)
− θ

1−ρ∑
`′∈LW`′ (t)

− θ
1−ρ

< 1 for each

`, a sufficient condition is that
∑
`∈L δ` < 1. In this case, for any diffusion rate for each `, the initial

condition on diffused knowledge must satisfy

KD(1) ≤ K̃D(1) ≡ min
t=2,...,T

K
D

(t)−
∑t−1
s=1

∏t−1
j=s+1

(
1−

∑
`∈L δ`B`(j)

)∑
`∈L δ`C`(s)∏t−1

s=1

(
1−

∑
`∈L δ`B`(s)

) .

Any value for initial diffused knowledge above this upper bound implies that KD(t) > K
D

(t)

for some t > 1. Conversely, if KD(1) ≤ K̃D(1), then KD(t) ≤ K
D

(t) for all t. For any given

diffusion rates, {δ`}`∈L, and the implied upper bound of K̃D(1), the set of feasible initial conditions

is KD(1) ∈ [0, K̃D(1)]. To estimate KD(1) given {δ`}`∈L, we minimize the mean squared error

in innovation rates using the bisection method for minimizing univariate functions on bounded

intervals.

Given θ and ρ, it then remains to estimate {δ`}`∈L. Due to the non-linearity of the objective in

these diffusion rates, we proceed by finding a convex set that bounds all feasible diffusion rates,

sampling uniformly from this set, and using the value for {δ`}`∈L that implies the lowest mean

squared error in innovation shocks.
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Figure 4: Estimation: mean squared errors (MSE) and diffused knowledge.

(a) Goodness of fit.
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(b) Evolution of diffused knowledge.
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Notes: Left panel: Mean squared errors (MSE) for different values of the parameter ρ: baseline
model (orange), and model with no diffused knowledge, KD(t) = 0 for all t (blue). Right panel:
Estimates of KD(t) and the upper bound K

D
(t), for ρ = 0.798 and ρ = 0.

This bounding approach is based on the following logic. First, any value for diffusion rates must

imply that K̃D(1) ≥ 0. If not, then there is no initial condition that does not lead to a negative value

for non-diffused knowledge. Note that K̃D(1) ≥ 0 occurs if and only if

t−1∑
s=1

t−1∏
j=s+1

(
1−

∑
`∈L

δ`B`(j)

)∑
`∈L

δ`C`(s) ≤ K
D

(t) for t = 2, . . . , T.

The left hand side of this inequality is a polynomial in {δ`}`∈L that is zero at the origin and ap-

proximately linear in a neighborhood of the origin. To get an outer approximation to the set of

diffusion rates satisfying these inequalities, we find upper bounds, δ̄`, for diffusion rates such that

this inequality binds for some t, verify that the LHS of the inequality is increasing at these val-

ues, and restrict our search to the box {(δ1, . . . , δN ) | 0 ≤ δ` ≤ δ̄`}. We then sample uniformly

from this outer approximation to the set of feasible diffusion rates, and only consider those sam-

pled values for diffusion rates that satisfy these inequalities (ensuring K̃D(1) ≥ 0). For our es-

timate, we use the sampled value for (δ1, . . . , δN ) with the lowest implied mean squared error,
1

N(T−1)

∑T−1
t=1

∑
`∈L û`(t+ 1)2.

We repeat the estimation for several values of ρ ∈ [0, 1), and choose the estimation with the lowest

mean squared error, shown in the left panel of Figure 4. This figure also shows the results of

estimating the model with no diffused knowledge, KD(t) = 0 for all t, which makes the parameter

ρ irrelevant. Note that CES expenditure arises when either: (1) KD(t) = 0 for all t, or (2) ρ = 0.

The blue line in the left panel corresponds to the first case, while the y-axis intercept of the orange

line corresponds to the second case. For both, we get a worse fit relative to the baseline model with

ρ = 0.798, which implies non-CES expenditure.

The right panel of Figure 4 shows the trajectories for diffused knowledge (blue) and the upper

bounds on diffused knowledge (orange) for our baseline model at the estimate of ρ = 0.798 (solid
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lines) and when restricting to ρ = 0 (dotted lines). Since the restriction to zero correlation in produc-

tivity implies CES expenditure, the comparison between these two cases reveals the extent to which

departures from CES inform inference on diffused knowledge. For ρ = 0, diffused knowledge acts

as a common component to productivity and is identified solely from the assumption that shocks

to innovation rates are un-forecastable. When allowing for ρ > 0, the model can capture departures

from CES expenditure with larger values of diffused knowledge generating larger departures from

CES. We estimate that diffused knowledge is about 150% larger on average under the estimate of

ρ = 0.798 relative to the CES case with ρ = 0. The difference in these estimates comes solely from

fitting patterns of non-CES expenditure in the data. We can see this directly from how the upper

bound, K
D

(t), differs between the two cases. Since C`(t) does not depend on ρ, the difference in

the upper bound comes entirely from B`(t). This term is a sufficient statistic for how correlation

in productivity influences expenditure shares. Note that in both cases, we estimate trajectories for

diffused knowledge that hit each upper bound. Therefore, we can directly see how allowing for

non-CES expenditure due to correlation in productivity impacts inference on diffused knowledge

via the tightening of the upper bound.
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