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Abstract

We study the global innovation and diffusion of ideas by introducing trade

into the model in Eaton and Kortum (1999) (EK). This extension allows us

to use international trade flows and country-level factor costs to estimate both

the intensity of innovation within countries over time and diffusion rates across

countries. We find significant specialization across the globe: some countries

have high innovation rates, while other countries rely on diffusion. Although

innovation is correlated with economic growth, there are many high income

countries that primarily produce using diffused ideas. Additionally, these pat-

terns shift over time — we estimate that a wave of innovation began in China

during the early-2000’s, reducing its reliance on diffused technology.
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1 Introduction

Global waves of technological change often start from one idea in one place. For

instance, Edmund Cartwright sparked the industrial revolution by inventing the

power loom in the United Kingdom during 1786, and over the next 100 years other

places adopted his idea. And in the United States during 1959, Robert Noyce

sparked the computer era by creating the first silicon microchip, which, nowadays,

is widely spread across the globe. Although new ideas may ultimately transform

day-to-day lives and bring economic growth to both creators and adopters, it is

often hard to know about ideas until we observe their impact. Nevertheless, re-

searchers have devised various direct and indirect ways of measuring knowledge.

Some efforts relate the creation — and spread — of ideas to patent creation and

citations (e.g. Keller, 2010; Akcigit et al., 2017); other efforts construct direct mea-

sures of technology adoption (e.g. Comin and Hobijn, 2004); and recent efforts use

text analysis (e.g. Bloom et al., 2021). The early work by Eaton and Kortum (Eaton

and Kortum, 1996a,b, 1997, 1999) belongs to the first strand of the literature since

they use patent data — and the structure of their model — to measure the contri-

bution of innovation and diffusion to growth.

In this paper, we use readily-available data on trade flows across countries and

over time to uncover the global dynamics of knowledge. To such end, we extend

the model of innovation and diffusion in Eaton and Kortum (1999) (henceforth

EK) to incorporate international trade. Adding trade to the model allows us to use

cross-country expenditure substitution patterns to detect shared knowledge and

differentiate growth due to diffusion from growth due to innovation.

Specifically, we apply a result from our previous work that links a structure of

innovation and diffusion to max-stable Fréchet productivity distributions (Lind

and Ramondo, 2022). In the context of a Ricardian model of trade where sources

compete head-to-head for markets, this result leads to closed-form solutions for

trade shares across countries and ties substitution elasticities to diffusion patterns.

Expenditure shares belong to the Generalized-Extreme-Value (GEV) class (McFad-

den, 1978), which does not impose Independence of Irrelevant Alternatives (IIA)

and allows for rich substitution patterns across countries.1 In this way, we obtain a

transparent mapping between observable expenditure patterns and unobservable

1See, for instance, Adao et al. (2017) for evidence on departures of IIA in the data. Lind and
Ramondo (2018) show the mapping between max-stable Fréchet and GEV expenditure.
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knowledge flows across countries, which allows us to implement an estimation

procedure based on international trade data.

We start by presenting the model. Ideas get discovered according to a Poisson

process, are specific to each good, and have a unique discovery time and location.

The efficiency of each idea is characterized by a global time-invariant component,

"quality", and a location-specific component, "applicability." While quality among

ideas discovered in a country up to a given time is distributed Pareto, we assume

that applicability is independently and identically distributed Fréchet. By adding

this random applicability component to the efficiency of each idea, we introduce

some idiosyncratic differences in how countries can use the same idea. In the limit,

if all countries had the same applicability for each idea, all countries would have

equal ability to use ideas after they diffuse — which is the case in EK. But because

we assume that the tail of the applicability distribution is thinner than the Pareto-

tail for quality, applicability introduces small differences in productivity within

each idea across countries relative to differences in productivity across ideas. In

this way, we capture the essential spirit of EK where productivity levels are largely

determined by the quality of ideas, and countries have similar ability to use dif-

fused ideas.

After discovery, each idea may diffuse to other countries. As in EK, diffusion oc-

curs within an idea, and, therefore, the strength of head-to-head competition in

international trade depends on the extent of diffusion.2 We further follow EK and

assume that ideas diffuse exponentially over time and independently across coun-

tries, and that diffusion rates are innovator-adopter specific. While at the moment

of discovery only the innovator has knowledge of the idea, over time, more coun-

tries learn about each idea. This creates a complex combinatorial problem as one

needs to keep track of the sets of "who knows what" when calculating the global

distribution of knowledge. However, under the exponential assumption, and con-

ditional on an idea’s discovery location and time, it turns out that the variable

indicating whether or not a country knows an idea is a Bernoulli random vari-

able independent across countries. This property allows us to get a simple integral

formula for the distribution of productivity, rather than keeping track of the distri-

bution of ideas across all possible subsets of countries.

Finally, we make the following assumption to capture short-run knowledge dy-

2A standard assumption is that diffusion occurs across ideas so that it does not increases head-
to-head competition (e.g. Cai et al., 2022).

2



namics — and have more flexibility in the estimation later on. In addition to the

EK assumption that the arrival of ideas in each country is proportional to the ex-

isting stock of ideas — an assumption that generates exponential growth — we

introduce an additional exogenous source of discoveries in the form of waves of

innovative activity. For each wave, there is a mass of ideas with discovery times

distributed normal so that in each country, at each point in time, there are ideas of

different "vintages."

Productivity in each country is the result of using, at each point in time, the most ef-

ficient idea available to them to produce each good. With this structure for knowl-

edge, we can apply Theorem 1 in Lind and Ramondo (2022), which characterizes

the conditions under which the global distribution of productivity is max-stable

Fréchet with arbitrary correlation across countries.3

Thanks to productivity being distributed max-stable Fréchet, we are able to in-

troduce Ricardian trade, get closed-form expressions for expenditure shares, and

analyze how innovation and diffusion shape the observed patterns of trade across

countries.4 The key insight is that the sharing of ideas makes head-to-head com-

petition between sources fiercer, resulting in more substitutable expenditure pat-

terns. The opposite happens if ideas are not shared much across countries. In this

way, observed trade patterns are informative about underlying global knowledge

dynamics, and, ultimately, they help to analyze the determinants of growth.

We use bilateral trade data and aggregate cost indices over time, together with

standard geography data, to estimate the parameters of the EK-type knowledge

model. In particular, we estimate bilateral diffusion rates, innovation rates, trade

costs, and the parameters characterizing short-run waves of innovative activity.5

Crucially, we do not need to use patent creation, patent citation, or any other R&D

3The assumption on a random country-specific applicability component, together with its inde-
pendence from the quality component is key to this characterization — that is, it is equally likely
that a low-quality ideas gets high applicability as a high-quality idea. Moreover, the result is an
"if-and-only-if" statement so that one can always find a distribution of applicability, together with
Poisson qualities, that by choosing the most efficient idea available results in a given max-stable
Fréchet productivity distribution.

4As first presented by Eaton and Kortum (2002), an independent Fréchet distribution for pro-
ductivity in the context of Ricardian trade leads to a closed-form solution for expenditure shares,
which belong to the CES class. Lind and Ramondo (2018) show that max-stable Fréchet produc-
tivity with arbitrary correlation over space also leads to a closed-form solution for expenditure
shares belonging to the much larger GEV class. The crucial property to obtain these results is not
independence but max-stability.

5We treat these innovative waves as latent dimensions of the data, and estimate the number of
waves that best fit the data.
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data in the estimation.

In a nutshell, the estimation procedure boils down to estimating a non-CES import

demand system, as many other papers in the trade literature do.6 But thanks to the

result in Lind and Ramondo (2022), we are able to connect substitution elasticities

to primitive knowledge parameters and estimate them directly.

Using a multinomial maximum-likelihood procedure, similar to the one used in

Eaton et al. (2013), our estimates suggest that over the last 60 years countries have

become more distinct in terms of knowledge. Particularly, China has surged as a

source of innovated knowledge — the estimated model correctly detects the Chi-

nese innovation wave starting in the late 1990’s and early 2000’s.7 Interestingly,

the trade data uncover a pattern of global knowledge where most rich (European)

countries have a large share of knowledge coming from diffusion, with the United

States acting as a primary innovator during all the sample period and Japan under-

going a wave of innovation that starts around 1960 and ends by 1980. Additionally,

our estimates of innovated knowledge correlate with increases in researchers and

researchers per capita in a country over time. Diffusion also correlates with more

researchers over time — even if less so — suggesting that countries need some

absorption capacity to adopt foreign knowledge, as in Nelson and Phelps (1966).

The paper is structured as follows. Section 2 presents the model of global knowl-

edge and trade flows, and shows how a max-stable Fréchet global productivity

distribution as well as GEV expenditure shares are obtained. Section 3 describes

the estimation procedure, and Section 4 presents the results on the dynamics of

knowledge implied by the observed trade flows across countries. Section 5 con-

cludes.
6See among others Caron et al. (2014), Lashkari and Mestieri (2016), Brooks and Pujolas (2017),

Feenstra et al. (2018), Adao et al. (2017), Bas et al. (2017), and our own previous work Lind and
Ramondo (2018).

7See e.g. Chen and Xu (2021) and Ma (2021) for explanations of the rise of innovation in China
linked to R&D policies and human capital.
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2 Model

2.1 Preliminaries

The global economy consists of N countries that produce and trade a continuum

of goods v ∈ [0, 1]. Time is continuous and indexed by t. We generally index coun-

tries by n, but also o when they are the origin location where goods are produced,

and d when they are a destination market. At each moment in time, country n is

populated by an exogenous measure of households Ln(t) that inelastically supply

labor for production in their country, and consume a non-tradable final good.

Following Alvarez and Lucas (2007), the final good in destination market n is pro-

duced with labor and a composite input using a Cobb-Douglas technology with

labor share of 1− β ∈ (0, 1). Hence, the price of the final good is

P f
n (t) = Wn(t)1−βPn(t)β. (1)

Here, Wn(t) is the wage and Pn(t) is the price index for the composite input.

The composite input is produced from a continuum of tradable intermediate goods

v ∈ [0, 1] using a CES technology with elasticity of substitution η ≥ 1. Hence, the

price of this good is

Pn(t) = ζ

(∫ 1

0

Pn(t, v)1−ηdv
) 1

1−η

. (2)

Here, ζ is a constant that we will use for a global scale normalization, and Pn(t, v)

is the price of good v in n.

In turn, each intermediate v is produced under perfect competition using labor and

the composite input. The production function is Cobb-Douglas with productivity

Zn(v, t) specific to each good, and labor share 1 − α ∈ (0, 1). The marginal cost to

produce input v is then Cn(t)/Zn(v, t) where

Cn(t) = Wn(t)1−αPn(t)α (3)

indexes the cost to produce intermediates.

Productivity, Zn(t, v), results from the adoption of ideas. We next describe how the

innovation and diffusion of ideas determines productivity over space and time.
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2.2 Innovation and diffusion

As in EK, for each good v, there exists an infinite, but countable, set of ideas i =

1, 2, . . . . Idea i applied to the production of good v gets discovered in a unique

country at a unique moment in time. We denote the innovator country where the

idea is first discovered by ni(v) and its discovery time by t∗i (v). We assume that

ideas get discovered according to a Poisson process. The intensity of innovation

for ideas of quality q is given by θq−θ−1λn(t∗)dqdt∗, where θ > 0. The arrival of

ideas in n over time is controlled by λn(t∗), while θq−θ−1dq controls the arrival rate

of low versus high quality ideas. The Poisson assumption means that the expected

number of ideas discovered in n up to time t with quality above q is given by

q−θΛn(t) where Λn(t) ≡
∫ t
−∞ λn(t∗)dt∗. The distribution of quality among those

ideas is Pareto with lower bound q and tail parameter θ.

Similarly to EK, we assume that the arrival of ideas in each country is propor-

tional to the existing stock of ideas, with the time-invariant country-specific pro-

portion denoted by γn. This assumption generates arrival of new ideas over time

inspired by old ideas, some potentially from the distant past. For example, the idea

that gave rise to the power loom was discovered long before our sample, but may

have inspired many ideas over time. Alone, this assumption generates exponential

growth.

However, to capture periods of high innovation, we introduce an additional exoge-

nous source of discoveries. We assume that in each country n there are S surges

of innovation. For each surge s, there is a mass λns of ideas with discovery times

distributed normal with mean µns and standard deviation νns. This creates, for

each country n, ideas of different "vintages." For example, in contrast to the power

loom, ideas related to micro-chips would belong to a recent surge. This additional

assumption is made to add flexibility in matching the trade data in our estimation

procedure, and introduces a “latent” dimension underlying the data.

With this assumption, the intensity of innovation in country n at time t is

λn(t) = Λ′n(t) = γnΛn(t) +
S∑
s=1

λns
1

νns
φ

(
t− µns
νns

)
, (4)

where φ(x) ≡ (2π)−1/2e−x
2/2. The first term on the right-hand side of (4) captures

the creation of new ideas in proportion to the existing stock of ideas. The sec-
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ond term captures the exogenous discovery of ideas across surges of innovation in

country n. If there are no innovation surges, we are back to the model with only

exponential growth and λn(t) = γnΛn(t).

Given an initial condition, Λn(0), we show in the Appendix that the solution to the

differential equation in (4) takes the form

Λn(t) = Λn0(t) +
S∑
s=1

Λns(t) (5)

where Λn0(t) = λn0e
γnt captures the stock of ideas inspired by the distant past, and

Λns(t) ≡ λns

∫ t

−∞
eγn(t−t∗) 1

νns
φ

(
t∗ − µns
νns

)
dt∗ for each s = 1, . . . , S (6)

captures ideas inspired by each surge of innovation.8 For the rest of the paper, we

indicate ideas inspired by the distant past by s = 0, and have s ∈ {0, . . . , S}.

After discovery, each idea may diffuse to other countries. Let Ni(t, v) denote the

set of countries with knowledge of idea i for good v at time t. At the moment of

discovery, only the innovator has knowledge of the idea so that Ni(t, v) = {ni(v)}.
Over time, as more countries learn about each idea, the set Ni(t, v) expands.

For each country in the set Ni(t, v), the idea’s efficiency is given by Qi(v)Aio(v),

where Qi(v) is the global quality component and Aio(v) is the country-specific

(random) component to which we refer to as the idea’s applicability in o.9 When

Ni(t, v) = {ni(v)}, Aio(v) is positive only for o = n (i.e. the innovator). As ideas

diffuse, applicability Aio(v) turns positive for other countries as well, which get

included in the set Ni(t, v).

We assume that applicability is independently and identically distributed unit

Fréchet with shape σ > θ across goods and countries. As σ → ∞, Aio(v) becomes

degenerate at 1 and productivity is simply equal to Qi(v). This limiting case corre-

sponds to the setup in EK where all countries have equal ability to use ideas after

they diffuse. By allowing σ < ∞, we introduce some idiosyncratic differences in

how countries can use the same idea. Note that because we assume applicability

8Here, λn0 ≡ Λn(0) − λns
∫ 0

−∞ e−γnt
∗ 1
νns

φ
(
t∗−µns
νns

)
dt∗ is the stock of ideas that exist at t = 0

and were inspired by the distant past. This stock is simply all ideas at t = 0 net of those ideas that
exist at t = 0 but are associated with surges in innovation.

9This is a special case of Lind and Ramondo (2022) where we assume more generally that appli-
cability is not only country specific, but also that it can change over time.
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is distributed Fréchet, it has a Pareto tail with shape σ, and, because we assume

that σ > θ, this tail is thinner than the Pareto tail for quality. Relative to differences

in productivity across ideas, applicability introduces small differences in produc-

tivity within an idea across countries. In this way, our setup captures the essential

spirit of EK where productivity differences are largely determined by the quality

of ideas, and countries have similar ability to use diffused ideas.

We further follow EK and assume that ideas innovated in n diffuse exponentially

over time and independently across countries. The probability that o has learned

an idea by time t discovered in surge s in country n at time t∗ is

pons(t− t∗) ≡ 1− e−δons(t−t∗), (7)

and pnns(t − t∗) = 1. Under this assumption, and conditional on an idea’s dis-

covery location, surge, and time, the indicator variable of o knowing the idea,

1{o ∈ Ni(t, v)}, is a Bernoulli random variable with success probability pons(t− t∗).

As we show next, this property will allow us to get a simple integral formula for

the distribution of productivity, rather than keeping track of the distribution of

ideas across all possible subsets of countries.

2.3 The productivity distribution

At each point in time, countries produce each good using the most efficient idea

available to them. Hence, the productivity in country o at time t for production of

good v is

Zo(t, v) = max
{i=1,2,···|o∈Ni(t,v),t∗i (v)≤t}

Qi(v)Aio(v). (8)

When a country gains access to an idea, they enter the set Ni(t, v). Their produc-

tivity rises if the idea is more productive than the idea that they were previously

using, either because the newly-available idea has high quality, or because it has

a high applicability in their country. In this way, the dynamics of productivity are

entirely driven by two forces: innovation can increase productivity through the

introduction of new ideas in their discovery location, and diffusion can increase

productivity by expanding access to previously discovered ideas.

This structure implies that the distribution of productivity across countries at each

moment in time is max-stable multivariate Fréchet. To get this result, we apply
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Theorem 1 in Lind and Ramondo (2022), which provides a constructive method to

derive the productivity distribution. Appendix A shows the derivation in detail.

In what follows, we provide a sketch of the result and some intuition.

First, from the assumption in (8) on the technology adoption process, we can write

the joint distribution of productivity as

F (z1, . . . , zN ; t) = P
[
Qi(v) > min

o∈Ni(t)

zo
Aio(v)

for no i s.t. t∗i (v) ≤ t

]
. (9)

This expression states that the quality of each idea cannot be too high. If a coun-

try had knowledge of a single idea with quality above zo/Aio(v), then they could

achieve productivity above zo. The probability that productivity lies below zo in all

countries is then the probability that there are no ideas with too-high quality.

Next, because innovation follows a Poisson process, we can calculate this probabil-

ity using the expected number of ideas with quality above the lower-bound in (9).10

It is useful to first calculate the marginal distribution of productivity in o. Letting

zo′ →∞ in (9) for all o′ 6= o yields an expression for this marginal distribution:

P[Zo(t) ≤ zo] = P [Qi(v)Aio(v) > zo for no i s.t. o ∈ Ni(t, v) and t∗i (v) ≤ t] . (10)

Simply, productivity is below zo if there are no ideas known to o with higher

idea-level productivity. As a consequence, we can focus on the collection of ideas

known to o with productivity above zo,

Io(zo, t, v) ≡ {i = 1, 2, . . . | Qi(v)Aio(v) > zo, o ∈ Ni(t, v), t∗i (v) ≤ t} . (11)

If an idea either has a sufficiently high quality or applicability in o, it enters this set

after o learns it.

We can then calculate the marginal distribution in (10) using the expected number

of ideas in Io(zo, t):11

P[Zo(t) ≤ zo] = exp

(
−E

∞∑
i=1

1{i ∈ Io(zo, t, v)}

)
= exp

[
−To(t)z−θo

]
,

10For a Poisson process with a countable number of points, {xi}i=1,2,..., and any set X , the void
probability P[xi ∈ X for no i] = exp (−E

∑∞
i=1 1{xi ∈ X}).

11Letting si(v) denote the surge in which i was discovered, we can calculate this expectation by
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for

To(t) ≡ Γ

(
1− θ

σ

) S∑
s=o

N∑
n=1

∫ t

−∞
pons(t− t∗)Λ′ns(t∗)dt∗. (12)

That is, the marginal distribution is Fréchet with shape θ and scale To(t), which is

simply the expected number of ideas known to o with productivity above 1.

We can also use the collections of high productivity ideas in (11) to calculate the

joint distribution of productivity. In particular, because applicability is continu-

ously distributed, there is a unique country that attains the minimum in (9), and

we can re-write (9) as

F (z1, . . . , zN ; t) = exp

−E N∑
o=1

∑
i∈Io(zo,t,v)

1

{
Aio′(v) ≤ zo′

zo
Aio(v), ∀o′ ∈ Ni(t, v)

} .
(13)

Since a unique country attains the minimum, we can partition all ideas by con-

ditioning on whether a country, say o, out-competes all other countries. Among

ideas known to owith high productivity, they attain the minimum in (9) if all other

countries with knowledge of the idea have applicability below (zo′/zo)Ail(v). Note

that competition within each idea happens purely in terms of applicability because

the quality of an idea is common across countries. After counting up the number

of ideas for which o beats all competitors within Io(zo, t), we can simply sum over

o and get the expected number of ideas with quality above the bound in (9).

As a consequence, the joint distribution of productivity follows from answering:

Given the ideas with high productivity that a country knows, how often does the

country out-compete the rest of the world due to cross-country differences in ap-

plicability? In general, the answer depends on calculating the probability that an

idea is common knowledge among every possible group of countries,Ni(t, v), and

then summing over all groups. As the number of countries grows, this sum has an

exponentially increasing number of terms.

To overcome this curse of dimensionality, we leverage the structure of diffusion

summing the following result over surges and innovators:

E
∞∑
i=1

1

{
Qi(v) >

zo
Aio(v)

, si(v) = s, ni(v) = n, ti(v) ≤ t
}

=

∫ t

−∞
E
∫
zo/Aio(v)

θq−θ−1dqpons(t− t∗)Λ′ns(t∗)dt∗

=

∫ ∞
0

aθoe
−a−σo σa−σ−1

o dao
∫ t

−∞
pons(t− t∗)Λ′ns(t∗)dt∗z−θo = Γ(1− θ/σ)

∫ t

−∞
pons(t− t∗)Λ′ns(t∗)dt∗z−θo .
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proposed in (7). In particular, after conditioning on an idea’s discovery location,

surge, and time, the probability that o knows the idea is independent across o and

equal to po′ns(t − t∗) in (7). Then, given applicability in o, the chance they out-

compete o′ is given by exp[−(
zo′
zo
Aio(v))−σ] since applicability is independent across

countries and distributed unit-Fréchet with shape σ. All together, among ideas

with productivity above zo that were discovered at time t∗ in surge s of n and

known to o by time t, the probability that o beats all other countries is

Hons(z1, . . . , zN ; t− t∗) =

∫ ∞
0

∏
o′ 6=o

[
1− po′ns(t− t∗)

(
1− e−(

zo′
zo
ao)
−σ)]

dFA(ao). (14)

Here, the variable ao represents a level of applicability in o and FA denotes the

distribution of applicability among high-quality ideas.12 The term in brackets is the

probability that o beats o′, which equals the probability that either o′ does not know

the idea or has applicability below the threshold in (13). Due to independence of

diffusion across countries, the product of these terms integrated over applicability

levels gives the probability that no country beats o.

Using this result, we can calculate the expected value in (13) to get the joint distri-

bution of productivity,

F (z1, . . . , zN ; t) = exp

[
−

N∑
o=1

Ho(z1, . . . , zN ; t)To(t)z
−θ
o

]
, (15)

where

Ho(z1, . . . , zN ; t) ≡
∑S

s=0

∑N
n=1

∫ t
−∞Hons(z1, . . . , zN ; t− t∗)pons(a)Λ′ns(t

∗)dt∗∑S
s=0

∑N
n=1

∫ t
−∞ pons(t− t∗)Λ′ns(t∗)dt∗

(16)

is the the probability that, among all ideas known to o with productivity above zo,

no country has higher productivity.13

12The distribution of applicability among ideas known to o with productivity above zo is

P [Aio(v) ≤ ao | i ∈ Io(zo, t)] =

∑S
s=0

∑N
n=1

∫ t
−∞

∫ ao
0

∫
zo/x

θq−θ−1dqde−x
−σ
pons(t− t∗)Λ′ns(t∗)dt∗

To(t)z
−θ
o

=

∫ ao
0
xθe−x

−σ
σx−σ−1dxz−θo

∑S
s=0

∑N
n=1

∫ t
−∞ pons(t− t∗)Λ′ns(t∗)dt∗

To(t)z
−θ
o

=

∫ ao

0

e−x
−σ
xθ−σ−1

Γ(1− θ/σ)
dx ≡ FA(ao).

13The implied correlation function for productivity, as in Lind and Ramondo (2018), is
G(x1, . . . , xN ) =

∑N
o=1Ho

(
(x1/T1(t))−1/θ, . . . , (xN/TN (t))−1/θ; t

)
xo. See Appendix A for details.
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To gain some intuition for the expression in (15), suppose first that there is no

diffusion of ideas so that pons(a) = 1{o = n}. In this case, the expression in (16)

collapses toHo(z1, . . . , zN ; t) = 1. When ideas are specific to each country, a country

always has higher productivity among the ideas they know. The joint distribution

in (15) reduces to exp(−
∑N

o=1 To(t)z
−θ
o ), which is the special case of independent

Fréchet productivity.

The function Ho(z1, . . . , zN ; t) captures how diffusion generates departures from

the case of independence because other countries sometimes will have higher pro-

ductivity for a diffused idea. As an example, suppose that for each innovator n

there is a group of technological peers Nn to which ideas instantaneously diffuse:

pons(t − t∗) = 1{o ∈ Nn}. Then the joint productivity distribution is cross-nested

CES,

F (z1, . . . , zN ; t) = exp

−Γ(ρ)
N∑
n=1

(∑
o∈Nn

z
θ

1−ρ
o

)1−ρ

Λn(t)

 ,
with correlation parameter ρ ≡ 1 − θ/σ and each nest corresponding to an in-

novator.14 In this example, correlation in productivity arises from similarity in

applicability across countries that learn ideas from the same innovator.15

Finally, consider the limiting case when σ → ∞, so that the distribution of ap-

plicability becomes degenerate at 1 and, as in EK, each idea has identical produc-

tivity across countries. This limiting case corresponds to a multivariate Fréchet

distribution with perfect correlation in productivity among countries with knowl-

edge of an idea. In this case, the productivity distribution in (15) is not continu-

ously differentiable. For instance, in the previous cross-nested CES example, we

get ρ → 1, and the CES aggregator inside each nest converges to a max function.

Without continuous differentiability, we cannot apply the results in Lind and Ra-

14The scale is To(t) = Γ(1− θ/σ)
∑N
n=1 1{o ∈ Nn}Λn(t),

Hons(z1, . . . , zN ; t− t∗) =

∫ ∞
0

∏
o′∈Nn

e(
z
o′
zo
x)
−σ e−x

−σ
xθ−σ−1

Γ(1− θ/σ)
dx = zθ−σo

( ∑
o′∈Nn

z−σo′

) θ
σ−1

,

and

Ho(z1, . . . , zN ; t)To(t)z
−θ
o = Γ(1− θ/σ)

N∑
n=1

( ∑
o′∈Nn

z−σo′

) θ
σ−1

1{o ∈ Nn}Λn(t)z−σo .

15This example corresponds to a special case of the multinational production model in Ramondo
and Rodríguez-Clare (2013) when multinational production costs between each home country (n)
and production location (o) are either absent or infinite.
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mondo (2018) that map max-stable Fréchet productivity to Generalized-Extreme-

Value (GEV) expenditure shares. But for σ < ∞, applicability introduces small

idiosyncratic differences in productivity across countries within each idea, breaks

the case of perfect correlation, and allows us to obtain closed-form solutions for

expenditure shares.

2.4 Expenditure shares

We next present results for prices and expenditure shares across countries. We

assume that trade is subject to iceberg-type trade costs: τod(t) ≥ 1 with τoo(t) = 1.

Define the import cost index Pod(t) ≡ τod(t)Co(t). Then, the unit cost of good v in

d at time t when sourced from o is Pod(t)/Zo(t, v). Each destination sources good v

from the origin with the lowest unit cost so that the price of the good in destination

d at time t in given by

Pd(t, v) = min
o=1,...,N

Pod(t)

Zo(t, v)
. (17)

Since productivity is max-stable multivariate Fréchet, aggregate expenditure shares

have a closed-form solution (Eaton and Kortum, 2002). Following the results in

Lind and Ramondo (2018) and using (15), the expenditure share by d on goods

from o at time t is

πod(t) =
Ho(P1d(t), . . . , PNd(t); t)To(t)Pod(t)

−θ∑N
o′=1Ho′(P1d(t), . . . , PNd(t); t)To′(t)Po′d(t)−θ

, (18)

where the denominator is Pd(t)−θ (after using the normalization ζ = Γ(1+θ−η
θ

)
1

η−1

and assuming that 1 + θ − η > 0). These expenditures belong to the GEV class, a

class that allows for departures from IIA and generates rich patterns of substitution

across countries.

As shown in Lind and Ramondo (2022), diffusion determines these substitution

patterns. When ideas cannot diffuse across countries, Ho(z1, . . . , zN ; t) = 1, and the

expenditure share in (18) is CES:

πod(t) =
To(t)Pod(t)

−θ∑N
o′=1 To′(t)Po′d(t)

−θ
. (19)

Once we add some diffusion, expenditure becomes non-CES.

13



To see this clearly, we next calculate the elasticities of substitution for destination

market d between sources o and o′ at time t, εoo′d(t) ≡ ∂ lnπod(t)
∂ ln(Po′d(t)/Pd(t))

(see Appendix

A for derivations):

εoo′d(t) =
σ − θ
πod(t)

Pod(t)
−σPo′d(t)

(Pod(t)−σ + Po′d(t)−σ)2

(
Pod(t)

−σ + Po′d(t)
−σ

Pd(t)−σ

) θ
σ

Qoo′d(t)Koo′(t).

(20)

Starting from the right, the term

Koo′(t) ≡ Γ

(
σ − θ
σ

) S∑
s=0

N∑
n=1

pons(a)po′ns(a)Λ′ns(t− a)da (21)

captures the number of ideas that both o and o′ know. Not surprisingly, this quan-
tity increases with the bilateral diffusion rates of the two countries. In the Ap-
pendix, we show that we can fully solve this expression in terms of the parameters
of the model. The next term,

Qoo′d(t) ≡
S∑
s=0

N∑
n=1

∫ ∞
0

∫ ∞
0

 ∏
m/∈{o,o′}

(
1− pmns(a)

(
1− e

− Pmd(t)
−σ

Pod(t)
−σ+Po′d(t)

−σ x

)) e−xx1− θ
σ

Γ
(
2− θ

σ

)dx

× pons(a)po′ns(a)Λ′ns(t− a)∑S
s′=0

∑N
n′=1 pon′s′(a)po′n′s′(a)Λ′n′s′(t− a)da

da

is the probability that no other country m can compete with either o or o′ among

those ideas. The term
(
Pod(t)−σ+Po′d(t)−σ

Pd(t)−σ

) θ
σ

is the probability that there are no other

ideas that can be used to supply market d at lower cost. Finally, Pod(t)−σPo′d(t)

(Pod(t)−σ+Po′d(t)−σ)2

captures the strength of head-to-head competition between o and o′ in market d in

terms of input costs.

2.5 Equilibrium

For our estimation in Section 3, we invert the equilibrium conditions of the model

to infer each country’s expenditure on domestic production of traded inputs.

The market clearing condition for the final good market in country o implies that

Xf
o (t) = Yo(t)− ξo(t)

where Yo(t) = Wo(t)Lo(t) denotes total income in o, Xf
o (t) is total expenditure on

14



the final good, and ξo(t) is an exogenous trade imbalance with
∑N

o=1 ξo(t) = 0.

Expenditure on the aggregate input in country o by final goods producers is βXf
o (t),

while expenditure by input producers is α
∑N

d=1 πod(t)Xd(t). so that total expendi-

ture on traded goods in country o is Xo(t) = βXf
o (t) + α

∑N
d=1 πod(t)Xd(t). Finally,

labor market clearing implies that

Wo(t)Lo(t) = (1− β)Xf
o (t) + (1− α)

N∑
d=1

πod(t)Xd(t).

Given labor endowments {Lo(t)}o=1,...,N,t∈[0,T ], and trade imbalances {ξd(t)}d=1,...,N,t∈[0,T ],

an equilibrium consists of paths for wages, cost indices, price levels, incomes, and

intermediate-good expenditures, {Wo(t), Co(t), Po(t), Yo(t), Xo(t)}o=1,...,N,t∈[0,T ], and

trade shares {πod(t)}o,d=1,...,N,t∈[1,T ], such that

1. Prices satisfy (1), (2) and (17), for each o and t;

2. Cost indices satisfy (3) for each o and t;

3. Trade shares satisfy (18) for each o, d, and t;

4. Labor market, final-good market, and intermediate-good market clear for

each o and t.

3 Estimation Procedure

We use data from the Penn World Table 10.0 (PWT) on current GDP (CGDPO),

employment, the value of imports and exports, as well as the price and value of

domestic absorption for each country, from 1962 to 2019. Additionally, we use data

on trade flows between countries and the same time period from COMTRADE.

We construct self-trade shares for each country using the model equilibrium con-

ditions in Section 2.5. Our sample contains 19 countries plus an aggregate of the

rest of the world. Appendix Table B.1 reports the country names.

First, we set β = α = 0.5. Second, we construct the cost index Co(t) using the ex-

pression in (3). For wagesWo(t), we use data on current GDP per worker, while we

calculate the intermediate price index Po(t) using data on the price of domestic ab-

sorption and the expression in (1). Third, we assume that trade costs are a function

15



of geographical distance, and border costs that follow quadratic time trends,

τod(t) = 1{o 6= d} exp
(
κ0
d + κ1

dt+ κ2
dt

2 + κ3 lnDistod
)
. (22)

Finally, we use numerical quadrature to approximate the integrals in (14) and (16).

We estimate bilateral diffusion rates, δons, innovation rates λns for each s = 0, . . . , S,

(Normal) distribution parameters, µns and νns, for each s = 1, . . . , S, the trade cost

parameters κ’s in (22), and the parameters θ and σ. We estimate the parameters

of the model using a multinomial pseudo maximum-likelihood procedure, similar

to Eaton et al. (2013), to match bilateral trade shares in the data. This procedure

minimizes the following criterion:

T∑
t=1

N∑
d=1

N∑
o=1

πod(t) ln
πod(t)

π̂od(t)
.

We also target the composite price for intermediates by adding a penalty for the

log-squared distance between data and model,

T∑
t=1

N∑
d=1

[
N∑
o=1

(
lnPd(t)− ln P̂d(t)

)]2

.

We perform the estimation for the model with one innovation surge, S = 1, and

two innovation surges, S = 2. For comparison purposes, we also estimate a ver-

sion of the model that corresponds to gravity estimation of CES expenditure (i.e.

the no diffusion case), treating the scales, To(t), as parameters. This CES case corre-

sponds to multinomial pseudo maximum likelihood gravity estimates, as in Eaton

et al. (2013), with origin-time fixed effects.16

Table 1 shows statistics on fit for the CES model, and models with one innovation

surge, S = 1, and two innovation surges, S = 2. Relative to CES, the model with

S = 1 is more parsimonious — 923 vs. 1,221 parameters — yet still fits the data

better according to all the measures of goodness of fit. In contrast, the model with

S = 2 is less parsimonious than CES — 1,363 vs. 1,221 parameters — and it only

provides a modest additional improvement in fit over the one-surge model. For

16Due to the result in Sotelo (2019) on the numerical equivalence of multinomial pseudo maxi-
mum likelihood and poisson pseudo maximum likelihood with destination fixed effects, this case
also corresponds to standard gravity estimates with origin-time and destination-time fixed effects
using poisson pseudo maximum likelihood, as in Silva and Tenreyro (2006).
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Table 1: Estimation results: parameters and goodness of fit.

Models CES S = 1 S = 2

θ 0.201 0.239
σ 1.405 1.574
Distance Elasticity, κ3 0.787 1.578 1.433

Number of Observations 23,200 23,200 23,200
Number of Parameters 1,221 923 1,363
Trade Share R-Squared 0.983 0.991 0.992
Price Level R-Squared 0.964 0.983 0.986
Trade Share KL Divergence 148.26 35.61 34.80
Price Level Mean Squared Error 0.0127 0.0061 0.0048
Total Loss 163.0 42.67 40.38

Notes: Results from estimating the CES model, and the models with one (S = 1) and two
(S = 2) surges. Note that the distance elasticity, κ3, in (22) is the elasticity of trade costs
to distance. The elasticity of trade shares to distance is not constant and depends on the
values of the other parameters.

this reason, our preferred model is the one with one innovation surge, S = 1. This

estimation yields a high correlation coefficient in productivity, ρ ≡ 1− θ/σ = 0.92,

while the elasticities of trade costs with respect to distance are estimated at 1.6.

Appendix Table B.1 shows the estimates of country-level variables related to the

innovation process (γn, λn0, λn1, µn1 and νn1).

How does the one-surge model fit the data better than CES despite having fewer

parameters? There are two key differences between the models. First, the one-

surge model is more parsimonious because the CES model uses origin-time fixed

effects to capture the scale of productivity for each country, To(t). In contrast, these

variables are restricted by the structure of innovation and diffusion in the one-

surge model as indicated by (12). Second, the one-surge model allows for depar-

tures of IIA through the diffusion of ideas, while the CES model imposes IIA.

To examine this mechanism further, we use the following index of exposure to

third-party unit costs to detect departures from IIA,

Exposureod(t) =
∑
o′ 6=o

ln
Co′(t)

Co(t)

πo′d(t)∑
n6=o πnd(t)

. (23)

This index is an expenditure share-weighted average of relative unit costs between

o and each of its competitors. If the CES model is correctly specified, this measure

should be insignificant when included in a regression of observed trade shares on
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Table 2: CES and departures from IIA. OLS.

lnπod(t)

(1) (2) (3) (4)

ln π̂CES
od (t) 1.109*** 1.097*** 1.014*** -0.029

(0.032) (0.033) (0.016) (0.031)
Exposureod(t) -0.308** -0.041 -0.041

(0.115) (0.050) (0.050)
ln

π̂S=1
od (t)

π̂CES
od (t)

1.043***
(0.024)

ln π̂S=1
od (t) 1.043***

(0.024)

Observations 22,601 22,601 22,601 22,601
R-squared 0.532 0.537 0.872 0.872

Notes: π̂mod(t) denotes predicted trade shares by model m, with m = CES, S = 1. The index of
exposure to third-party unit costs Exposureod(t) is given by (23). Standard errors clustered at the
origin-destination level are in parenthesis with levels of significance denoted by *** p < 0.001, and
** p < 0.01 and * p<0.05.

the CES model predicted shares.

Table 2 shows regressions of (log) observed trade shares on predictions across the

three models, as well as the third-party exposure index. First, the CES model ex-

plains about 53 percent of the variation in the data (column 1).17 After adding the

index of third-party exposure in column 2, the R-squared increases to 53.7 percent,

and the exposure index is significant. This provides evidence that the CES model

is misspecified due to departures from IIA present in the data.18

Column 3 adds the difference between the predictions of the one-surge model and

the CES model. After conditioning on this difference, the index of third-party ex-

posure becomes insignificant, while the CES model continues to be significant with

essentially the same coefficient. That is, the difference between the two models ex-

plains the departures from IIA associated with the index of third-party exposure.

This result suggests that the additional explanatory power of the one-surge model

comes from its ability to fit departures from IIA. Additionally, the R-squared in-

creases to more than 87 percent. Finally, in column 4, we just include the predic-

tions for trade shares of the model with S = 1. After conditioning on the predic-

17Note that, the R-squared values reported in Table 1 are for the level of trade shares rather than
the log of trade shares.

18For further evidence, see Adao et al. (2017).
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tions of this model, both the CES model prediction and the index of third-party

exposure are insignificant. The one-surge model captures all the variation that the

CES model can explain as well as the departures from IIA associated with the index

of exposure to third-parties.

These results show that the departures from CES generated by diffusion in the one-

surge model provide a larger improvement in fit than the flexibility arising from

including origin-time fixed effects in the CES model.

4 Estimation Results

We start by exploring the one-surge model predictions for cross-price elasticities,

which allow this model to get a better fit of the trade expenditure data relative

to the CES model. Inspecting the cross-price elasticity in (20) makes clear that

the model uses diffusion patterns to generate departures from CES. In particular,

the cross-price elasticity between any two origins o and o′ is proportional to the

measure of ideas that those two countries share, given by the expression in (21).

First, we present some statistics related to our estimates of elasticities and shared

knowledge. Figure 1 shows both histograms and rank-plots of bilateral elastic-

ities and probabilities that two countries share knowledge, at each point in time.

Here, each observation corresponds to a pair of competitors o and o′ within a given

destination market d at time t. The histogram of the log cross-price elasticity in Fig-

ure 1a shows that there is significant heterogeneity in cross-price elasticities. For

some pairs of countries, the elasticity is essentially zero, indicating that they are

not strong head-to-head competitors. But for many pairs, the elasticity is large.

Similarly, Figure 1d shows that there are some countries with almost no common

knowledge, but the majority of competitors have an overlap in knowledge that

makes up between 10 and 30 percent of global knowledge. We can get a clearer

sense of the extreme cases using the log-rank plots in Figures 1c and 1d. There are

about one hundred cases with a cross-elasticity over ten, and about one thousand

cases with a cross-elasticity above one. In over ten thousand cases, two countries

share about 30 percent of all knowledge. These estimates show that departures

from CES due to diffusion are frequent and can be very large, and that many ideas

are shared between countries.
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Figure 1: Distribution of elasticities and shared knowledge.

(a) Histogram of elasticities (b) Histogram of sharing probabilities

(c) Rank-plot of elasticities (d) Rank-plot of sharing probabilities

Notes: Estimates from the model with S = 1. Substitution elasticities are calculated using (20),
while sharing probabilities are calculated using (21).

In Table 3, we explore the link between substitution elasticities and shared knowl-

edge as estimated by the one-surge model. From (20), we expect that cross-price

elasticities to be proportional to shared knowledge after conditioning on the ef-

fect of relative unit production costs across countries. Accordingly, we regress

the implied cross-price elasticities on the probabilities that pairs of countries share

knowledge, using fixed effects to control for unit costs. The positive coefficients
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Table 3: Estimation results: cross-price elasticities and shared knowledge. OLS.

ln εoo′d(t)

(1) (2) (3) (4) (5)

ln
Koo′ (t)∑N
n=1 Λn(t)

1.342*** 0.947*** 1.361*** 0.963*** 0.957***
(0.011) (0.013) (0.012) (0.013) (0.013)

o× d fixed effects Yes Yes
t fixed effects Yes Yes
o× d× t fixed effects Yes

Observations 396,720 396,720 396,720 396,720 396,720
R-squared 0.031 0.229 0.032 0.229 0.248
Within-R-squared 0.013 0.031 0.013 0.013

Notes: Estimates from the model with S = 1. εoo′d(t) are calculated using (20), while sharing
probabilities are calculated using the ratio of (21) to total knowledge in a year,

∑N
n=1 Λn(t). Robust

standard errors are in parenthesis with levels of significance denoted by *** p < 0.001, and ** p <
0.01 and * p<0.05.

are not only are significant and around one, indicating that higher elasticities are

associated with more sharing of knowledge between country pairs, but they also

survive the inclusion of a battery of fixed effects.

To better visualize the estimates behind the results in Table 3, in Figure 2, we zoom

into the link between cross-price elasticities and probabilities of shared knowledge

when the United States (upper panels) and China (lower panels), respectively, are

the destination countries. Appendix Figure B.3 shows results by destination coun-

try.19 In the left panels, we plot the elasticities for each exporter o and competitor

o′ into the US market and China, while in the right panel, we focus on specific

exporters — China into the United States and the United States into China–and

plot the elasticities and probabilities across competitors o′, for each year between

1962 and 2019. The positive coefficient reported in Table 3 clearly emerges in these

figures: more elastic expenditure is linked to more shared knowledge between an

exporter and each of its competitors.

Are diffusion patterns related to geography, country size, and measures of research

intensity? Table 4 shows the results of regressing an estimate of average bilateral

19Additionally, Appendix Figures B.1 and B.2 show heat maps for the elasticities across exporters
and their competitors into the United States and China, respectively, as well as heat maps for the
bilateral probabilities of sharing knowledge from country n in o, for 1962 and 2019.
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Figure 2: Cross-price elasticities and shared knowledge, examples.

(a) US Imports. (b) US imports from China.

(c) China Imports. (d) China imports from the United States.

Notes: Estimates from the model with S = 1. εoo′d(t) are calculated using (20), while sharing
probabilities are calculated using (21). Left panels show the elasticities and sharing probabilities
for import into the United States (China) by each exporter and each of their competitors, for each
year. Right panels show US imports from China for each competitor of China, and China imports
from the United States for each competitor of the United States.
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diffusion rates, δnot =
∑S

s=0 δonsΛns(t)/Λn(t), on bilateral distance, GDP, popula-

tion, number of researchers, and researchers as a share of population, for the origin

and receiving country. As expected, the further away the countries are, the lower

the bilateral diffusion rate. Country size has an opposite effect in the origin coun-

try n and receiving country o: while diffusion rates decrease with the size of the

origin country, either measure by GDP or population, they increase with the size

of the receiving country. The effect of the number of researchers and the number

of researchers relative to population present a similar pattern: They positively af-

fect the diffusion rate for the receiving country and negatively the origin country.

This result suggest that diffusion needs some absorption capacity at the receiving

end of knowledge to materialize, an idea put forward by the early work of Nelson

and Phelps (1966). In contrast, more researchers in the country where knowledge

originates slow down diffusion.

We next turn to the dynamics of knowledge. Our estimates yield predictions on

the evolution of knowledge over time in each country. Figure 3 shows the stock of

knowledge innovated by each of the 20 countries in our sample, Λn(t). The model

picks up the surge of China as a source of innovated knowledge by the end of the

1990’s and beginning of the 21st century. As a share total knowledge within each

year, this country goes from having innovated almost a zero share of global knowl-

edge to ten percent by 2019. Japan also experiences a surge of innovation, which

begins near the start of the sample in 1962, and ends by around 1980. In contrast,

the United States consistently contributes a large amount to global knowledge, and

does not experience a single large surge of innovation within the sample. Due to

surges of innovation in countries like Japan and China, the share of total knowl-

edge innovated in the United States decreases from 25 to around 17 percent over

the course of the sample. Still, they remain the individual country with the largest

contribution.

Figure 4 shows, for each country, the evolution of the share of each country’s

knowledge that diffused from all other countries, 1 − Λn(t)
Γ(ρ)−1Tn(t)

, where Tn(t) is

given by (12). While in China the share of foreign knowledge decreased — as do-

mestic sources of knowledge were surging — the opposite was true for the United

States, where foreign sources of knowledge went from 40 to around 55 percent of

their total knowledge. In general, our estimates deliver very high shares of foreign
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Table 4: Estimation results: bilateral diffusion patterns. OLS.

δont

(1) (2) (3) (4) (5)

ln Distanceon -0.001** -0.001** -0.001** -0.000 -0.000
(0.000) (0.000) (0.000) (0.001) (0.001)

ln GDPn(t) -0.006***
(0.001)

ln GDPo(t) 0.006***
(0.001)

ln Populationn(t) -0.001 -0.057***
(0.001) (0.016)

ln Populationo(t) 0.014*** -0.021
(0.003) (0.018)

ln Researchersn(t) -0.016***
(0.003)

ln Researcherso(t) 0.013***
(0.003)

ln Researchersn(t)
Populationn(t)

-0.013***
(0.003)

ln Researcherso(t)
Populationo(t)

0.015***
(0.003)

n fixed effects Yes Yes Yes Yes
o fixed effects Yes Yes Yes Yes
t fixed effects Yes Yes Yes Yes
n× t fixed effects Yes
o× t fixed effects Yes

Observations 22,040 22,040 22,040 7,128 7,128
R-squared 0.292 0.303 0.291 0.383 0.384

Notes: Estimates from the model with S = 1. δont ≡
∑S
s=0 δonsΛns(t)/Λn(t) for n 6= o. Bilateral

distance is from CEPII, GDP and Population are from PWT(10.0), and Researchers are from OECD.
Robust standard errors are in parenthesis with levels of significance denoted by *** p < 0.001, and
** p < 0.01 and * p<0.05.
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Figure 3: Evolution of innovated knowledge, by country.

Notes: Estimates from the model with S = 1. Innovated knowledge is Λn(t).

knowledge for most countries — including the richest countries — in the sample

over the entire period. This result is also consistent with the insight of Nelson and

Phelps (1966) that long-run cross-country differences in income relate to diffusion

of ideas from global innovators to the rest of the world.

How do our knowledge estimates correlate with observable variables such as in-

come, number of researchers and researchers per capita? Figure 5 compares the

knowledge coming from innovation and diffusion with income per worker in each

country over time. The top left panel shows that innovation increases are associ-

ated to increases in income per worker over time, a link predicted by standard

growth theory. This is the case of China, Korea, Ireland, and Japan. Interest-

ingly, in the top right panel, more knowledge from diffusion is also associated with

higher income per worker, for rich countries such as the United States, France, and
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Figure 4: Evolution of share of knowledge from diffusion, by country.

Notes: Estimates from the model with S = 1. Share of each country’s knowledge coming from
diffusion from all other countries in the sample is 1− Λn(t)

Γ(ρ)−1Tn(t) , where Tn(t) is given by (12).

Benelux, over time. The middle and bottom panels of the figure show similar pat-

terns for the evolution of the two types of knowledge and measures of research

intensity over time in each country.

Our final result links growth in our estimates of innovated knowledge stocks to

the number of researchers in a country over time. First, the more innovative the

country, captured by a higher level of knowledge Λn(t − 1), the lower the innova-

tion growth rate. Second, a higher number of researchers in a country is associated

with a significantly higher growth of innovated knowledge, while the share of re-

searchers in the population is significantly associated with growth only when time

fixed effects are not included. Combined with the negative estimate on the inno-

vation lag, this result is consistent with models of semi-endogenous growth where
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Figure 5: Knowledge estimates vs income per worker and research, by country.

(a) Innovation vs income per worker. (b) Diffusion vs income per worker.

(c) Innovation vs number of researchers. (d) Diffusion vs number of researchers.

(e) Innovation vs researchers per capita. (f) Diffusion vs researchers per capita.

Notes: Estimates from the model with S = 1. Knowledge from innovation is Λn(t), while
knowledge from diffusion is Γ(ρ)−1Tn(t) − Λn(t), where Tn(t) is given by (12). Income per
worker is from PWT(10.0) and Researchers is from OECD.

the accumulated level of knowledge depends on scale, but inconsistent with mod-

els of endogenous growth where growth rates exhibit scale effects (see Jones, 2005,

for a detailed discussion).
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Table 5: Estimation results: growth patterns. OLS.

∆ ln Λn(t)

(1) (2) (3) (4)

ln Λn(t− 1) -0.045*** -0.044*** -0.044*** -0.044***
(0.005) (0.005) (0.005) (0.005)

ln Researchersn(t) 0.003* 0.005*
(0.001) (0.002)

ln Researchersn(t)
Populationn(t)

0.002* 0.003
(0.001) (0.002)

t fixed effects Yes Yes

Observations 537 537 537 537
R-squared 0.886 0.886 0.898 0.897

Notes: Estimates from the model with S = 1. The dependent variable denotes changes in the
stock of innovated knowledge by country and over time with Λn(s) =

∑
s Λns(t). Researches data

are from OECD and population data are from PWT(10.0). All specifications include country fixed
effects. Robust standard errors are in parenthesis with levels of significance denoted by *** p <
0.001, and ** p < 0.01 and * p<0.05.

5 Conclusion

In this paper, we propose to use easily-available data on trade flows across coun-

tries and country-level factor costs over time to uncover the global dynamics of

knowledge. To such end, we build a model of innovation and diffusion based on

Eaton and Kortum (1999) and extend it to incorporate international trade. Using

results developed in our previous work (Lind and Ramondo, 2022), we are able

to link the proposed structure of innovation and diffusion to a max-stable Fréchet

distribution for productivity across countries. In the context of a Ricardian model

of trade where sources compete head-to-head for markets, we obtain closed-form

solutions for trade shares across countries. These expenditure shares belong to the

Generalized-Extreme-Value (GEV) class, allow for rich substitution patterns across

countries, and depart from Independence of Irrelevant Alternatives (IIA). In this

way, we obtain a transparent mapping between observable expenditure flows and

unobservable knowledge flows across countries, which allows us to implement an

estimation procedure based on international trade data.

Our estimation suggests significant specialization across the globe: some countries

have high innovation rates, while other countries rely on diffusion. Although in-

novation is highly correlated with economic growth, there are many high income
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countries that primarily produce using diffused ideas.
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A Derivations

A.1 Global Productivity Distribution

By Theorem 1 in Lind and Ramondo (2022) the joint distribution of productivity

across countries at each moment in time is max-stable multivariate Fréchet. Since

the proof is constructive, we can calculate the distribution directly as follows.

First, we can express the joint distribution of productivity as

F (z1, . . . , zN ; t) ≡ P [Z1t(v) ≤ z1, . . . , ZNt(v) ≤ zN ]

= P [Qi(v)Aio(v) ≤ zo ∀o ∈ Ni(t, v) for all i s.t. t∗i (v) ≤ t]

= P
[
Qi(v) ≤ min

o∈Ni(t,v)

zo
Aio(v)

for all i s.t. t∗i (v) ≤ t

]
= P

[
Qi(v) > min

o∈Ni(t,v)

zo
Aio(v)

for no i s.t. t∗i (v) ≤ t

]
,

which yields the result in (9). Next, since applicability is continuously distributed

and ni(v) ∈ Ni(t, v), there is a unique origin, o∗i (v, t), that attains the minimum in

this expression for each idea known at time t. We then have

F (z1, . . . , zN ; t) = P
[
Qi(v) >

zo∗i (v)

Aio∗i (v)(v)
for no i s.t. t∗i (v) ≤ t

]
= exp

[
−E

∞∑
i=1

1

{
Qi(v) >

zo∗i (v)

Aio∗i (v)(v)
, t∗i (v) ≤ t

}]

= exp

[
−E

∞∑
i=1

N∑
o=1

1

{
Qi(v) >

zo
Aio(v)

, o∗i (v) = o, t∗i (v) ≤ t

}]
.
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Next, the expression in (13) follows from

E
∞∑
i=1

N∑
o=1

1

{
Qi(v) >

zo
Aio(v)

, o∗i (v) = o, t∗i (v) ≤ t

}

= E
∞∑
i=1

N∑
o=1

1

{
Qi(v) >

zo
Aio(v)

, o ∈ Ni(t, v),
zo

Aio(v)
≤ zo′

Aio′(v)
∀o′ ∈ Ni(t, v), t∗i (v) ≤ t

}

= E
∞∑
i=1

N∑
o=1

1

{
i ∈ Io(zi, t, v),

zo
Aio(v)

≤ zo′

Aio′(v)
∀o′ ∈ Ni(t, v)

}

= E
N∑
o=1

∑
i∈Io(zo,t,v)

1

{
Aio′(v) ≤ zo′

zo
Aio(v) ∀o′ ∈ Ni(t, v)

}
,

for Io(zo, t, v) ≡ {i = 1, 2, . . . | Qi(v)Aio(v) > zo, o ∈ Ni(t, v), t∗i (v) ≤ t} as defined

in (11). Note that

E
∞∑
i=1

1{i ∈ Io(zo, t, v), ni(v) = n, si(v) = s, t∗i (v) ≤ x}

= E
∞∑
i=1

1 {Qi(v)Aio(v) > zo, o ∈ Ni(t, v), ni(v) = n, si(v) = s, t∗i (v) ≤ min{t, x}}

= E
∞∑
i=1

1

{
Qi(v) >

zo
Aio(v)

, o ∈ Ni(t, v), ni(v) = n, si(v) = s, t∗i (v) ≤ t, t∗i (v) ≤ x

}
=

∫ min{t,x}

−∞

∫ ∞
0

∫ ∞
zo/ao

θq−θ−1dqde−a
−σ
o pons(t− t∗)Λ′ns(t∗)dt∗

=

∫ min{t,x}

−∞

∫ ∞
0

(
zo
ao

)−θ
de−a

−σ
o pons(t− t∗)Λ′ns(t∗)dt∗

= Γ(1− θ

σ
)

∫ min{t,x}

−∞
pons(t− t∗)Λ′ns(t∗)dt∗z−θo ,

and hence,

E
∞∑
i=1

1{i ∈ Io(zo, t, v)}

= E
∞∑
i=1

S∑
s=0

N∑
n=1

1{i ∈ Io(zo, t, v), ni(v) = n, si(v) = s, t∗i (v) ≤ t}

= Γ(1− θ

σ
)

S∑
s=0

N∑
n=1

∫ t

−∞
pons(t− t∗)Λ′ns(t∗)dt∗z−θo = To(t)z

−θ
o ,

for To(t) defined in (12).
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Together, we then have

P[ni(v) = n, si(v) = s, t∗i (v) ≤ x | i ∈ Io(zo, t, v)]

=

∫ min{t,x}
−∞ pons(t− t∗)Λ′ns(t∗)dt∗z−θo∑S

s=0

∑N
n=1

∫ t
−∞ pons(t− t∗)Λ′ns(t∗)dt∗z−θo

=

∫ min{t,x}
−∞ pons(t− t∗)Λ′ns(t∗)dt∗∑S

s=0

∑N
n=1

∫ t
−∞ pons(t− t∗)Λ′ns(t∗)dt∗

,

which means that the probability that an idea known to o at time t is from surge s

of innovator n is

P[ni(v) = n, si(v) = s | i ∈ Io(zo, t, v)] =

∫ t
−∞ pons(t− t

∗)Λ′ns(t
∗)dt∗∑S

s=0

∑N
n=1

∫ t
−∞ pons(t− t∗)Λ′ns(t∗)dt∗

,

while the density of discovery times among those ideas is

∂

∂t∗
P[t∗i (v) ≤ t∗ | i ∈ Io(zo, t, v), ni(v) = n, si(v) = s] =

pons(t− t∗)Λ′ns(t∗)∫ t
−∞ pons(t− t∗)Λ′ns(t∗)dt∗

.

Below, we use these two results to take expectations with respect to ni(v), si(v),

and t∗i (v) conditional on i ∈ Io(zo, t, v).

Conditional on ni(v), si(v), and t∗i (v), 1{o ∈ Ni(t, v)} is a Bernoulli random variable

with success probability pons(t−t∗) independent across o. That is, for (x1, . . . , xN) ∈
{0, 1}N ,

Pnst∗ [1{o ∈ Ni(t, v)} = xo ∀o = 1, . . . , N ] =
N∏
o=1

(1− pons(t− t∗))1−xopons(t− t∗)xo ,

where Pnst∗ [·] ≡ P[· | ni(v) = n, si(v) = s, t∗i (v) = t∗]. Then,

P
[
Aio′(v) ≤ zo′

zo
Aio(v) ∀o′ ∈ Ni(t, v) | Aio(v) = ao, i ∈ Io(zi, t, v), ni(v) = n, si(v) = s, t∗i (v) = t∗

]
= Enst∗

[∏
o′ 6=o

1

{
Aio′(v) ≤ zo′

zo
Aio(v)

}1{o′∈Ni(t,v)}

| Aio(v) = ao, i ∈ Io(zi, t, v)

]

=
∏
o′ 6=o

Enst∗
[
1

{
Aio′(v) ≤ zo′

zo
ao

}1{o′∈Ni(t,v)}
]

=
∏
o′ 6=o

[
1− po′ns(t− t∗) + po′ns(t− t∗)e−(

zo′
zo
ao)
−σ]

,
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which uses independence of applicability and conditional independence of 1{o ∈
Ni(t, v)} across countries.

We now average this result over applicability levels. The distribution of applica-

bility in o among ideas in Io(zi, t, v) conditional on ni(v), si(v), and t∗i (v) is

Pnst∗ [Aio(v) ≤ x | i ∈ Io(zo, t)] =

∫ x
0

∫
zo/ao

θq−θ−1dqde−a
−σ
o pons(t− t∗)Λ′ns(t∗)∫∞

0

∫
zo/ao

θq−θ−1dqde−a−σo pons(t− t∗)Λ′ns(t∗)

=

∫ x
0
aθoe
−a−σo σa−σ−1

o dxz−θo∫∞
0
aθoe
−a−σo σa−σ−1

o daoz−θo
=

∫ x

0

e−a
−σ
o σaθ−σ−1

o

Γ(1− θ/σ)
dao.

Therefore,

Hons(z1, . . . , zN ; t− t∗) ≡ Pnst∗
[
Aio′(v) ≤ zo′

zo
Aio(v) ∀o′ ∈ Ni(t, v) | i ∈ Io(zi, t, v)

]
=

∫ ∞
0

∏
o′ 6=o

[
1− po′ns(t− t∗) + po′ns(t− t∗)e−(

zo′
zo
ao)
−σ] e−a−σo σaθ−σ−1

o

Γ(1− θ/σ)
dao,

as in (14). Using the previous results for the distribution of ideas across surges,

innovators, and discovery times within Io(zo, t, v) yields

Ho(z1, . . . , zN ; t) ≡ P
[
Aio′(v) ≤ zo′

zo
Aio(v) ∀o′ ∈ Ni(t, v) | i ∈ Io(zi, t, v)

]
= E

[
Pnst∗

[
Aio′(v) ≤ zo′

zo
Aio(v) ∀o′ ∈ Ni(t, v) | i ∈ Io(zi, t, v)

]
| i ∈ Io(zi, t, v)

]
= E

[
Honi(v)si(v)(z1, . . . , zN ; t− t∗i (v)) | i ∈ Io(zi, t, v)

]
=

∑S
s=0

∑N
n=1

∫ t
−∞Hons(z1, . . . , zN ; t− t∗)pons(t− t∗)Λ′ns(t∗)dt∗∑S
s=0

∑N
n=1

∫ t
−∞, pons(t− t∗)Λ′ns(t∗)dt∗

dt∗,

which results in (16).

Finally, this result and the previous result on the expected number of ideas in
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Io(zo, t, v) allow us to compute

E
N∑
o=1

∑
i∈Io(zo,t,v)

1

{
Aio′(v) ≤ zo′

zo
Aio(v) ∀o′ ∈ Ni(t, v)

}

=
N∑
o=1

P
[
Aio′(v) ≤ zo′

zo
Aio(v) ∀o′ ∈ Ni(t, v) | i ∈ Io(zo, t, v)

]
E
∞∑
i=1

1{i ∈ Io(zo, t, v)}

=
N∑
o=1

Ho(z1, . . . , zN ; t)To(t)z
−θ
o .

Therefore, the joint distribution of productivity is

F (z1, . . . , zN ; t) ≡ P[Z1(t, v) ≤ z1, . . . , Zn(t, v) ≤ zN ] = exp

[
−

N∑
o=1

Ho(z1, . . . , zN ; t)To(t)z
−θ
o

]
,

as in (15).

Note that as zo′ →∞ for all o′ 6= o, we haveHons(z1, . . . , zN ; t−t∗)→ 1,Ho(z1, . . . , zN ; t)→
1, and so

P[Zo(t, v) ≤ zo] = lim
zo′→∞ ∀o′ 6=o

F (z1, . . . , zN ; t) = e−To(t)z
−θ
o .

That is, the marginal distribution in o is Fréchet with shape θ and scale To(t).

A.2 Trade Shares and Elasticities

To get trade shares and elasticities, we apply the results in Proposition 2 of Lind

and Ramondo (2018). To do so, first note that the (time-dependent) correlation

function implied by (15) is

Gd(x1, . . . , xN ; t) =
N∑
o=1

Ho

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)
xo.
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Then,

Gd
o(x1, . . . , xN ; t) ≡ ∂Gd(x1, . . . , xN)

∂xo

= Ho

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)
+ xo

∂

∂xo

[
Ho

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)]
+
∑
o′ 6=o

xo′
∂

∂xo

[
Ho′

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)]
= Ho

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)
− 1

θ

N∑
o′=1

xo′Ho′o

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)
x−1/θ−1
o To(t)

1/θ,

where Ho′o ≡ ∂Ho′/∂zo. Then,

To(t)z
−θ
o Gd

o(T1(t)z−θ1 , . . . , TN(t)z−θN ; t)

= To(t)z
−θ
o Ho (z1, . . . , zN ; t)− 1

θ

N∑
o′=1

To′(t)z
−θ
o′ Ho′o (z1, . . . , zN ; t) zo.

Define

M(z1, . . . , zN ; t) ≡
S∑
s=0

N∑
n=1

∫ t

−∞

∫ ∞
0

N∏
o=1

[
1− pons(t− t∗) + pons(t− t∗)e−( zox )

−σ]
x−θ−1dxΛ′ns(t

∗)dt∗.

Then, by a change of variables of ao = zo/x in (14),

Hons(z1, . . . , zN ; t− t∗) =

∫ ∞
0

∏
o′ 6=o

[
1− po′ns(t− t∗) + po′ns(t− t∗)e−(zo′/x)−σ

]
× e−(zo/x)−σσzθ−σo xσ−θ−1

Γ(1− θ/σ)
dx,
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we have

∂M(z1, . . . , zN ; t)

∂zo
=

S∑
s=0

N∑
n=1

∫ t

−∞

∫ ∞
0

pons(t− t∗)e−( zox )
−σ

σz−σ−1
o xσ

×
∏
o′ 6=o

[
1− po′ns(t− t∗) + po′ns(t− t∗)e−(

zo′
x )
−σ]

x−θ−1dxΛ′ns(t
∗)dt∗

=
S∑
s=0

N∑
n=1

∫ t

−∞
Γ(1− θ/σ)pons(t− t∗)z−θ−1

o Hons(z1, . . . , zN ; t− t∗)Λ′ns(t∗)dt∗

= Γ(1− θ/σ)z−θ−1
o Ho(z1, . . . , zN ; t)

S∑
s=0

N∑
n=1

∫ ∞
0

pons(t− t∗)Λ′ns(t∗)dt∗

= To(t)z
−θ−1
o Ho(z1, . . . , zN ; t).

Consequently,

∂2M(z1, . . . , zN ; t)

∂zo′∂zo
=

∂

∂zo
To′(t)z

−θ−1
o′ Ho′(z1, . . . , zN ; t)

= To′(t)z
−θ−1
o′ Ho′o(z1, . . . , zN ; t).

Then, replacing yields

To(t)z
−θ
o Gd

o(T1(t)z−θ1 , . . . , TN(t)z−θN )

= To(t)z
−θ
o Ho (z1, . . . , zN ; t)− 1

θ

N∑
o′=1

To′(t)z
−θ
o′ Ho′o (z1, . . . , zN ; t) zo

= To(t)z
−θ
o Ho (z1, . . . , zN ; t)− 1

θ

N∑
o′=1

To(t)z
−θ
o Hoo′ (z1, . . . , zN ; t) zo′ .

Note thatHo(z1, . . . , zN ; t) is homogenous of degree zero becauseHnos(z1, . . . , zN ; t−
t∗) is homogenous degree zero. Then, by Euler’s theorem for homogenous func-

tions,
∑N

o′=1 zo′Hoo′(z1, . . . , zN ; t) = 0, implying that

To(t)z
−θ
o Gd

o(T1(t)z−θ1 , . . . , TN(t)z−θN ) = To(t)z
−θ
o Ho (z1, . . . , zN ; t) .

Therefore,

Gd
o(x1, . . . , xN ; t) = Ho

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)
= T 1/θ

o x−1/θ−1
o Mo

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)
,
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since Mo(z1, . . . , zN ; t) = To(t)z
−θ−1
o Ho(z1, . . . , zN ; t) where Mo ≡ ∂M

∂zo
. Then,

Gd(x1, . . . , xN ; t) =
N∑
o=1

xoG
d
o(x1, . . . , xN ; t)

=
N∑
o=1

(xo/To(t))
−1/θMo

(
(x1/T1(t))−1/θ, . . . , (xN/TN(t))−1/θ; t

)
,

and

Pd(t) = Gd(T1(t)P1d(t)
−θ, . . . , TN(t)PNd(t)

−θ)−
1
θ

=

[
N∑
o=1

Ho (P1d(t), . . . , PNd(t); t)To(t)Pod(t)
−θ

]− 1
θ

.

Note that, here, ζ = Γ(1 − (η − 1)/θ)
1

η−1 , which is the inverse of γ in Proposition

2 of Lind and Ramondo (2018), and To(t)Pod(t)
−θ corresponds to P−θod in that same

proposition.

Next, trade shares are

πod(t) =
Tod(t)Pod(t)

−θGd
o(T1d(t)P1d(t)

−θ, . . . , TNd(t)PNd(t)
−θ; t)

Gd(T1d(t)P1d(t)−θ, . . . , TNd(t)PNd(t)−θ; t)

=
Tod(t)Pod(t)

−θHo(P1d(t), . . . , PNd; t)∑N
o′=1 To′d(t)Po′d(t)

−θHo′(P1d(t), . . . , PNd; t)
,

yielding (18).

We next use this result to derive cross-price elasticities of substitution. Since Ho is

homogenous of degree zero,

πod(t) =
To(t)Ho(P1d(t), . . . , PNd(t); t)Pod(t)

−θ∑N
o′=1 To′(t)Ho′(P1d(t), . . . , PNd(t); t)Po′d(t)−θ

= To(t)

(
Pod(t)

Pd(t)

)−θ
Ho

(
P1d(t)

Pd(t)
, . . . ,

PNd(t)

Pd(t)
; t

)
.

Then, for o′ 6= o,

∂πodt

∂ ln
Po′d(t)

Pd(t)

= To(t)

(
Pod(t)

Pd(t)

)−θ
∂

∂ ln
Po′d(t)

Pd(t)

Ho

(
P1d(t)

Pd(t)
, . . . ,

PNd(t)

Pd(t)
; t

)
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Note that

To(t)z
−θ
o

∂

∂ ln zo′
Ho(z1, . . . , zN ; t)

= To(t)z
−θ
o

S∑
s=0

N∑
n=1

∫ ∞
0

∫ ∞
0

po′ns(a)e−(
z
o′
zo

)
−σ
xσ

(
zo′

zo

)−σ
x

×

 ∏
m/∈{o,o′}

(
1− pmns(a) + pmns(a)e−( zmzo )

−σ
x
)

× e−xxρ−1

Γ(ρ)
dx

pons(a)Λ′ns(t− a)∑S
s=0

∑N
n=1

∫∞
0
pons(a)Λ′ns(t− a)da

da

= σz−θo

S∑
s=0

N∑
n=1

∫ ∞
0

∫ ∞
0

po′ns(a)

(
zo′

zo

)−σ
xρ

 ∏
m/∈{o,o′}

(
1− pmns(a) + pmns(a)e−( zmzo )

−σ
x
)

× e
−
z−σo +z

−σ
o′

z
−σ
o

x
dxpons(a)Λ′ns(t− a)da

= σρ
z−σo′ z

−σ
o

(z−σo + z−σo′ )2

(
z−σo + z−σo′

)1−ρ S∑
s=0

N∑
n=1

∫ ∞
0

∫ ∞
0

 ∏
m/∈{o,o′}

(
1− pmns(a) + pmns(a)e

− z−σm
z
−σ
o +z

−σ
o′

x̃
) e−x̃x̃ρ

Γ(1 + ρ)
dx̃

× pons(a)po′ns(a)Γ(ρ)Λ′ns(t− a)da,

with ρ ≡ 1− θ/σ. Evaluating at zo = Pod(t), we get (20).

A.3 Innovation Stocks, Scales, and Sharing Probabilities

Since the innovation rate in country n at time t is

λn(t) = Λ′n(t) = γnΛn(t) +
S∑
s=1

λns
1

νns
φ

(
t− µns
νns

)
,

we have

∂

∂t

[
e−γntΛn(t)

]
= e−γntΛ′n(t)− γne−γntΛn(t) =

S∑
s=1

λnse
−γnt 1

νns
φ

(
t− µns
νns

)
.

Integrating from 0 to t yields

e−γntΛn(t)− Λn(0) =
S∑
s=1

λns

∫ t

0

e−γnt
∗ 1

νns
φ

(
t∗ − µns
νns

)
dt∗,

and hence,

Λn(t) = Λn0(t) +
S∑
s=1

Λns(t), (A.1)
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where

Λn0(t) ≡ λn0e
γnt for λn0 ≡ Λn(0)− λns

∫ 0

−∞
e−γnt

∗ 1

νns
φ

(
t∗ − µns
νns

)
dt∗,

and

Λns(t) ≡ λns

∫ t

−∞
eγn(t−t∗) 1

νns
φ

(
t∗ − µns
νns

)
dt∗.

We use the following lemma to solve for Λns(t) (s ≥ 1) and for other results in the

section.

Lemma A.1.∫ t

−∞
ea+bx1

s
φ

(
x−m
s

)
dx = ea+bm+b2s2/2Φ

(
t−m− bs2

s

)
. (A.2)

Proof.

∫ t

−∞
ea+bx1

s
φ

(
x−m
s

)
dx =

∫ t−m
s

−∞
ea+b(m+sz)φ (z) dx

= ea+bm+b2s2/2Φ

(
t−m− bs2

s

)
.

Applying Lemma A.1 to (A.1) yields

Λns(t) = λns

∫ t

−∞
eγn(t−t∗) 1

νns
φ

(
t∗ − µns
νns

)
dt∗

= λnse
γn(t−µns+γnν2ns/2)Φ

(
t− µns + γnν

2
ns

νns

)
.

Next, we use the following lemma to calculate scale parameters and the probability

that any two countries share an idea.

Lemma A.2. Let Λ(t) = λeγ(t−µ+γν2/2)Φ
(
t−µ+γν2

ν

)
. Then,

∫ t

−∞
(1− e−δ(t−t∗))Λ′(t∗)dt∗ =

δ

δ + γ

[
Λ(t)− λe−δ(t−µ−δν2/2)Φ

(
t− µ− δν2

ν

)]
.

(A.3)
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Proof. First, note that∫ t

−∞
eδt
∗
γeγt

∗
Φ

(
t∗ − µ+ γν2

ν

)
dt∗

=
γ

δ + γ

[
e(δ+γ)tΦ

(
t− µ+ γν2

ν

)
−
∫ t

−∞
e(δ+γ)t∗ 1

ν
φ

(
t∗ − µ+ γν2

ν

)
dt∗
]
.

Then,∫ t

−∞
e−δ(t−t

∗)Λ′(t∗)dt∗ =

∫ t

−∞
e−δ(t−t

∗) ∂

∂t∗

[
λeγ(t∗−µ+γν2/2)Φ

(
t∗ − µ+ γν2

ν

)]
dt∗

= λe−δt−γµ+γ2ν2/2

[
γ

δ + γ
e(δ+γ)tΦ

(
t− µ+ γν2

ν

)
+

δ

δ + γ

∫ t

−∞
e(δ+γ)t∗ 1

ν
φ

(
t∗ − µ+ γν2

ν

)
dt∗
]
.

From Lemma A.1,∫ t

−∞
e(δ+γ)t∗ 1

ν
φ

(
t∗ − µ+ γν2

ν

)
dt∗ = e(δ+γ)µ+(δ2−γ2)ν2/2Φ

(
t− µ− δν2

ν

)
.

Therefore,∫ t

−∞
(1− e−δ(t−t∗))Λ′(t∗)dt∗

= Λ(t)− λe−δt−γµ+γ2ν2/2

[
γ

δ + γ
e(δ+γ)tΦ

(
t− µ+ γν2

ν

)
+

δ

δ + γ
e(δ+γ)µ+(δ2−γ2)ν2/2Φ

(
t− µ− δν2

ν

)]
=

δ

δ + γ

[
Λ(t)− λe−δ(t−µ−δν2/2)Φ

(
t− µ− δν2

ν

)]
.

We now use Lemma A.2 to calculate the scale in (12) normalized by Γ(ρ):

Γ(ρ)−1To(t) =
∑

N⊆{1,...,N}

1{o ∈ N}Λ(N , t)

=
S∑
s=0

N∑
n=1

∫ t

−∞
P [o ∈ Ni(t; v) | si(v) = s, ni(v) = n, t∗i (v) = t∗] Λ′ns(t

∗)dt∗

=
S∑
s=0

N∑
n=1

∫ t

−∞
(1− e−δons(t−t∗))Λ′ns(t∗)dt∗

= Λo(t) +
S∑
s=0

∑
n 6=o

δons
δons + γn

[
Λns(t)− λnse−δons(t−µns−δonsν

2
ns/2)Φ

(
t− µns − δonsν2

ns

νns

)]
.
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We can also use this result to calculate the probability of two countries sharing an

idea. For o 6= o′,

S∑
s=0

N∑
n=1

∫ t

−∞
E [Ioi(t, v)Io′i(t, v) | ni(v) = n, t∗i (v) = t∗] Λ′ns(t

∗)dt∗

=
S∑
s=0

N∑
n=1

∫ t

−∞
(1− e−δons(t−t∗))(1− e−δo′ns(t−t∗))Λ′ns(t∗)dt∗

= Γ(ρ)−1(To(t) + To′(t))−
S∑
s=0

N∑
n=1

∫ t

−∞
(1− e−(δons+δo′ns)(t−t∗))Λ′ns(t

∗)dt∗

= Γ(ρ)−1(To(t) + To′(t))− Λo(t)− Λo′(t)

−
S∑
s=0

∑
n/∈{o,o′}

δoo′ns
δoo′ns + γn

[
Λns(t)− λnse−δoo′ns(t−µns−δoo′nsν

2
ns/2)Φ

(
t− µns − δoo′nsν2

ns

νns

)]

=
S∑
s=0

∑
n6=o

δons
δons + γn

[
Λns(t)− λnse−δons(t−µns−δonsν

2
ns/2)Φ

(
t− µns − δonsν2

ns

νns

)]

+
S∑
s=0

∑
n6=o′

δo′ns
δo′ns + γn

[
Λns(t)− λnse−δo′ns(t−µns−δo′nsν

2
ns/2)Φ

(
t− µns − δo′nsν2

ns

νns

)]

−
S∑
s=0

∑
n/∈{o,o′}

δoo′ns
δoo′ns + γn

[
Λns(t)− λnse−δoo′ns(t−µns−δoo′nsν

2
ns/2)Φ

(
t− µns − δoo′nsν2

ns

νns

)]
,

where δoo′ns ≡ δons + δo′ns and the second to last equality follows from Lemma A.2.

We get the probability by dividing this result by
∑S

s=0

∑N
n=1 Λns(t).

B Additional Results
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Table B.1: Estimation results: country-level parameters.

Country code Country name γn λn0 λn1 µn1 νn1

AUT Austria 6.6e-5 0.011 0.003 1,987 29
BLX Benelux 0.0 0.101 0.006 1,989 27
CAN Canada 0.0 0.058 0.006 1,967 56
CHN China 0.051 0.0001 0.049 1,999 6.2
DEU Germany 0.0 0.026 0.005 1,983 37
ESP Spain 0.016 0.001 0.021 1,985 16
FRA France 0.0 0.018 0.002 1,980 38
GBR United Kingdom 0.0 0.036 0.0 1,996 42
IND India 0.0 0.007 0.0 2,001 49
IRL Ireland 0.054 0.001 0.010 1,998 8.3
ITA Italy 0.004 0.006 0.016 1,976 23
JPN Japan 0.001 0.054 0.072 1,968 3.4
KOR Republic of Korea 0.007 0.002 0.009 1,997 6.3
MEX Mexico 0.0 0.111 0.001 1,990 36
NORD Nordic Countries 3.0e-6 0.038 1.2e-5 1,988 46
PRT Portugal 0.0 0.019 0.0 2,006 13
RoW Rest of World 5.1e-5 0.216 0.048 1,985 39
TUR Turkey 0.0 0.010 0.0 2,005 18
TWN Taiwan 9.6e-5 0.033 0.012 1,984 11
USA United States 0.0 0.248 7.0e-6 1,990 49

Notes: Benelux includes Belgium, Luxembourg, and Netherlands, while Nordic countries include
to Denmark, Sweden, and Finland. Estimated parameters of the innovation process in (6) for the
one-surge model. µn1 is the (average) year of the innovation surge, s = 1, for each country.
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Figure B.1: Estimation results: Elasticities.

(a) United States, 1962 (b) United States, 2019

(c) China, 1962 (d) China, 2019

Notes: Estimates from the model with S = 1. εoo′d(t) are calculated using (20).

44



Figure B.2: Estimation results: Probabilities of shared knowledge.

(a) Unconditional, 1962 (b) Unconditional, 2019

(c) Conditional, 1962 (d) Conditional, 2019

Notes: Estimates from the model with S = 1. Unconditional sharing probabilities are calcu-
lated as Koo′(t) in (21), relative to To(t) in (12), while conditional probabilities are calculated as
Koo′(t)/Koo(t).
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Figure B.3: Cross-price elasticities and shared knowledge, by destination country.

Notes: Estimates from the model with S = 1. εoo′d(t) are calculated using (20), by destination
country d, while sharing probabilities are calculated using (21).
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