
## QUICK START GUIDE









## QUICK START GUIDE

### LAUNCH GIBBSCAM

GibbsCAM License Window

- 1. Check Out License (select all, ensure boxes are checked)
- 2. Select "OK"

ProAXYS License Manager

1. Select "OK"

### CREATE DOCUMENT

Pull down menu -> File / New Document

· Assign name and location for file to be saved

### IMPORT PARAMETRIC SOLID

Pull down menu -> File / Import

- · Select file from saved location
- NOTE: if you don't see your file in the expected location, confirm that filter selection is set to "All Files (\*.\*)"

### **ALIGN GEOMETRY WITH COORDINATE SYSTEM**

- Select face of model to orient
- right click face / select "align to CS" (align to coordinate system)

Align bottom face of model with Z=0

- Modify pull down menu / translate
- enter value face must move to place at Z=0
- Select "do it"

Modify stock to match parametric solid geometry

Modify pull down menu / Shrinkwrap

## **ESTABLISH CLEARANCE HEIGHT**

Assign clearance height for tools to travel above part geometry

- Select "Document Control" button
- Assign absolute clearance value .100" above the absolute part height

## **DEFINE DRIVE GEOMETRY**

- · Right click face that contains drive geometry
- Extract edges
- "Do it"

## ADD TOOLS, PROCESSES AND OPERATION

Select "tools" button from top banner icons

This will reveal tiles along the left side of the screen

Select "CAM" button from top banner

- This will reveal tiles along the lower left side of the screen for processes
- This will reveal tiles along the right side of the screen for operations

## **ASSIGN TOOL PARAMETERS** (Spindle RMP and tool feedrate)

- Double click tile 1 (top tile) and assign values for tool 1
- Double click tile 2 (2nd tile) and assign values for tool 2, etc.

See following chart for reference based on assigned tool numbers and speed / feed recommendations







## QUICK START GUIDE

## NOTE:

Check your tool path clearance planes
(.1" above stock height)

Check your fixturing clearances (avoid putting clamps in tool paths)

ASK if you are cutting a different material

ALWAYS use a ramping tool path for hard stock

There are other tools in the machines, ALWAYS ask for the feed/speed before using

| ALUMINUM      |              |               |                 |        |
|---------------|--------------|---------------|-----------------|--------|
| TOOL.         | SPEED<br>RPM | ENTRY<br>FEED | CONTOUR<br>FEED | Z STEP |
| 1/8" End Mill | 5000         | 16 ipm        | 18 ipm          | .04"   |
| 1/4" End Mill | 4500         | 18 ipm        | 20 ipm          | .1"    |
| 3/8" End Mill | 4000         | 18 ipm        | 20 ipm          | .125"  |
| 1/2" End Mill | 3500         | 18 ipm        | 20 ipm          | .1875" |
| 90 Spot Drill | 3000         | 10 ipm        |                 |        |

| HDPE          |              |               |                 |        |
|---------------|--------------|---------------|-----------------|--------|
| T00L          | SPEED<br>RPM | ENTRY<br>FEED | CONTOUR<br>FEED | Z STEP |
| 1/8" End Mill | 5000         | 18 ipm        | 20 ipm          | .0625" |
| 1/4" End Mill | 4500         | 22 ipm        | 25 ipm          | .125"  |
| 3/8" End Mill | 4000         | 22 ipm        | 25 ipm          | .1875" |
| 1/2" End Mill | 3500         | 22 ipm        | 25 ipm          | .25"   |
| 90 Spot Drill | 3000         | 10 ipm        |                 |        |

| CARBON STEEL (WROUGHT) |              |               |                 |        |
|------------------------|--------------|---------------|-----------------|--------|
| TOOL                   | SPEED<br>RPM | ENTRY<br>FEED | CONTOUR<br>FEED | Z STEP |
| 1/8" End Mill          | 3973         | 7.95 ipm      | 7.95 ipm        | .04"   |
| 1/4" End Mill          | 1986         | 5.96 ipm      | 5,96 ipm        | .083"  |
| 3/8" End Mill          | 1324         | 3.97 ipm      | 3.97 ipm        | .125"  |
| 1/2" End Mill          | 993          | 2.98 ipm      | 2.98 ipm        | .167"  |
| 90 Spot Drill          | 535          | 1.07 ipm      |                 |        |

| ACRYLIC       |              |               |                 |        |  |
|---------------|--------------|---------------|-----------------|--------|--|
| TOOL          | SPEED<br>RPM | ENTRY<br>FEED | CONTOUR<br>FEED | Z STEP |  |
| 1/8" End Mill | 4465         | 15 ipm        | 17 ipm          | .0625" |  |
| 1/4" End Mill | 4250         | 19 ipm        | 21 ipm          | .125"  |  |
| 3/8" End Mill | 4040         | 19 ipm        | 21 ipm          | .1875" |  |
| 1/2" End Mill | 3825         | 19 ipm        | 21 ipm          | .25"   |  |
| 90 Spot Drill | 2600         | 8 ipm         |                 |        |  |

| POLYCARBONATE |              |               |                 |        |
|---------------|--------------|---------------|-----------------|--------|
| TOOL          | SPEED<br>RPM | ENTRY<br>FEED | CONTOUR<br>FEED | Z STEP |
| 1/8" End Mill | 5250         | 18 ipm        | 20 ipm          | .0625" |
| 1/4" End Mill | 5000         | 22 ipm        | 25 ipm          | .125"  |
| 3/8" End Mill | 4750         | 22 ipm        | 25 ipm          | .1875" |
| 1/2" End Mill | 4500         | 22 ipm        | 25 ipm          | .25"   |
| 90 Spot Drill | 3000         | 10 ipm        |                 |        |





## QUICK START GUIDE

#### **CREATE MACHINING PROCESS**

Machining processes define specific parameters of an operation.

Drag the desired tool from the tool tiles into a tile on the lower left side of the screen within the Operations tiles.

- select the operation type
- · select tool heights
- · define entry / exit moves, etc

## **CREATE MACHINING OPERATION**

A machining operation applies a machining process to a specific piece of geometry.

The operation can then be post-processed to GCode in order to drive a CNC machine.

With a machining process selected, use the cursor to select drive geometry

- · click on the drive geometry
- select proximity of tool to geometry (left / right / centered)
- · select the direction of travel
- select "do it"
- · an operation should now appear in the operations set of tiles on the right side of the screen

#### SIMULATE OPERATION

Simulating an operation visually confirms the operation runs as expected.

Select "Op Sim" button

Configure the variable to control:

- · tool visibility
- stock transparency
- fixture transparency
- tool holders,.. and various other attributes

Adjust the speed control of the simulation

Rewind / Play / Fast forward to help visualize the machining operation

TIP: To view model geometry rather than stock during simulation, select the model geometry before pressing the "Op Sim" button

### **CONVERT THE TOOLPATHS INTO GCODE**

"GCODE" describes the code that directs a machine tool run your toolpaths. The process requires running a machine specific post-processor to convert the toolpaths into a code that the machining center can understand.

Select the part process tile(s) that you want to run

Press the "G1-Post" Button

Select the post-processor associated with the machine you'd like to operate

- · Name the .NC file and identify the location to save the file
- Select the "process" button

This should generate a GCode file that auto-launches a GCode editor to review your file.

### TRANSFER FILE TO MILLING MACHINE

Some machines in EPIC access GCODE files from a local server, and others from USB drives. See an EPIC staff member if unsure of next steps.







## QUICK START GUIDE

## **FAQ**

Q: How do I modify an existing operation?

A: Double click the operation tile to re-activate the applied machining process. The process can then be modified,.. and by pressing the "redo" button, the revised process parameters are applied to the operation.



