

Electrifying U.S. Industry

Ali Hasanbeigi, Ph.D.

Global Efficiency Intelligence <u>Hasanbeigi@globalefficiencyintel.com</u> <u>www.globalefficiencyintel.com</u>

Electrifying U.S. Industry

Partners: Global Efficiency Intelligence and Renewable Thermal Collaborative

Supported by: Energy Foundation

Project Goal: Accelerate electrification in the industrial sector.

How:

- Conducted bottom up subsector, systems, and technology-level analysis for electrification of 13 subsectors
- Conducted survey of industrial plants regarding barriers and drivers for electrification
- Developed an Action Plan for scaling up electrification in industry.
- The RTC, GEI and RTC industrial partners will promote this Action Plan with key stakeholders, including:
 - Industrial companies
 - Electric utilities
 - Policy makers and regulators
 - Key opinion leaders

U.S. manufacturing energy use by end uses (Trillion Btu)

		Conventional Boiler Use, 1904	Machine Drive, 1762	
Process Heating. 5164	CHP and/or Cogeneration Process, 3828	Direct Uses-Total Nonprocess, 1077	Other Process Use, 331 Electro- Chemical Processes,	Process Cooling, 250 End Use Not Reported,

Industrial heat demand profile

Figure a: Share of industrial head demand by temperature in selected industries

Two-thirds of process heat is used in the U.S. industry is for applications below 300°C (572°F)

Bottom-up analysis method

No.	Industry
1	Aluminum casting
2	Ammonia
3	Methanol
4	Recycled plastic
5	Paper (from virgin pulp)
6	Recycled paper
7	Container Glass
8	Steel
9	Beer
10	Beet Sugar
11	Milk powder
12	Wet corn milling
13	Soybean oil
	Electrification of all
	industrial boilers

Electrification of the Container Glass industry in the U.S.

Conventional System Process				A	ll Electric Process
Heating Equipment	Electrical Demand (kWh/tonne)	Thermal Demand (kWh/tonne)	Process steps	Electrical Demand (kWh/tonne)	Heating Equipment
Electrically-powered mixer/crusher	161.0	0.0	Mixing	161.0	Electrically-powered mixer/crusher
Gas-fired furnace	204.0	1150.0	Melting	860.0	Electric glass melter
Forehearth and forming equipment	26.0	105.0	Conditioning & Forming	104.0	Electric forehearths
Gas-fired Anealing lehr	25.0	210.0	Poat Forming(Annealing)	183.0	Electric Anealing lehr
416.0		1465.0	Sum	1308.0	
1881		Total Energy		1308	

Electrification of the Container Glass industry in the U.S.

Change in total final energy use after electrification in U.S.

Note: This is the technical potential assuming 100% adoption rate in the U.S.

Change in net CO₂ emissions after electrification in U.S.

Electrification of the Container Glass industry in the U.S.

Comparison of energy cost per tonne of glass

Note: The error bars show the energy cost per unit of production when unit price of electricity is reduced by 50%.

	2019	2050
Average unit price of electricity for		
industry in U.S. (2017 US\$/kWh)	0.072	0.073
Average unit price of Coal for		
industry in U.S. (2017 US\$/kWh)	0.014	0.018
Average unit price of NG for industry in		
U.S. (2017 US\$/kWh)	0.015	0.020

Electrification of all industrial conventional boilers in the U.S.

Figure A. Estimated share of boilers energy use as a percent of total fuel consumption in the U.S. industry (US DOE, 2017)

Figure B. Estimated final energy use in conventional and electric steam boilers in the U.S. industrial sectors

Electrification of <u>all industrial conventional boilers</u> in the U.S.

Note: This is the technical potential assuming 100% adoption rate in the U.S.

Change in net CO₂ emissions after electrification in U.S.

-120,000

emissions (kt CO₂/year)

Change in CO₂

	2019	2030	2040	2050
Emission factor for grid electricity in US (kgCO2/MWh)	414	207	103	0

Electrification of <u>all industrial conventional boilers</u> in the U.S.

Comparison of Energy Cost per tonne of steam

	2019	2050
Average unit price of electricity for		
industry in U.S. (2017 US\$/kWh)	0.072	0.073
Average unit price of NG for industry in		
U.S. (2017 US\$/kWh)	0.015	0.020

Change in sector's net CO₂ emissions after electrification in the U.S. in 2050 (kt CO₂/year)

		Change in total final energy use after electrification				Change in sector's net CO_2 emissions after			is after
No.	Sectors	(TJ/Year)				electrification in U.S. (kt CO ₂ /year)			
		2019	2030	2040	2050	2019	2030	2040	2050
1	Aluminum casting	-2,314	-2,546	-2,800	-3,080	17	-112	-195	-294
2	Paper (from virgin pulp)	-33,995	-32,295	-30,681	-29,147	26,970	9,997	2,075	-5,080
3	Recycled paper	-75,121	-82,634	-90,897	-99,987	4,239	-4,402	-9,827	-16,295
4	Container glass	-5,745	-6,320	-6,952	-7,647	747	-1,240	-2,498	-3,996
5	Ammonia	-22,695	-24,965	-27,461	-30,207	21,868	-779	-14,516	-30,991
6	Methanol	75,688	86,310	96,933	106,228	11,896	5,046	883	-4,275
7	Recycled plastic	-257,955	-283,751	-312,126	-343,338	-19,743	-16,032	- 14,508	-12,519
8	Steel (H ₂ DRI EAF)	-123,599	-136,527	- 150,024	-154,712	-6,211	-24,022	-35,825	-46,668
9	Beer	-20,591	-22,132	-23,427	-24,660	-92	-669	-1,010	-1,381
10	Beet sugar	-7,801	-8,385	-8,875	-9,342	662	-441	-1,076	-1,775
11	Milkpowder	-3,657	-4,023	-4,425	-4,868	-104	-223	-304	-400
12	Wet com milling	-20,305	-21,825	-23,102	-24,318	3,717	-1,095	-3,853	-6,892
13	Crude soybean oil	-31,732	-34,107	-36,102	-38,002	-46	-1,865	-2,934	-4,100
Total		-529 824	-573,199	-619.938	-663.079	43,919	-35 837	-83,590	-134 665

Our report also covers

- Barriers and Opportunities for Industrial Electrification
- Technology Action Plan
 - Technology RD&D
 - Electrification Economics
 - Education
 - Policy Development
 - Workforce Development
 - Public-Private Partnerships

Thank You!

Download the report from our website: <u>www.globalefficiencyintel.com</u>

For more information, please contact: Ali Hasanbeigi Email: <u>hasanbeigi@globalefficiencyintel.com</u> Website: <u>www.globalefficiencyintel.com</u>