

Energy and CO₂ Implications of the Global Cement Industry

Maria Juenger Professor January 27, 2021

Concrete is the world's most used material

• 17-20 billion metric tons of concrete per year globally

Concrete mixing truck holds 7-9 cubic yards of concrete with 5 to 8 sacks of cement (94 lb. each) per cubic yard

• 4.6 billion metric tons cement produced per year globally

626 kg/per capita, higher than human food consumption

Cement manufacturing is energy-intensive

• To produce 1 ton of portland cement requires up to 7000 MJ (2000kWh) of electrical power and fuel energy

www.iipinetwork.org/wp-content/letd/content/clinker-making.html

Cement manufacturing produces CO₂

 "If the cement industry were a country, it would be the third largest emitter in the world - behind China and the US. It contributes more CO₂ than aviation fuel (2.5%) and is not far behind the global agriculture business (12%)." - BBC News, 17 December 2018

The production of "clinker" accounts for most of the CO2 emissions of cement production

BBC

Levers for change

- 1. Thermal and electric efficiency (equipment and process changes)
- 2. Alternative fuels (equipment and process)
- 3. Clinker substitution supplementary cementitious materials and alternative cements (material changes)
- 4. Carbon capture and storage (equipment, process and material changes)
- 5. Efficiency of materials use (material changes)

World Business Council for Sustainable Development

Planning strategies

Eisenhower Decision Matrix

Impact of changes in processes and materials

BBC News, 2018

Impact of changes in processes and materials

Fig. 17. Low-carbon roadmap cumulative CO₂ emissions reductions in the 2DS compared to the RTS from 2020 to 2050, as modified by VDZ, data from OECD/IEA/CSI [2].

M. Schneider Cement and Concrete Research 124 (2019) 105792

Alternative fuels

- Alternative fuels can play an important role
- Moisture content, burning rate, and contamination need consideration

M. Schneider / Cement and Concrete Research 78 (2015) 14-23

Fig. 2. Development of specific energy demand in the German cement industry [2].

Clinker substitution: SCMs

 More than 60% of ready-mixed concrete in the US uses <u>supplementary</u> <u>cementitious materials</u> (SCMs) to replace a portion of cement in concrete

Eco-efficient cements: Potential, economically viable solutions for a low-CO₂, cementbased materials industry

Karen L. Scrivener, Vanderley M. John, Ellis M. Gartner

Clinker substitution: alternative cements

- Alkali-activated materials ("Geopolymers")
- Calcium sulfoaluminate belite cements (CSAB)
- Magnesium-based cement

Clinker substitution: alternative cements

TABLE 1	
Clinker compound	Chemical CO2 emissions (kg/tonne)
Alite (C3S) [typically, >60% of Portland cement clinker]	579
Belite (C2S)	512
Tricalcium Aluminate (C3A)	489
Tetracalcium Alumino-Ferrite (C4AF, "Ferrite")	362
Quicklime (CaO)	786
Wollastonite (CS) [a major component in Solidia clinkers]	379
Ye'elimite (C4A3\$) [made with CaSO4 as sulphur source]	216
Periclase (MgO) [made from magnesium carbonate]	1100
Periclase (MgO) [made from basic magnesium silicate rocks]	0

Eco-efficient cements: Potential, economically viable solutions for a low-CO₂, cementbased materials industry

Figure 10. The abundance of elements in the earth's crust [Source: Wikipedia].

Karen L. Scrivener, Vanderley M. John, Ellis M. Gartner

Carbon capture technologies

- Amine Scrubbing
 - Norcem Brevik, Norway
- Calcium Looping
 - Heping Cement Plant, Taiwan
- Oxyfuel Combustion
 - CEMCAP in EU

AMINE SCRUBBING

CO₂ is absorbed from the flue gas by an amine chemical solution

Post-Combustion

CALCIUM LOOPING

CO₂ is captured from the flue gas by CaO, turning it into limestone

OXYFUEL COMBUSTION

Fuel is burned in pure O₂ instead of air, creating a CO₂rich flue gas

Erica Sciarra Eugenio Lopez, Senior thesis 2020, UT Austin

Carbon capture + alternative cements

The CO₂Concrete technology turns carbon dioxide emissions into CO₂Concrete[™] products that can replace traditional concrete, with a much lower CO₂ footprint. The technology is based on the concept of "CO₂ mineralization" – the conversion of gaseous CO₂ into solid mineral carbonates (e.g., CaCO3) within the CO₂Concrete[™] products.

Conclusions

- Cement and concrete are the most important materials for development of infrastructure globally
- The CO₂ and energy footprints of the cement and concrete industries are large, but there are several strategies being used to reduce emissions:
 - Use more alternative fuels
 - Reduce clinker/cement content in concrete
 - Implement technologies for CO₂ capture and reuse
- The need for change is urgent, and we need to explore short-term and long-term solutions simultaneously