
Abstract Tissue elasticity reconstruction is a parame-

ter estimation effort combining imaging, elastography,

and computational modeling to build maps of soft tissue

mechanical properties. One application is in the char-

acterization of atherosclerotic plaques in diseased

arteries, wherein the distribution of elastic properties is

required for stress analysis and plaque stability assess-

ment. In this paper, a computational scheme is proposed

for elasticity reconstruction in soft tissues, combining

finite element modeling (FEM) for mechanical analysis

of soft tissues and a genetic algorithm (GA) for param-

eter estimation. With a model reduction of the discrete

elasticity values into lumped material regions, namely

the plaque constituents, a robust, adaptive strategy can

be used to solve inverse elasticity problems involving

complex and inhomogeneous solution spaces. An

advantage of utilizing a GA is its insistence on global

convergence. The algorithm is easily implemented and

adaptable to more complex material models and

geometries. It is meant to provide either accurate initial

guesses of low-resolution elasticity values in a multi-

resolution scheme or as a replacement for failing tradi-

tional elasticity estimation efforts.
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Introduction

Deducing the mechanical properties of specimens un-

der realistic boundary conditions is challenging, not

merely because it does not allow for use of the classical

methods but because it generally involves materials

with inhomogeneous field data. Knowledge of the

boundary conditions, therefore, is not sufficient. For

these types of specimens, and biomaterials often fall

into this category, measurements of field information

(displacement, stress, strain) are necessary. Research-

ers have modeled a wide variety of biological tissues,

including articular cartilage and the meniscus (Mow

et al. 1980), skin and subcutis (Oomens et al. 1987),

and the myocardium (Costa et al. 2001), in attempts to

describe their mechanical behavior for medical and

therapeutic purposes. Nonetheless, knowledge of the

material properties of soft tissues remains limited

(Ophir et al. 1996) partly a result of specimen and

experimental variability—the elastic moduli of normal

soft tissue span four orders of magnitude (Duck 1990;

Sarvazyan 1993) Yet, a better understanding of this

variability in the form of quantifiable field maps of

material properties would be of valuable consequence.

This endeavor is certainly appreciated by those

attempting to diagnose cardiovascular disease based on

the mechanical behavior of diseased arterial tissue. Most

commonly a result of atherosclerosis, an inflammatory

process leading to arterial stenosis, cardiovascular
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disease is associated with numerous life-threatening

events, such as myocardial infarction and stroke,

especially after spontaneous rupture of structurally

vulnerable plaques. Not surprisingly, it continues to be

the principal cause of morbidity and mortality in

industrialized countries (American Heart Association

2003).

The hunt for a reliable means of patient-specific

plaque detection has recently migrated toward bio-

mechanical analysis of plaque matter and rupture.

Unfortunately, there is still a dearth of data on the

mechanical behavior and properties of soft arterial

tissue (Cheng et al. 1993; Humphre 1995; Loree

et al. 1994). The ability to quantify vulnerable plaque

mechanical properties, however, would provide (i)

maps and locations of high stress concentration, which

have been shown to correspond with regions where

plaque rupture tends to occur (Richardson et al. 1989)

and (ii) distributions of the mechanical stresses being

applied to vascular cells, which could elucidate the

biochemical responses and mechanotransduction

pathways associated with atherogenesis.

Tissue elasticity reconstruction combines imaging,

elastography, and modeling to generate specimen-

specific elasticity distributions. Blood vessels, for

example, are imaged via invasive and/or non-invasive

modalities, where the invasive sort, such as intravas-

cular ultrasound (IVUS) (de Korte et al. 2000) and

optical coherence tomography (OCT) (Chan et al.

2004; Chau et al. 2004; Yabushita et al. 2002) are well

suited for coronary arteries in vivo, while the nonin-

vasive, such as magnetic resonance imaging (MRI)

(Yuan et al. 1994) and peripheral vascular ultrasound

(de Bray et al. 1997) are intended for larger arteries,

such as carotids. In addition to providing geometry and

plaque morphology, imaging is used as a scaffold for

elastography experiments, where subsequent images of

a tissue being displaced are translated to displacement

and strain maps. Since the inception of ultrasound-

based tissue elastography (Ophir et al. 1991), this

technique has been widely researched and extended to

other imaging modalities, including to intravascular

ultrasound (IVUS), which remains the only clinically-

demonstrated method for strain characterization of

coronary lesions (de Korte et al. 2000). However,

elastograms are only an incomplete view of a speci-

men’s mechanical properties, as no technique exists for

measuring internal stress. Since our ultimate goal is the

diagnosis of stress concentrations, especially at tissue

boundaries where elastograms can be unhelpful (Pon-

nekanti et al. 1995), we must solve the inverse elasticity

problem.

In this work, we review the inverse elasticity prob-

lem and propose a non-gradient-based scheme for

solving it. Traditionally, researchers have approxi-

mated gradient search directions in order to minimize a

residual between measured and computed mechanical

responses (Doyley et al. 2000; Kallel and Ber-

trand 1996). In some cases, however, an approximation

for the gradient may be faulty and can lead to ineffi-

cient and ineffective convergence patterns. This is

especially true for problems that exhibit complex and

inhomogeneous solution spaces or where a priori initial

guesses of the elasticity are unreliable. Because the

goal of gradient-based techniques is to determine a

search direction, they are clearly the most efficient

when successful; however, the solution space may not

always allow for the approximation of smooth and

accurate gradients. For these cases, we show that a

genetic algorithm can very easily be implemented to

solve the elasticity estimation problem and then apply

it to a variety of vascular phantom models.

Methods

Inverse elasticity problem

Most biological soft tissues, especially arterial walls,

are accurately represented with hyperelastic constitu-

tive models, where strain energy functions are formu-

lated to capture the nonlinear nature of the stress–

strain curve at high strains. Within the realm of elas-

ticity estimation, however, researchers tend to rely on

the simpler, more direct linear elastic, isotropic model

so long as the limits of the results of such estimation

are understood. The incompressible linear elastic

stress–strain constitutive relations under isotropic and

plane-strain assumptions are known to sufficiently

model the behavior of the tissue undergoing small,

quasi-static deformations (Ophir et al. 1996). In this

proof of principle work, we begin with linear elasticity

to make computation more feasible, and will leave

more complex constitutive models for future works.

A body being deformed by an external load or dis-

placement is described by its constitutive relationship

and by stress equilibrium. It is assumed that each point

on the boundary of the solid is specified either by a

stress or displacement and that v(x,y,z) denotes the

displacement field as a function of spatial coordinates

(x,y,z). Assuming incompressibility, we write for a

linear elastic solid,

rij ¼ �pdij þ 2leij; ð1Þ
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where rij is a component of the stress tensor, l is the

material shear modulus, p is the pressure or hydrostatic

stress, and dij is the Kronecker delta. Stress equilibrium

is satisfied by balancing linear momentum over each

part of the material,

@rij

@xj
þ fj ¼ 0; ð2Þ

where fj, the body force per unit volume, is typically

neglected. Combining Eqs. (1) and (2) under the plane

strain approximation yields the ‘‘plane strain inversion

equation’’ for the single unknown shear modulus, l as

follows (Skovoroda et al. 1995)

@2 exyl
� �

@y2
�
@2 exyl
� �

@x2
þ 2

@2 exxlð Þ
@x@y

¼ 0: ð3Þ

While this set of partial differential equations is

most efficiently solved by direct inversion for the shear

modulus, in practice, this strategy is avoided. Solutions

are difficult to stabilize and Eq. (3) requires an explicit

form for the strain field, which means differentiating

the presumably noisy measured displacement field.

Additionally, second order partial derivatives of l
appearing in Eq. (3) place continuity restrictions on the

unknown modulus field.

Instead, the set of partial differential equations is

iteratively inverted by fashioning it into a nonlinear

least squares (NLS) problem, where the goal is to

minimize a residual between computed and measured

mechanical responses (i.e., displacement fields).

The resulting system, known as the Inverse Problem

(IP) in elastography, is written as

Given vc : Rp ! Rq; q � p; solve

min
E2Rp

U Eð Þ ¼ 1

2
vc Eð Þ � vak k2

� �
;

ð4Þ

where E is the elastic modulus distribution, a one-

dimensional vector (p = 1) assuming an isotropic

distribution, vc(E) is the vector of computed displace-

ments based on a given E, and va is the vector of

measured displacements. Although here the IP is

written in terms of an unknown distribution E, it can

equivalently be written to solve for the shear modulus.

Parameter reduction

Consider a model with m unknown parameters, Em,

yielding a set of output values g = (g1,...,gn) that are to

be compared with a set of experimentally-determined

values u = (u1,...,un), where m £ n. The objective is to

accurately estimate the model parameters, based on

knowledge of g and u. For the elasticity problem, the

unknown parameters manifest themselves in the elastic

modulus distribution and the output variables (g and u)

the computed and measured displacement fields,

respectively. As m approaches n, inverse problems

typically become ill-conditioned and difficult to solve.

Therefore, a common remedy is to reduce the number

of unknown elasticity values to m « n, thus generating a

system where the number of parameters being opti-

mized is reasonable given the number of available

measurements.

Various techniques for reducing the number of un-

known elasticity values exist. In short, it is most com-

monly accomplished via static imaging (inherent

imaging characteristics, post-processing, and segmen-

tation) or elastography. We rely on imaging to segment

and group elements of similar morphology and thus

mechanical properties, a strategy that has been har-

nessed by other researchers (Samani et al. 2003). In-

deed, several imaging modalities are capable of

distinguishing arterial and plaque components. In

OCT, for instance, arterial geometries are recon-

structed from images and then segmented (Fig. 1)

(Chau et al. 2004). Yabushita et al. (2002) demon-

strated that certain OCT imaging criteria, such as light

backscattering, can, in fact, distinguish plaque mor-

phology of diseased coronary arterial segments. When

compared with correlating histological sections, plaque

components were accurately partitioned and charac-

terized due to increased soft tissue contrast as com-

pared with IVUS. It should be noted that parameter

reduction by image segmentation can be a source of

error and that the accuracy of elasticity estimation

inherently depends on the faithfulness of material

boundary locations. In fact, this is an active area of

research in medical imaging, and a detailed discussion

of specific image segmentation processes and their

potential errors is beyond the scope of present work.

Static images from some modalities are unable to

differentiate tissue and plaque components consis-

tently, and thus require further experimental studies.

There is ongoing and extensive work, for instance, in

utilizing elastography and resulting elastogram maps to

characterize vascular tissue and plaque constituents,

especially for IVUS (de Korte et al. 2003). Here, cross-

correlation functions are applied to subsequent images

of a tissue being externally displaced in order to track

displacement or strain histories. And since changes in

vascular tissue stiffness are indicative of varying elastic

properties and pathological regions of interest, plaque

detection has been proven possible. Recently,

Lagrangian speckle model estimation has been applied
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to in vitro ultrasound elastography of excised human

carotid artery and the resulting strain tensor showed

promising plaque detection capability (Maurice et al.

2005). In fact, despite the increased soft tissue contrast

afforded by OCT, we have complemented this

modality with a multi-resolution variational framework

for computing displacement and strain maps in vivo

(Chau et al. 2004; Khalil et al. 2005). In summary,

parameter reduction by image segmentation or elas-

tography is feasible and has been previously proposed

for generating lumped vascular finite element models,

in particular, by tracing borders along high strain edges

(Baldewsing et al. 2004).

Genetic algorithm

Genetic algorithms (GAs) are search methods that

simulate biological evolution through naturally

occurring genetic operations on chromosomes

(Goldberg 1989; Holland 1975). They apply the

Darwinian principle of survival of the fittest on string

structures to build unique searches with elements of

structure and randomness. Whereas the sole focus of

traditional optimization is the destination of the

search, the GA also values the process of improve-

ment of a search.

Genetic algorithms begin with a predefined initial

population of candidate solutions, typically created at

random from a field of possible search solutions.

Through pseudo- genetic operations, such as mating

pool selection, crossover reproduction, and mutation,

the ‘‘fittest’’ candidate solutions in the population

survive to populate subsequent generation pools and

facilitate the proliferation of new candidate solutions.

Based on a simple set of rules and parameters dictating

these genetic operations, the algorithm explores and

learns the solution space efficiently.

The GA has been successfully applied to a wide

array of optimization problems within economics,

operations research, engineering, machine learning,

ecology, population genetics, and social systems. It is

an effective search algorithm in the context of com-

plex, non-continuous solution spaces, especially those

featuring multiple minima. It was even harnessed to

determine the lowest energy structure of atomic clus-

ters of carbon, remarkably finding fullerene as the

optimal geometric structure of 60 carbons (Deaven and

Ho 1995).

Algorithm design

The underlying skeleton of all genetic algorithms

remains essentially identical, while the parameters

governing the genetic operations are highly problem-

specific. The first task is choosing how to represent the

data and the population (P) of candidate solutions. In

this case, we seek the optimal elastic modulus values

for the lumped material regions given some mechanical

responses. Therefore, a candidate solution is repre-

sented by an array of modulus values, one per lumped

region. Typically, the GA is initialized by generating a

distribution of solutions (elastic modulus values) at

random and then assigning them to the candidates in

the population, of chosen population size.

Next, we compute a fitness value for each candidate

solution in the population; this quantifies how ‘‘fit’’ a

candidate is as compared with others, in other words

whether it is likely to survive and reproduce. The fit-

ness measure is evaluated via an objective, or fitness,

function. As stated above, inverse elasticity problems

demand the minimization of a residual between mea-

sured and predicted displacement fields, thus we based

our fitness function on Eq. (4):

fi ¼ U Eið Þ; ð5Þ

where i represents a particular lumped material region

and Ei is the vector of elasticity values for elements in

that specific region.

With Eq. (5), a candidate solution is assigned fitness

values for each lumped material region. After nor-

malizing these values with respect to the number of

elements per region, a total fitness value can be com-

puted as the weighted sum,

F ¼
X

i

aifi; ð6Þ

Fig. 1 OCT image of an
arterial cross-section,
segmented into plaque
components, and meshed as a
finite element model
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of fi, the normalized fitness values for lumped regions i,

where ai are normalized weighting factors that sum to

1. Initially and, in general, the fitness values were given

equal weight; however, we discovered that empirically

shifting the weights, in certain cases, could benefit the

search.

For the purposes of this study, we next chose to

implement relatively straightforward genetic opera-

tions that could later be expanded or adapted. A

mating pool, or the group of candidate solutions picked

to survive and reproduce, is selected by, first, ranking

solutions according to fitness values. Subsequently, a

survival probability is computed based on the rank:

Pþ 1ð Þ � rankð Þc

1c þ 2c þ � � � þ Pcð Þ ; ð7Þ

where P is the population number and c is an empirical

factor that adjusts the curve to more or less favor

‘‘fitter’’ candidate solutions. Using Eq. (7), 50% of a

generation is advanced into the mating pool

(Pmp = 0.5P where Pmp is the mating pool population),

where Poffspring = Pmp offspring are engendered via a

crossover reproduction function that swaps elasticity

values of two different candidate solutions at random.

The offspring then join their parents to form the next

generation of candidate solutions. The algorithm con-

tinues in this cyclic fashion, gradually learning the

solution space until it has located the ‘‘fittest’’ solu-

tion(s) (Fig. 2).

A mutation operator was not implemented in this

version of the algorithm, though future versions will

incorporate it for added robustness. Random mutation

will be a desired effect in the context of noisy data and

computationally intensive problems. Here, we built

randomness into larger initial population sizes and into

the crossover reproduction operation.

Modeling

The FEM program ADINA (Watertown, MA) was

used to solve for model displacements based on pre-

scribed initial displacements, boundary conditions,

model geometry, and material properties. Addition-

ally, an integrated software package, tailored to inter-

face with ADINA and optimize the elasticity

parameters based on the above-described GA was

developed.

The combined FEM/GA scheme was applied to

several model problems, representing idealized arteries

incorporating arterial plaques. Specifically, two-

dimensional arterial cross-section models, with inner

radius ri = 2 mm and outer radius ro = 5 mm, were

built. A pressure of p = 13.3 kPa (100 mmHg), a mean

physiologic arterial pressure, was applied to the inner

lumens, consistent with realistic intravascular elastog-

raphy experiments, where systemic blood pressure is

exploited to deform the vessel. All the models satisfied

the equilibrium equations for incompressible (Pois-

son’s ratio m = 0.499), linear elastic solids undergoing

small, quasi-static deformations and were meshed with

9-node quadrilateral elements. The measured dis-

placement fields were generated by solving the forward

problem with a given target elasticity field. White

Gaussian noise was added to the displacement fields in

certain cases. The set of candidate solutions was ini-

tially populated by randomly generating elasticity val-

ues within an order of magnitude of the target values,

yielding initial populations of no less than 50 candidate

solutions.

Results

Single inclusion models

To establish the validity of the algorithm, we first

applied it to a model with 1 material region, or the

one-parameter case (Fig. 3, left panel), and con-

firmed that it was able to locate the single elasticity

value in one iteration. The two-parameter case,

where a small circular inclusion was inserted in the

idealized vascular model, was tested next (Fig. 3,

right panel). Target E2 modulus was varied between

two values, representing two characteristic plaque

constituents. In Simulation 1 the inclusion represents

a hard calcified nodule surrounded by arterial fibrous

plaque, while the inclusion in Simulation 2 models a

soft lipid pool. For each simulation, the algo-

rithm was initiated with candidate solution popula-

tions of 50.

From a relatively expansive range of initial candi-

date solutions (one order of magnitude), the algorithm

converged on accurate approximations of the target

values in 5 iterations (Table 1). In terms of computa-

tional time, the majority of the computation involvedFig. 2 Flowchart of genetic algorithm operations
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solving the 250 total FEM forward problems, unlike in

gradient-based methods where substantial computa-

tion is also required to generate a Jacobian matrix. A

plot of the search history demonstrates the algorithm’s

rapid convergence on two elasticity values from an

initial field of 50 (Fig.4). This behavior, where a diverse

and large initial population is trimmed to a few can-

didate solutions, is characteristic of a successful GA

scheme and illustrates the process of accelerated nat-

ural selection. Given a larger initial population and

then allowing the algorithm respectively more time to

craft accurate potential solutions with this larger initial

set progressively eliminates the minor accuracy errors

observed in the solutions of Table 1.

We next investigated the algorithm’s ability to

handle noise in the measured data. Specifically, dif-

ferent levels of white Gaussian noise, namely 0.3%,

1%, 5%, and 8%, were added to the displacement

fields for the two-parameter, calcified arterial plaque

model. The results confirmed that, despite noise levels

of up to 8%, accurate and consistent lumped elasticity

estimation from an initial population of 100 candidate

solutions was possible (Fig. 5). Not surprisingly, the

errors associated with the E1 fibrous plaque region

were consistently lower than those associated with the

inclusion because, given the larger size of this region

and the way the model was built, more displacement

data was available here.

It must be remarked that the idealized problems

presented above could be certainly treated within a

gradient-based framework. The present alternative

technique is however proposed because more complex

solution spaces are not typically amenable to derivative

approximations and usual tissue models are riddled

with multiple inclusions of far-reaching elasticity val-

ues. In previous work done with gradient-based elas-

ticity estimation, we successfully solved the discrete

elasticity distribution for a tissue block model with one

inclusion (Khalil et al. 2005). After reducing the

number of elements to approximately 200, 10–20 iter-

ations were required to converge on the discretized

target elasticity field, yielding a total of 2000—4000

FEM forward problem solutions in addition to the

computational time required to compute a Jacobian

per iteration. While the model problems are not

identical (i.e., in one case, we group together elements

into material regions and, in the other, we solve for a

distribution), it is still interesting to compare the out-

comes of both techniques for, effectively, the single

inclusion tissue model.

Multiple inclusion models

The transition to solving tissue models with multiple

inclusions was relatively straightforward with the FEM/

GA algorithm. When maintaining the same genetic

operation constraints (population number, survival

probability factor c, etc.) as in the simpler model cases,

solutions to models incorporating 3 or 4 material

regions (Fig. 6) initially yielded mixed results, typically

with one deviant elasticity result. The 4-parameter

model is of specific physiological interest because a

typical diseased arterial cross-section exhibits four

morphological components: a thin layer of arterial wall

surrounding a fibrous plaque region, with calcified and

lipid inclusions.

In order to improve elasticity estimates while

maintaining efficiency, we expanded the search in two

ways. First, by increasing the population size and

relaxing the restriction on iterations, the algorithm was

allowed a more comprehensive exploration of the

solution space. Second, the survival probability factor c
was adjusted in order to slow convergence. Specifically,

decreasing c (Eq. 7) eased the bias of selecting merely

the ‘‘fittest’’ individuals, thereby preventing mating

pools from becoming flooded with only a few candidate

solutions too early in the search. Table 2 summarizes

Fig. 3 One material region model consisting of 1844 elements
(left panel) and two-parameter model consisting of 1710
elements in E1 region and 103 elements in E2 region (right panel)

Table 1 Convergence results for 2 material region models,
representing plaques with a calcified inclusion (Simulation 1)
and a lipid pool (Simulation 2). With an initial population of 50

candidate solutions, five iterations were needed to converge on
accurate elasticity estimates

Simulation E1, target [Pa] E2,target [Pa] E1, converged (error) [Pa] E2,converged (error) [Pa]

1 6.00e5 3.00e7 6.14e5 (2.38%) 3.02e7 (0.68%)
2 6.00e5 3.00e3 5.96e5 (0.68%) 3.39e3 (12.9%)
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the solution results upon adopting these search

improvements: initial populations were enlarged to 100

individuals and, for the m = 4 parameter model, c was

gradually increased from an initial value of 0.5 to its

default value of 1 over 5 iterations. The converged

elasticity values and errors, as a result, returned to

their target values and the convergence behavior, once

again, became consistent. Furthermore, mapping stress

distributions corresponding to a converged result

(Fig. 7, left panel) alongside that of the target elasticity

distribution (Fig. 7, right panel) confirms that, for such

problems, it is possible to obtain the desired stress

field. As expected, stress concentrations arise at the

interface of large, compliant lipid pools and thin

fibrous regions. It should be noted that slightly larger

errors observed for softer (lower modulus) material

regions are strictly an artifact of how we initiated the

search algorithm. Recall that initial populations were

generated from a range of within an order of magni-

tude of the target values. Therefore, if the initial can-

didate solutions for each material region are

constrained to the same population number, then the

interval steps for the softer material regions corre-

spond to larger percent errors from the target value.

Several potential remedies exist, and their implemen-

tation is problem-specific. We assumed a priori

knowledge within an order of magnitude of the target

elasticity values; however, in many cases, this range can

be more precisely focused, thus diminishing errors

associated with the initial population step size. Addi-

tionally, by including a random mutation operator that

begets new candidate solutions, one can alleviate this

initial population resolution error.

An alternative strategy we explored for improving

solutions to the more complicated models was to

empirically shift the weighting values ai from their

equally-weighted distribution. It was observed that

fitness values (fi) associated with stiffer regions (e.g.,

calcified nodules) were somewhat independent of the

elasticity value of compliant regions (e.g., lipid pools).

Therefore, giving fitness values of stiffer regions

slightly more weight in their contribution to the total

fitness value in earlier iterations, and then relaxing this

restriction, yielded accurate elasticity estimates, as

shown in Table 3 for a 3 material region model. As

Fig. 8 demonstrates, the corresponding plot of search

history reflected this weighting shift. We initiated a3 to

0.9 and then decreased it to 0.3 after the first iteration.

As a result, the algorithm converged on elasticity value

E3 more quickly than the others.

Fig. 4 Plot of Simulation 1
search history for each elastic
modulus value. With an initial
population of 50 candidate
solutions, 5 iterations were
needed to narrow the search
to 1 or 2 potential solutions
and then converge on E1 (left
panel) and E2 (right panel)

Fig. 5 Errors in Econverged associated with adding 0.3%, 1%, 5%,
and 8% white Gaussian noise to ‘measured’ displacement fields

Fig. 6 Three material region model consisting of 1580, 103, and
102 elements in E1, E2, and E3 regions (left panel) and four-
parameter model consisting of 1580, 103, 102, and 1072 elements
(right panel)
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Discussion

Soft tissue elasticity imaging and estimation is a chal-

lenging problem with clinical implications. For

instance, it can aid with the identification of vulnerable

intravascular plaques, which upon rupture very com-

monly lead to thrombosis and acute myocardial

infarction. In fact, it is well known that rupture tends to

occur in plaques possessing regions of high stress

concentration (Richardson et al. 1989), thus the ability

to reconstruct elasticity maps would be a valuable tool

to complement plaque morphology maps.

Given internal tissue displacements that can be

quantified from subsequent images of a specimen being

deformed, tissue elasticity can be reconstructed using

parameter estimation techniques. Typically, the

inverse elasticity problem is posed and solved via an

iterative, gradient-based search algorithm.

In some cases, gradient-based methods may be

inadequate. The linear perturbation Gauss–Newton

method, for instance, approximates the search gradient

via serial perturbations of the modulus distribution. In

complex and significantly inhomogeneous solution

spaces a gradient is ineffective, especially when there

are multiple minima. Additionally, these nonlinear

least squares problems tend to be ill-conditioned,

leading to inefficient or sometimes failing Newton

direction searches. The Hessian matrix, the derivative

of the gradient, is the matrix being inverted when

solving the linear perturbation Gauss–Newton method

for elasticity. Singular value decomposition (SVD) of

this Hessian, however, reveals that due to a tendency

for yielding large ratios of maximum to minimum sin-

gular values, ill-conditioning is an unavoidable con-

cern. Furthermore, when formulating the Gauss–

Newton method, the Hessian is simplified by omission

of a second order term, which can further ill-condition

the matrix to be inverted.

An alternative technique was proposed here for the

elasticity reconstruction problem. Upon image seg-

mentation into plaque morphology, a combined FEM/

GA algorithm can be implemented to yield the lumped

elasticity values. The results presented, though from

idealized models and data, confirm that such an ap-

proach has potential to accurately quantify elasticity,

without explicitly approximating a gradient search

direction, which requires considerable computational

time. The algorithm was applied to models with

increasing number of material regions, where the 4-

parameter model was intended to reflect the notable

morphological components of arterial plaques: arterial

Table 2 Convergence results for 3 and 4 material region models
where the searches were expanded in several ways. In the three-
parameter model (m = 3), the initial population was increased to

100 candidate solutions. In the four-parameter model (m=4), the
initial population was also increased to 100, and, in addition to
this, the value of c was systematically increased from 0.5 to 1

Etarget [Pa] Econverged (error) [Pa] (m = 3 model) Econverged (error) [Pa] (m = 4 model)

E1 6.00e5 6.00e5 (0 %) 5.91e5 (1.52 %)
E2 3.00e3 3.00e3 (0%) 3.18e3 (6.06%)
E3 3.00e7 2.91e7 (3.03%) 3.00e7 (0%)
E4 1.00e5 – 1.16e6 (16.4%)

Fig. 7 Stress distributions
corresponding to algorithm-
converged elasticity values
(left panel) and target
elasticity values (right panel).
Stress concentrations
typically appear at the
interface of large, compliant
plaque components (i.e., lipid
pools) and thin fibrous caps

Table 3 Convergence results for a 3 material region model
where the weighting factors ai were used to bias the calcified
inclusion (E3) in earlier iterations

Etarget [Pa] Econverged (error) [Pa]

E1 6.00e5 6.00e5 (0%)
E2 3.00e3 3.27e3 (9.09%)
E3 3.00e7 3.00e7 (0%)
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wall, fibrous plaque, lipid, and calcification. The results

suggested that the present algorithm is capable of

estimating multiple elasticity values for far-reaching

modulus values, which can be difficult for gradient-

based schemes in the context of smoothing.

It must be remarked that while pulsatile blood flow

induces cyclic strain, which is believed to play a vital

role in atherogenesis (Kaazempur-Mofrad et al. 2003),

the focus of the present work was in elasticity estima-

tion, we therefore assumed quasi-static deformations.

The present FEM/GA algorithm lends itself easily

to future expansions and adaptations. It is a versatile

approach to estimation for a broad range of material

models, not merely isotropic, linear elastic. As a result,

we have begun extending this technique to applications

of anisotropic and nonlinear material models as well as

3D geometries, truly challenging problems for tradi-

tional elasticity estimation approaches. For one, the

authors recognize that arterial tissue is generally very

anisotropic and that the estimation results presented in

this paper do not fully appreciate this observation

(Vorp et al. 1995). Furthermore, simulations incorpo-

rating more physiological elasticity values and geom-

etries would provide more biomechanical relevance in

the future. The focus of this paper was on the devel-

opment of a theoretical technique we feel has not yet

been explored in the rapidly-growing field of tissue

elasticity estimation. Due to its ease of implementation

and robustness, a FEM/GA algorithm may serve as an

effective low-resolution initial guess for discrete

inverse formulations.
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