
Proving Confidentiality in a File System
Using DiskSec

Atalay Mert İleri, Tej Chajed,
Adam Chlipala, Frans Kaashoek, Nickolai Zeldovich

MIT CSAIL

Storage Systems Contain Confidential Data

Users rely on the storage system to maintain their
confidentiality.

2

● A file system will be used as a case study in this talk.

Confidentiality in a File System

3

● Alice and Bob share a file-system on the same machine

● Bob tries to learn the content of Alice’s files

Threat model: Bob can call the file-system interface and cannot
bypass it.

○ can’t steal the disk
○ can’t read or write directly to the disk etc.

Bugs May Leak Confidential Data

File-systems are also subject to confidentiality bugs.

Examples
● Crash can expose deleted data (ext4 - 2017)
● Anyone can change POSIX ACLs (NFS - 2016)
● Truncated data can be accessed (btrfs - 2015)
● Crash can expose data (ext4 - 2014)
● Anyone can change POSIX ACLs (btrfs, gfs2 - 2010)
● ...

4

Approach: Formal Verification

5

● Write a specification that captures the desired
behavior of the system.

● Prove that implementation satisfies the specification.

● As long as specification accurately captures the
desired behavior, implementation details are irrelevant.

● We have verified file systems with correctness
specifications (e.g. DFSCQ [SOSP’17]).

dir_b, dir_a

dir_a, dir_b

Functional Specifications Do Not Ensure Confidentiality

Example: Specification for readdir
readdir can return entries in any order.

/dir_a
/dir_b

readdir(...) ⇒

6

Functional specifications ensure many security properties.
(e.g. no memory corruption, no disk corruption etc.)

Functional Specifications Do Not Ensure Confidentiality

● Meets specification

● Leaks confidential data

Nondeterministic functional specifications allow breach of confidentiality.

Confidentiality requires better specifications.

7

def readdir(...)
 dirs = get_dirlist(...)
 if (alice.txt file contains ‘a’)
 return sort(dirs)
 else
 return reverse_sort(dirs)

State of the Art in Verifying Confidentiality
Existing Systems

● seL4 [SSP’13]
● Ironclad [OSDI’14]
● CertiKOS [PLDI’16]
● Komodo [SOSP’17]
● Nickel [OSDI‘18]

8

Above systems use non-interference for their confidentiality
specifications.

Non-interference does not allow any data exposure from Alice to Bob.

Non-interference is Not Suitable for File System
Confidentiality.

● File systems have discretionary access control

● File systems intentionally expose metadata.

9

Contributions

DiskSec
 Framework for proving confidentiality of storage systems.

● File-system confidentiality specification.
● Proof technique to track ownership of the data.
● DiskSec implemented and proven in Coq Proof Assistant.

Evaluation
● SFSCQ file system: extension of DFSCQ with

confidentiality theorem
● Confidentiality for simple app on top of SFSCQ

10

Bob Cannot Infer Alice’s Confidential Data

11

World 2World 1

write(f, a) write(f, b)
Alice:Alice:

Bob Bob

Data is confidential:
observes same results

Confidentiality Means Other Users See Same Thing
Regardless of Your Data

12

s1

s2

s’1

s’2

p

Bob

p

Bob

ret
1

ret
2

s wri
te(

a)

write(b)

Confidentiality
requires that
ret

1
 = ret

2

World 1

World 2

Two states are equivalent with respect to a user (≅user),
if all the data visible to that user is the same in both states.

Our Confidentiality Specification: Data Non-interference

s0 s1 s2

s’0 s’1 s’2

≅Bob ≅Bob

13

p

p

syscall
Bob

ret
1

syscall
Bob

ret
2

=

Return Non-interferenceState Non-interference

Data Non-interference is a Good Confidentiality
Specification for File Systems

Data non-interference

● allows discretionary access control,

● allows exposing of metadata,

● forbids exposing of user data
○ even indirectly (e.g. readdir)

14

How can We Prove Data Non-interference?

15

Data non-interference require more complicated proofs than
functional correctness.

● Require reasoning about behavior of two executions.

Insight: File systems mostly does not inspect user data.
● Suffices to reason about where user data is accessed in one

execution.

Our Approach: Sealed Blocks

16

● Pretend that all disk blocks are logically sealed.

● Function needs to request an unseal to access the data content.

● Functions can be analyzed to prove that they do not unseal user
data.

Standard Disk Infrastructure

17

File system implementation

read(a: addr) -> data
write(a: addr, b: data)

Disk

data data data

read(a: addr) -> data
write(a: addr, b: data)

DiskSec Infrastructure

18

File system implementation

read(a: addr) -> sblock
write(a: addr, b: sblock)

 Sec logical disk

data
owner

u1, u2, ...

data
owner

sealed block (sblock)

seal(d: data, u: user) -> sblock
unseal(b: sblock) -> data

unseal owner trace

data
owner

data
owner

Disk

How to Use DiskSec?

19

DiskSec Implementation
 def read (f,...)

if (can_access(f))
 sealed_data = read_disk(f,...)
 data = unseal(sealed_data)
 return data

 else
 return error

Standard Implementation
 def read(f,...)
 data = read_disk(f,...)
 return data

1. Developer instruments his code with seals, unseals and
access control checks.

2. Developer proves that a certain property holds for the unseal
trace of the implementation.

Sealed Blocks Simplify Confidentiality Proofs

Unseal Secure
Function only unseals data accessible to the current user

Unseal Secure ➙ Return Non-interference

Unseal Public
Function only unseals data accessible to every user.

Unseal Public ➙ Data Non-interference

In this case, state non-interference needs to be proven separately.
20

DiskSec Summary

● Provides infrastructure for access control in storage
systems.

● Formalizes data non-interference as a confidentiality
specification.

● Simplifies proof effort by reducing data non-interference
proofs to unseal trace proofs.

21

Applying DiskSec: SFSCQ Overview

● Based on DFSCQ [SOSP’17]

● Supports multiple users

● Simplified permission model
○ All metadata, including file names, are public.
○ File contents may be public or private.
○ File owner is set upon creation.

● Fully implemented and verified in Coq Proof Assistant

22

Evaluation

23

● Did we prove DFSCQ satisfies data non-interference?
○ Not completely.
○ Needed to remove an advanced feature.

● Is performance the same as DFSCQ?
○ SFSCQ code = DFSCQ code + access control checks

● How much effort did it require?
○ Took one author ~3 months

Conclusions
● Correctness specifications are not enough for confidentiality.

● Data non-interference is a suitable confidentiality specification
for file systems.

● We designed and implemented DiskSec, a framework for
confidentiality proofs for storage systems.

● We implemented SFSCQ, the first file system with
machine-checkable confidentiality proofs, using DiskSec.

24

https://github.com/mit-pdos/fscq/tree/security

