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Storage Systems Contain Confidential Data

Users rely on the storage system to maintain their 
confidentiality.
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● A file system will be used as a case study in this talk.



Confidentiality in a File System
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● Alice and Bob share a file-system on the same machine

● Bob tries to learn the content of Alice’s files 

Threat model: Bob can call the file-system interface and cannot 
bypass it.

○ can’t steal the disk
○ can’t read or write directly to the disk etc.



Bugs May Leak Confidential Data

File-systems are also subject to confidentiality bugs.

Examples
● Crash can expose deleted data (ext4 - 2017)
● Anyone can change POSIX ACLs (NFS - 2016)
● Truncated data can be accessed (btrfs - 2015)
● Crash can expose data (ext4 - 2014)
● Anyone can change POSIX ACLs (btrfs, gfs2 - 2010)
● ...
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Approach: Formal Verification
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● Write a specification that captures the desired 
behavior of the system.

● Prove that implementation satisfies the specification.

● As long as specification accurately captures the 
desired behavior, implementation details are irrelevant.

● We have verified file systems with correctness 
specifications (e.g. DFSCQ [SOSP’17]).



dir_b, dir_a

dir_a, dir_b

Functional Specifications Do Not Ensure Confidentiality

Example: Specification for readdir 
readdir can return entries in any order.

/dir_a
/dir_b

readdir(...) ⇒

6

Functional specifications ensure many security properties. 
(e.g. no memory corruption, no disk corruption etc.)



Functional Specifications Do Not Ensure Confidentiality

● Meets specification

● Leaks confidential data

Nondeterministic functional specifications allow breach of confidentiality.

Confidentiality requires better specifications.
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def readdir(...)
    dirs = get_dirlist(...)
    if (alice.txt file contains ‘a’)
        return sort(dirs)
    else
        return reverse_sort(dirs)



State of the Art in Verifying Confidentiality
Existing Systems

● seL4 [SSP’13]
● Ironclad [OSDI’14]
● CertiKOS [PLDI’16]
● Komodo [SOSP’17]
● Nickel [OSDI‘18]
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Above systems use non-interference for their confidentiality 
specifications.
 
Non-interference does not allow any data exposure from Alice to Bob.



Non-interference is Not Suitable for File System 
Confidentiality.

● File systems have discretionary access control

● File systems intentionally expose metadata.
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Contributions

DiskSec 
    Framework for proving confidentiality of storage systems.

● File-system confidentiality specification.
● Proof technique to track ownership of the data.
● DiskSec implemented and proven in Coq Proof Assistant.

Evaluation
● SFSCQ file system: extension of DFSCQ with 

confidentiality theorem
● Confidentiality for simple app on top of SFSCQ
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Bob Cannot Infer Alice’s Confidential Data
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World 2World 1

write(f, a) write(f, b)
Alice:Alice:

Bob Bob

Data is confidential: 
observes same results



Confidentiality Means Other Users See Same Thing 
Regardless of Your Data
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Two states are equivalent with respect to a user (≅user), 
if all the data visible to that user is the same in both states.



Our Confidentiality Specification: Data Non-interference

s0 s1 s2
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≅Bob ≅Bob
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Data Non-interference is a Good Confidentiality 
Specification for File Systems

Data non-interference

● allows discretionary access control,

● allows exposing of metadata,

● forbids exposing of user data
○ even indirectly (e.g. readdir)
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How can We Prove Data Non-interference?
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Data non-interference require more complicated proofs than 
functional correctness.

● Require reasoning about behavior of two executions.

Insight: File systems mostly does not inspect user data. 
● Suffices to reason about where user data is accessed in one 

execution.



Our Approach: Sealed Blocks
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● Pretend that all disk blocks are logically sealed.

● Function needs to request an unseal to access the data content.

● Functions can be analyzed to prove that they do not unseal user 
data. 



Standard Disk Infrastructure
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File system implementation

read(a: addr) -> data
write(a: addr, b: data)

Disk

data data data



read(a: addr) -> data
write(a: addr, b: data)

DiskSec Infrastructure
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File system implementation

read(a: addr) -> sblock
write(a: addr, b: sblock)

       Sec logical disk

data
owner

u1, u2, ...

data
owner

sealed block (sblock)

seal(d: data, u: user) -> sblock
unseal(b: sblock) -> data

unseal owner trace

data
owner

data
owner

Disk



How to Use DiskSec?
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DiskSec Implementation
  def read (f,...)

if (can_access(f))
  sealed_data = read_disk(f,...)
  data = unseal(sealed_data)
  return data

    else
  return error

Standard Implementation
  def read(f,...)
    data = read_disk(f,...)
    return data

1. Developer instruments his code with seals, unseals and 
access control checks.

2. Developer proves that a certain property holds for the unseal 
trace of the implementation.



Sealed Blocks Simplify Confidentiality Proofs

Unseal Secure
Function only unseals data accessible to the current user

Unseal Secure ➙ Return Non-interference

Unseal Public
Function only unseals data accessible to every user.

Unseal Public ➙ Data Non-interference

In this case, state non-interference needs to be proven separately.
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DiskSec Summary

● Provides infrastructure for access control in storage 
systems.

● Formalizes data non-interference as a confidentiality 
specification.

● Simplifies proof effort by reducing data non-interference 
proofs to unseal trace proofs.
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Applying DiskSec: SFSCQ Overview

● Based on DFSCQ [SOSP’17]

● Supports multiple users

● Simplified permission model
○ All metadata, including file names, are public.
○ File contents may be public or private.
○ File owner is set upon creation.

● Fully implemented and verified in Coq Proof Assistant
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Evaluation
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● Did we prove DFSCQ satisfies data non-interference?
○ Not completely.
○ Needed to remove an advanced feature.

● Is performance the same as DFSCQ?
○ SFSCQ code = DFSCQ code + access control checks

● How much effort did it require?
○ Took one author ~3 months



Conclusions
● Correctness specifications are not enough for confidentiality.

● Data non-interference is a suitable confidentiality specification 
for file systems.

● We designed and implemented DiskSec, a framework for 
confidentiality proofs for storage systems.

● We implemented SFSCQ, the first file system with 
machine-checkable confidentiality proofs, using DiskSec.
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https://github.com/mit-pdos/fscq/tree/security


