
Courses
MECHANOBIOLOGY
BE 437: Nanometer Scale Processes in Living Systems – Professor Michael Smith
The world at the nanometer-scale is full of dynamic phenomena that are vastly different than those encountered at the macro scale. Biological processes that are of particular contemporary interest, such as cell differentiation, are stimulated by the activity and interaction of biomolecules at the nanoscale. Thus, an understanding of the physics and engineering in such systems is a vital component toward overcoming an immense array of challenging problems in the biological and medical sciences. This course focuses on a conceptual and mechanistic understanding of technologies that permit the study of events at the nanometer scale, including scanning probe microscopes (including AFM) and optical methods such as fluorescence microscopy and related techniques (including single particle tracking, and microrheology). Learn More
BE 549/ME 549: Structure-function relations of the extracellular matrix – Professor Bela Suki
This is an introductory course dealing with the detailed structure of the basic units of the extracellular matrix including collagen, elastin, microfibrils and proteoglycans as well as the functional properties of these molecules. The focus is mostly on how the structure of these components determine the functional properties such as elasticity at different scales from molecule to fibrils to organ level behavior. The biological role of these components and their interaction with cells is also covered. Interaction ofenzymes and the matrix in the presence of mechanical forces is discussed. Mathematical modeling is applied at various length scales of the extracellular matrix that provides quantitative understanding of the structure and function relationship. Special topics include how diseases affect extracellular matrix in the lung, cartilage and vasculature. The relevance of the properties of native extracellular matrix for tissue engineering is also discussed. Same as ENG BE 549 and ENG ME 549. Students may not receive credit for both. Learn More
PY 571: Biophysics – Professor Masha Kamenetska
Introduction to biomolecular forces, energy flow, information and thermodynamics in biological systems. Nucleic acid, protein, and biomembrane structure. Mechanisms of transport and signaling in biological membranes. Biophysical techniques including spectroscopy. Emphasis on the physical principles underlying biological structure and function. Learn More
ME 500: Molecular Transport in Connective Tissues – Professor Michael Albro
Due to their avascular make-up and dense extracellular matrices, the transport of fluid, nutrients, and macromolecules in connective tissues are critical for their growth, functionality, and survival. The course focuses on topics of Fick’s laws of diffusion, chemical reaction kinetics, Darcy permeability, Donnan osmotic pressure, biphasic tissue modeling, and cell membrane transport. Lecture material will introduce students to fundamental topics as well as explore computational modeling approaches to predict tissue transport phenomena. The course will incorporate a biweekly laboratory module component where student groups will perform experimental characterizations of transport phenomena in connective tissue specimens. PhD students, Master’s students, and undergraduate seniors from all College of Engineering Departments and Divisions are encouraged to register. Learn More
BIOMECHANICS
BE 436: Fundamentals of Fluid Mechanics – Professor Brianne Connizzo
Fluid mechanics is a discipline that studies motion of gasses and liquids and forces that act on them. A sub discipline of fluid mechanics is biofluid mechanics which is the study of a certain class of biological problems from a fluid mechanics point of view. For example, it helps us to understand blood flow within the cardiovascular system, airflow within the airways of lungs, removal of waste products via the kidneys and urinary system and operation of artificial pumps and microfluidic devices. In this course, the focus will be on the theoretical developments and basic foundations of fluid mechanics using the mathematical framework of vectors and tensors. Topics include: conservation of mass, momentum, and energy in static and moving fluids; constitutive relations for Newtonian and non- Newtonian fluids; viscous flows, with application to microfluidics, flow in porous materials, lubrication, and other areas of biomedical interest; scaling analysis; inertial effects, including boundary layers and unsteady flows. The course will prepare students for advanced courses in fluid mechanics (boundary layer theory, turbulent flow, non-Newtonian fluids, aerodynamics), as well as emerging fields (computational fluid mechanics, microfluidics). Cannot be taken for credit in addition to ENG ME 303. Learn More
ME/BE 788: Soft Tissue Biomechanics – Professor Katherine Zhang
This course will introduce students to the mechanics of soft biological tissue. In particular, the response of the heart, vasculature, and tissue scaffolds to mechanical loads from the perspective of nonlinear solid mechanics will be studied. Constitutive models for hyperelastic materials will be adapted to biomaterials to handle mechanical characteristics such as nonlinearity, viscoelasticity, and orthotropy. Basic experimental methods, and anatomy and physiology of particular tissue types will also be introduced. Emphasis is placed on integrating the basic analytical, experimental, and computational methods for a more complete understanding of the underlying mechanobiology. Learn More
BE 533: Biorheology – Professor Dimitrije Stamenovic
This is an introductory course whose main goal is to acquaint students with basic concepts of elasticity, viscoelasticity, plasticity, viscoplasticity, poroelasticity, non-Newtonian flow and related phenomena that often characterize mechanical behavior of biological materials. In studying these phenomena, different approaches have been utilized, including methods of continuum mechanics, phenomenological approaches, mathematical modeling and microstructural approaches that relate structural features with the overall behavior. Illustrative examples of application of these methods to studies of various biological materials at the system, organ, tissue, cellular and molecular levels will be presented. The course provides good foundations for further studies in the areas of rheology, mechanics of solids, cellular and tissue mechanics and mechanobiology. Learn More
BE 420: Introduction to Solid Biomechanics – Professor Dimitrije Stamenovic
Many vital physiological functions including locomotion,respiration, circulation,and mechanotransduction are mechanical in nature and are linked to forces and deformation. Mechanics is also critical for development of medical devices and instruments. The main goal of this course is to acquaint students with concepts of stress,strain,constitutive laws and their applications to biomechanics of cells and tissues. The focus will be on theoretical developments. The first part of the course is focused on problems of mechanics of deformable solids including extension,bending,buckling and torsion of beams, as well as the concept of cellular tensegrity. The second, and the greater part of the course is focused on the basic concepts of the theory of elasticity. Topics include: vector and tensor algebra and calculus, kinematics of deformation, stress analysis, constitutive equations. In addition to the linear (Hookean)elasticity, non-linear elasticity is also presented to describe mechanical behavior of biological tissues and cells. The last chapter is devoted to basic concepts of linear viscoelasticity, including stress relaxation, creep and hysteresis. Illustrative examples from tissue and cell biomechanics will be given where appropriate. The course will prepare students for advanced courses in traditional fields of solid mechanics (e.g., plasticity and poroelasticity),finite element analysis,as well as emerging fields (e.g., mechanobiology and nanotechnology). Design elements will be included in projects. Learn More
BE 435: Transport Phenomena in Living Systems – Professor Hadi Nia
Biological systems operate at multiple length scales and all scales depend on internal and external transport of molecules, ions, fluids and heat. This course is designed to introduce the fundamentals of biological transport and to apply these fundamentals in understanding physiological processes involving fluid, mass and heat transfer. Students will learn the fundamental conservation principles and constitutive laws that govern heat, mass and momentum transport processes and systems as well as the constitutive properties that are encountered in typical biological problems. Transport is also critical to the development and proper functioning of biological and medical instruments and devices, which will also be discussed. Biomedical examples will include applications in development of the heart-lung machine, estimation of time of death in postmortem cases, burn injuries through hot water, respiratory flow in smokers lungs, etc. Learn More
SAR HP 565: Biomechanics of Human Movement – TBD
Biomechanics is a powerful tool for understanding why and how we control and coordinate movement in health and disability. The course provides a conceptual and theoretical basis of biomechanics so that students learn to creatively problem solve using a biomechanical thought process. Many examples of applications include athletics, orthopedic injuries, central nervous system disorders, designing assistive devices, pediatrics and aging. Emphasis will be placed on how to use the tools of biomechanics along with an understanding of functional anatomy to think about typical and abnormal movement. Effective Spring 2022, this course fulfills a single unit in the following BU Hub area: Creativity/Innovation. Learn More