Online Master of Science in Computer Information Systems Concentration in Web Application Development
Quicklinks: Curriculum • Faculty • Tuition & Financial Aid • Careers
Program at a Glance
- Master of Science
- 40 Credits Required
- 18–24 months Completion Time
- 13 Faculty Members
- $34,200–$35,900 Tuition & Fees Range—Part-Time Study*
Related Programs
- Master’s Degrees
- Applied Data Analytics
- Computer Information Systems, concentrations in:
- Computer Networks
- Data Analytics
- Database Management & Business Intelligence
- Health Informatics
- IT Project Management
- Security
- Web Application Development
- Health Informatics, concentrations in:
- Software Development
- Graduate Certificates
- Advanced Information Technology
- Applied Business Analytics
- Cybercrime Investigation & Cybersecurity
- Data Analytics
- Database Management & Business Intelligence
- Digital Forensics
- Health Informatics
- Information Security
- Information Technology
- IT Project Management
- Medical Information Security & Privacy
- Software Engineering
- Web Application Development
The MS in Computer Information Systems concentration in Web Application Development introduces the fundamental concepts of web applications, providing a comprehensive coverage of both client-side and server-side development. The latest topics in JavaScript, CSS, HTML5, jQuery, AngularJS, PHP, and Node.js are widely covered. Students also learn, and work with, cutting-edge technologies for building desktop and mobile web applications, such as Ruby on Rails, AJAX, Flex, and Google Web Toolkit (GWT). Students create real-world web application projects that also involve interacting with databases such as Oracle, MySQL, and NoSQL databases like MongoDB.
Students who complete the MSCIS degree concentration in Web Application Development will be able to demonstrate:
- Advanced knowledge of web application development languages.
- Proficiency in one or two server-side web language/platform-specific technologies like Java and .NET, and client-side languages like JavaScript.
- Competence sufficient to apply acquired knowledge in migrating to new and emerging standards and technologies.
Awards & Accreditations
Newsweek magazine ranked Boston University’s online programs #4 in the nation in its 2023 survey.
Why Choose BU’s Web Application Development?
- In 2024, the MSCIS ranked #8 among the Best Online Master's in Computer Information Technology Programs (U.S. News & World Report).
- Students benefit from a supportive online network, with courses developed and taught by PhD-level full-time faculty and professionals with hands-on expertise in the industry.
- Small course sections ensure that students get the attention they need, while case studies and real-world projects ensure that they gain in-depth, practical experience with the latest technologies.
Career Outlook
Computer and Information Systems Managers
10% increase in jobs through 2029
$146,360 median annual pay in 2019
Computer and Information Research Scientists
15% increase in jobs through 2029
$122,840 median annual pay in 2019
Software Developers
22% increase in jobs through 2029
$107,510 median annual pay in 2019
Computer Network Architects
5% increase in jobs through 2029
$112,690 median annual pay in 2019
Web Developers
8% increase in jobs through 2029
$73,760 median annual pay in 2019
Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2020
Best Technology Jobs, 2024 U.S. News & World Report
- #1 Software Developer
- #2 IT Manager
- #3 Information Security Analyst
- #4 Data Scientist
- #5 Web Developer
- #6 Computer Systems Analyst
- #7 Computer Network Architect
- #8 Database Administrator
- #9 Computer Support Specialist
- #10 Computer Systems Administrator
- #11 Computer Programmer
Money Matters
Boston University Metropolitan College (MET) offers competitive tuition rates that meet the needs of part-time students seeking an affordable education. These rates are substantially lower than those of the traditional, full-time residential programs yet provide access to the same high-quality BU education. To learn more about current tuition rates, visit the MET website.
Financial Assistance
Comprehensive financial assistance services are available at MET, including scholarships, graduate loans, and payment plans. There is no cost to apply for financial assistance, and you may qualify for a student loan regardless of your income. Learn more.
Curriculum
The online Master of Science in Computer Information Systems consists of ten courses (40 credits).
Courses
Students pursuing the concentration in Web Application Development must complete the following courses:
Core Courses
(Five courses/20 credits)
METCS625 Business Data Communication and Networks
Undergraduate Prerequisites: On Campus Prerequisites: MET CS 200 Fundamentals of Information Techno logy. Or instructor^s consent. ; Undergraduate Corequisites: Restrictions: MS CIS only. This course may not be taken in conjunction with CS 425 (undergraduate) or CS 535. Only CS 535 or CS 625 can be c ounted towards degree requirements. - This course presents the foundations of data communications and takes a bottom-up approach to computer networks. The course concludes with an overview of basic network security and management concepts. Prereq: MET CS 200, or instructor's consent. This course may not be taken in conjunction with MET CS 425 (undergraduate) or MET CS 535. Only one of these courses can be counted towards degree requirements. [4 credits]
METCS669 Database Design and Implementation for Business
Undergraduate Prerequisites: Restrictions: Only for MS CIS. This course may not be taken in conjunc tion with MET CS 469 (undergraduate) or MET CS 579. Only one of these courses can be counted towards degree requirements. - Students learn the latest relational and object-relational tools and techniques for persistent data and object modeling and management. Students gain extensive hands- on experience using Oracle or Microsoft SQL Server as they learn the Structured Query Language (SQL) and design and implement databases. Students design and implement a database system as a term project. Restrictions: This course may not be taken in conjunction with MET CS 469 (undergraduate) or MET CS 579. Only one of these courses can be counted towards degree requirements. [4 credits]
METCS682 Information Systems Analysis and Design
Undergraduate Prerequisites: Basic programming knowledge or instructor's consent. - Object-oriented methods of information systems analysis and design for organizations with data- processing needs. System feasibility; requirements analysis; database utilization; Unified Modeling Language; software system architecture, design, and implementation, management; project control; and systems-level testing. Prerequisite: Basic programming knowledge or instructor's consent. [4 credits]
METCS782 IT Strategy and Management
Undergraduate Prerequisites: Restrictions: Only for MS CIS students. - This course describes and compares contemporary and emerging information technology and its management. Students learn how to identify information technologies of strategic value to their organizations and how to manage their implementation. The course highlights the application of I.T. to business needs. CS 782 is at the advanced Masters (700) level, and it assumes that students understand IT systems at the level of CS 682 Systems Analysis and Design. Students who haven't completed CS 682 should contact their instructor to determine if they are adequately prepared. Prereq: MET CS 682, or instructor's consent. [4 credits]
And one of the following*:
METCS520 Information Structures with Java
Undergraduate Prerequisites: Prerequisites: MET CS 201, Introduction to Programming (On Campus and Blended); MET CS 200, Fundamentals of Information Technology (Online O nly) - This course covers the concepts of object-oriented approach to software design and development using the Java programming language. It includes a detailed discussion of programming concepts starting with the fundamentals of data types, control structures methods, classes, applets, arrays and strings, and proceeding to advanced topics such as inheritance and polymorphism, interfaces, creating user interfaces, exceptions, and streams. Upon completion of this course the students will be able to apply software engineering criteria to design and implement Java applications that are secure, robust, and scalable. Prereq: MET CS 200 or MET CS 300 or Instructor's Consent. Not recommended for students without a programming background. For undergraduate students: This course may not be taken in conjunction with METCS232. Only one of these courses can be counted towards degree requirements. [4 credits]
METCS521 Information Structures with Python
This course covers the concepts of the object-oriented approach to software design and development using Python. It includes a detailed discussion of programming concepts starting with the fundamentals of data types, control structures methods, classes, arrays and strings, and proceeding to advanced topics such as inheritance and polymorphism, creating user interfaces, exceptions and streams. Upon completion of this course students will be able to apply software engineering principles to design and implement Python applications that can be used in with analytics and big data. Effective Fall 2021, this course fulfills a single unit in each of the following BU Hub areas: Quantitative Reasoning II, Creativity/Innovation, Critical Thinking.
Prerequisite: Programming experience in any language. Or Instructor's consent. [4 credits]
*If a student chooses to take both MET CS 520 and MET CS 521, the first course completed will fulfill the core requirement and the second course completed will count as an elective.
Students who have completed courses on core curriculum subjects as part of their undergraduate degree program or have relevant work-related experience may request permission from the Department of Computer Science to replace the corresponding core courses with graduate-level computer information systems electives. Please refer to the MET CS Academic Policies Manual for further details.
Concentration Requirements
(Five courses/20 credits)
METCS546 Introduction to Probability and Statistics
Undergraduate Prerequisites: Academic background that includes the material covered in a standard c ourse on college algebra. - The goal of this course is to provide students with the mathematical fundamentals required for successful quantitative analysis of problems. The first part of the course introduces the mathematical prerequisites for understanding probability and statistics. Topics include combinatorial mathematics, functions, and the fundamentals of differentiation and integration. The second part of the course concentrates on the study of elementary probability theory, discrete and continuous distributions. Prereq: Academic background that includes the material covered in a standard course on college algebra or instructor's consent. For undergraduate students: This course may not be taken in conjunction with MET MA 213, only one of these courses will count toward degree program requirements. Students who have taken MET MA 113 as well as MET MA 123 will also not be allowed to count MET CS 546 towards degree requirements. [4 credits]
METCS601 Web Application Development
Prerequisites: WAD 100 - Learn essential front-end development skills, starting with foundational JavaScript techniques, such as DOM manipulation and event handling, and advancing to interactive web technologies like HTML's Drag and Drop, Canvas, and SVG. You will be exposed to asynchronous operations, including AJAX, the Fetch API, and Web Workers, and learn to craft responsive designs using Flexbox, CSS Grid, and advanced CSS selectors. A comprehensive exploration of TypeScript and its main feature, static typing, and capabilities will also be covered. The course concludes with a comprehensive dive into ReactJS, covering its core architectural concepts, component-based structure, and state management techniques [4 credits]
METCS602 Server-Side Web Development
The Server-Side Web Development course concentrates primarily on building web applications using PHP/MySQL and Node.js/MongoDB. The course is divided into various modules covering in depth the following topics: PHP, MySQL, Object oriented PHP, PHP MVC, Secure Web applications, Node.js and MongoDB. Along with the fundamentals underlying these technologies, several applications will be showcased as case studies. Students work with these technologies starting with simple applications and then examining real world complex applications. At the end of this course, students would have mastered the web application development on the server-side. Prerequisite: MET CS 601. Or instructor's consent. [4 credits]
METCS701 Rich Internet Application Development
Undergraduate Prerequisites: MET CS 520 or MET CS 601 and programming experience, or instructor's c onsent - The Rich Internet Application (RIA) Development course concentrates primarily on building rich client web applications in the browser for desktop and mobile devices. The course is divided into various modules covering in depth the following technologies: HTML5, AngularJS, and Ionic framework. Along with the fundamentals underlying these technologies, several applications will be showcased as case studies. Students work with these technologies starting with simple applications and then examining real world complex applications. At the end of this course, students would have mastered the latest and widely used RIA methodologies. Course Prerequisites: METCS520 (Information Structures) and METCS601 (Web Application Development), or instructor's consent. [4 credits]
And one course selected from the following:
METCS544 Foundations of Analytics and Data Visualization
Formerly titled CS 544 Foundations of Analytics with R.
The goal of this course is to provide students with the mathematical and practical background required in the field of data analytics. Probability and statistics concepts will be reviewed as well as the R tool for statistical computing and graphics. Different types of data are investigated along with data summarization techniques and plotting. Data populations using discrete, continuous, and multivariate distributions are explored. Errors during measurements and computations are analyzed in the course. Confidence intervals and hypothesis testing topics are also examined. The concepts covered in the course are demonstrated using R. Laboratory Course. Prereq: MET CS546 and (MET CS520 or MET CS521), or equivalent knowledge, or instructor's consent. [4 credits]
METCS555 Foundations of Machine Learning
Formerly titled CS 555 Data Analysis and Visualization with R.
This course provides an overview of the statistical tools most commonly used to process, analyze, and visualize data. Topics include simple linear regression, multiple regression, logistic regression, analysis of variance, and survival analysis. These topics are explored using the statistical package R, with a focus on understanding how to use and interpret output from this software as well as how to visualize results. In each topic area, the methodology, including underlying assumptions and the mechanics of how it all works along with appropriate interpretation of the results, are discussed. Concepts are presented in context of real world examples. Recommended Prerequisite: MET CS 544 or equivalent knowledge, or instructor's consent. [4 credits]
METCS570 Biomedical Sciences and Health IT
This course is designed for IT professionals, and those training to be IT professionals, who are preparing for careers in healthcare-related IT (Health Informatics). This course provides a high-level introduction into basic concepts of biomedicine and familiarizes students with the structure and organization of American healthcare system and the roles played by IT in that system. The course introduces medical terminology, human anatomy and physiology, disease processes, diagnostic modalities, and treatments associated with common disease processes. IT case studies demonstrate the key roles of health informatics and how IT tools and resources help medical professionals integrate multiple sources of information to make diagnostic and therapeutic decisions. [4 credits]
METCS580 Health Informatics
Undergraduate Prerequisites: (METCS570) - This course presents the fundamental principles, concepts, and technological elements that make up the building blocks of Health Informatics. It introduces the characteristics of data, information, and knowledge in the domain, the common algorithms for health applications, and IT components in representative clinical processes. It presents the conceptual framework for handling biomedical data collection, storage, and optimal use. It covers the concepts of population health and precision medicine and the information systems that support them. It introduces basic principles of knowledge management systems in biomedicine, various aspects of Health Information Technology standards, and IT aspects of clinical process modeling. Students design a simple Health Informatics solution as a term project. [4 credits]
METCS581 Health Information Systems
Health Information Systems are comprehensive application systems that automate the activities of healthcare delivery including clinical care using electronic health records (EHRs), coordination of care across providers, telehealth, management of the business of healthcare such as revenue cycle management, and population health management. The course covers the functionality of these systems, the underlying information technology they require and their successful operations. It addresses challenges in this rapidly changing field such as complex data, security, interoperability, mobile technology and distributed users. The course emphasizes applied use of health information systems through case studies, current articles, and exercises. [4 credits]
METCS632 Information Technology Project Management
This course provides students with a comprehensive overview of the principles, processes, and practices of software project management. Students learn techniques for planning, organizing, scheduling, and controlling software projects. There is substantial focus on software cost estimation and software risk management. Students will obtain practical project management skills and competencies related to the definition of a software project, establishment of project communications, managing project changes, and managing distributed software teams and projects. Effective Fall 2020, this course fulfills a single unit in the following BU Hub area: Teamwork/Collaboration. [4 credits]
METCS632B IT PROJ MGMT
IT PROJ MGMT [4 credits]
METCS632S Information Technology Project Management
A comprehensive overview of the principles, processes, and practices of software project management. Students learn techniques for planning, organizing, scheduling, and controlling software projects. There is substantial focus on software cost estimation and software risk management. Students obtain practical project management skills and competencies related to the definition of a software project, establishment of project communications, managing project changes, and managing distributed software teams and projects. Effective Fall 2020, this course fulfills a single unit in the following BU Hub area: Teamwork/Collaboration. [4 credits]
METCS633 Software Quality, Testing, and Security Management
Theory and practice of security and quality assurance and testing for each step of the software development cycle. Verification vs. validation. Test case design techniques, test coverage criteria, security development and verification practices, and tools for static and dynamic analysis. Standards. Test-driven development. QA for maintenance and legacy applications. From a project management knowledge perspective, this course covers the methods, tools and techniques associated with the following processes -- Plan Quality, Perform Quality Assurance, and Perform Quality Control. [4 credits]
METCS633B SFTW QUAL MGMT
SFTW QUAL MGMT [4 credits]
METCS633S Distributed Software Development and Management
Many of today's software systems are developed by geographically distributed teams. The course examines software engineering in this context, from the project and program management perspective. The term project consists of in-process submissions that are thoroughly reviewed, including among peers, together with a working system prototype. No programming background is required. Prereq: MET CS 520 or MET CS 521, and MET CS 682. Or instructor's consent. [4 credits]
METCS634 Agile Software Development
This course provides students with a comprehensive overview of the principles, processes, and practices of agile software development. Students learn techniques for initiating, planning and executing on software development projects using agile methodologies. Students will obtain practical knowledge of agile development frameworks and be able to distinguish between agile and traditional project management methodologies. Students will learn how to apply agile tools and techniques in the software development lifecycle from project ideation to deployment, including establishing an agile team environment, roles and responsibilities, communication and reporting methods, and embracing change. We also leverage the guidelines outlined by the Project Management Institute for agile project development as a framework in this course. [4 credits]
METCS634B AGILE SFTWR DEV
AGILE SFTWR DEV [4 credits]
METCS634S Agile Software Development
A comprehensive overview of the principles, processes, and practices of Agile software development. Students learn techniques for initiating, planning, and executing software development projects using Agile methodologies. Students obtain practical knowledge of Agile development frameworks and distinguish between Agile and traditional project management methodologies. Students learn how to apply Agile tools and techniques in the software development lifecycle from project ideation to deployment, including establishing an Agile team environment, roles and responsibilities, communication and reporting methods, and embracing change. Also leverages the guidelines outlined by the Project Management Institute for Agile project development as a framework. [4 credits]
METCS674 Database Security
Graduate Prerequisites: CS 579 or CS 669 or consent of the instructor - The course provides a strong foundation in database security and auditing. This course utilizes Oracle scenarios and step-by-step examples. The following topics are covered: security, profiles, password policies, privileges and roles, Virtual Private Databases, and auditing. The course also covers advanced topics such as SQL injection, database management security issues such as securing the DBMS, enforcing access controls, and related issues. Prereq: MET CS 579 or MET CS 669; or instructor's consent. [4 credits]
METCS683 Mobile Application Development with Android
Graduate Prerequisites: (METCS342) or instructor's consent. - This course discusses the principles and issues associated with mobile application development using Android as the development platform. Topics covered will include Android application components (Activities, Services, Content Providers and Broadcast Receivers), ICC (Inter-component Communication), UI design, data storage, asynchronous processing, 2D graphics, and Android security. Students will develop their own apps in Java and/or Kotlin using Android Studio in their semester-long projects. Prior knowledge of Java programming is required. Prerequisite: MET CS 342 OR MET CS 520 OR MET CS 521. Or instructor's consent. [4 credits]
METCS683B MOBIL-APP-DEVEL
Graduate Prerequisites: (METCS342) or instructor's consent. - MOBIL-APP-DEVEL [4 credits]
METCS683S Mobile Application Development with Android
Graduate Prerequisites: (METCS342) or instructor's consent. - This course discusses the principles and issues associated with mobile application development using Android as the development platform. Topics covered include Android application components (Activities, Services, Content Providers and Broadcast Receivers), ICC (Inter-component Communication), UI design, data storage, asynchronous processing, 2D graphics, and Android security. Students will develop their own apps in Java and/or Kotlin using Android Studio in their semester-long projects. Prior knowledge of Java programming is required. Prerequisite: MET CS 342 OR MET CS 520 OR MET CS 521. Or instructor's consent. [4 credits]
METCS684 Enterprise Cybersecurity Management
This course covers important topics that students need to understand in order to effectively manage a successful cybersecurity and privacy program, including governance, risk management, asset classification and incidence response. Students are first introduced to cybersecurity & privacy policy frameworks, governance, standards, and strategy. Risk tolerance is critical when building a cybersecurity and privacy program that supports business goals and strategies. Risk management fundamentals and assessment processes will be reviewed in depth including the methodology for identifying, quantifying, mitigating and controlling risks. Asset classification and the importance of protecting Intellectual Property (IP) will prepare students to understand and identify protection mechanisms needed to defend against malicious actors, including industry competitors and nation states. Incident Response programs will cover preparation and responses necessary to triage incidents and respond quickly to limit damage from malicious actors. [4 credits]
METCS684B IT SEC POL&PROC
IT SEC POL&PROC [4 credits]
METCS684S Enterprise Cybersecurity Management
Enables IT professional leaders to identify emerging security risks and implement security policies to support organizational goals. Discusses methodologies for identifying, quantifying, mitigating and controlling security risks. Students learn to write IT risk management plans, standards, and procedures that identify alternate sites for processing mission-critical applications, and techniques to recover infrastructure, systems, networks, data, and user access. Also discusses disaster recovery; handling information security; protection of property, personnel and facilities; protection of sensitive and classified information; privacy issues; and hostile activities. [4 credits]
METCS685 Network Design and Management
Undergraduate Prerequisites: (METCS535 OR METCS625) or instructor's consent - . This course will cover contemporary integrated network management based on FCAPS (Fault, Configuration, Administration, Performance, and Security management) model. The introduction to the course will be an overview of data transmission techniques and networking technologies. The middle part of the course will be on Network Management Model, SNMP versions 1, 2 and 3, and MIBs. In the second part of the course, particular focus and emphasis will be given to current network management issues: various wireless networks technologies (WLAN, WiFi, WiMax), Voice-over-IP, Peer-to-Peer Networks, networking services, Identity Management, and Services Oriented Architecture Management. Prereq: MET CS 535 or MET CS 625. or instructor's consent. [4 credits]
METCS685S Network Performance and Management
Undergraduate Prerequisites: (METCS535 OR METCS625) or instructor's consent - Covers computer networks management including configuration, fault, performance, as well as security management. Particular focus and emphasis is given to security management. Problem solving techniques and network management tools are discussed and practiced during extensive laboratory sessions. [4 credits]
METCS688 Web Mining and Graph Analytics
Prerequisites: MET CS 544, or MET CS 555 or equivalent knowledge, or instructor's consent. - The Web Mining and Graph Analytics course covers the areas of web mining, machine learning fundamentals, text mining, clustering, and graph analytics. This includes learning fundamentals of machine learning algorithms, how to evaluate algorithm performance, feature engineering, content extraction, sentiment analysis, distance metrics, fundamentals of clustering algorithms, how to evaluate clustering performance, and fundamentals of graph analysis algorithms, link analysis and community detection based on graphs. Laboratory Course. [4 credits]
METCS693 Digital Forensics and Investigations
Provides a comprehensive understanding of digital forensics and investigation tools and techniques. Learn what computer forensics and investigation is as a profession and gain an understanding of the overall investigative process. Operating system architectures and disk structures are discussed. Studies how to set up an investigator's office and laboratory, as well as what computer forensic hardware and software tools are available. Other topics covered include importance of digital evidence controls and how to process crime and incident scenes, details of data acquisition, computer forensic analysis, e-mail investigations, image file recovery, investigative report writing, and expert witness requirements. Provides a range of laboratory and hands-on assignments either in solo or in teams. With rapid growth of computer systems and digital data this area has grown in importance. Prereq: Working knowledge of windows computers, including installing and removing software. Access to a PC meeting the minimum system requirements defined in the course syllabus. [4 credits]
METCS693B DGTL FORENSICS
DGTL FORENSICS [4 credits]
METCS693S Digital Forensics and Investigations
Prereq: working knowledge of Windows computers, including installing and removing software. Must have access to a personal computer that meets the minimum system requirements defined in the course syllabus. eLive offering. Provides a comprehensive understanding of digital forensics and investigation tools and techniques. Students learn what computer forensics and investigation is as a profession and gain an understanding of the overall investigative process. Operating system architectures and disk structures are discussed. Covers how to set up an investigator's office and laboratory, as well as what computer forensic hardware and software tools are available. Other topics include importance of digital evidence controls and how to process crime and incident scenes, details of data acquisition, computer forensic analysis, email investigations, image file recovery, investigative report writing, and expert witness requirements. Includes a range of laboratory and hands-on assignments either solo or in teams. [4 credits]
METCS694 Mobile Forensics and Security
Overview of mobile forensics investigation techniques and tools. Topics include mobile forensics procedures and principles, related legal issues, mobile platform internals, bypassing passcode, rooting or jailbreaking process, logical and physical acquisition, data recovery and analysis, and reporting. Provides in-depth coverage of both iOS and Android platforms. Laboratory and hands-on exercises using current tools are provided and required. [4 credits]
METCS694S Mobile Forensics
Overview of mobile forensics investigation techniques and tools. Topics include mobile forensics procedures and principles, related legal issues, mobile platform internals, bypassing passcode, rooting or jailbreaking process, logical and physical acquisition, data recovery and analysis, and reporting. Provides in-depth coverage of both iOS and Android platforms. Laboratory and hands-on exercises using current tools are provided and required. [4 credits]
METCS695 Cybersecurity
Undergraduate Prerequisites: (METCS625) or instructor's consent - This course introduces fundamental concepts, principles of cybersecurity and their use in the development of security mechanisms and policies. Topics include basic risk assessment and management; basic legal and ethics issues, various cyber attacks, defense methods and tools; security principles, models and components; different crypto protocols, techniques and tools, including symmetric and asymmetric encryption algorithms, hashing, public key infrastructure, and how they can be used; security threats and defense to hardware, operating systems, networks and applications in modern computing environments. Hands-on labs using current tools are provided and required. Prerequisite: METCS535 or METCS625 or instructor's consent. [4 credits]
METCS695B ENTPR INFO SEC
Undergraduate Prerequisites: (METCS625) or instructor's consent - ENTPR INFO SEC [4 credits]
METCS695S Cybersecurity
Undergraduate Prerequisites: (METCS625) or instructor's consent - Prereq: (MET CS 535 or MET CS 625) or instructor's consent. Provides an in-depth presentation of security issues in computer systems, networks, and applications. Formal security models are presented and illustrated on operating system security aspects, more specifically memory protection, access control and authentication, file system security, backup and recovery management, and intrusion and virus protection mechanisms. Application level security focuses on language level security and various security policies including conventional and public keys encryption, authentication, message digest, and digital signatures. Internet and intranet topics include security in IP, routers, proxy servers, firewalls, application-level gateways, web servers, and file and mail servers. Discusses remote access issues, such as dial-up servers, modems, and VPN gateways and clients. [4 credits]
METCS699 Data Mining
Prerequisites: MET CS 521 & MET CS 546; MET CS 579 or MET CS 669; or consent of instructor. - Study basic concepts and techniques of data mining. Topics include data preparation, classification, performance evaluation, association rule mining, regression and clustering. Students learn underlying theories of data mining algorithms in the class and they practice those algorithms through assignments and a semester-long class project using R. After finishing this course, students will be able to independently perform data mining tasks to solve real-world problems. [4 credits]
METCS779 Advanced Database Management
Graduate Prerequisites: (METCS579 OR METCS669) or consent of the instructor - This course covers advanced aspects of database management including normalization and denormalization, query optimization, distributed databases, data warehousing, and big data. There is extensive coverage and hands on work with SQL, and database instance tuning. Course covers various modern database architectures including relational, key value, object relational and document store models as well as various approaches to scale out, integrate and implement database systems through replication and cloud based instances. Students learn about unstructured "big data" architectures and databases, and gain hands-on experience with Spark and MongoDB. Students complete a term project exploring an advanced database technology of their choice. Prereq: MET CS 579 or MET CS 669; or instructor's consent. [4 credits]
METCS781 Advanced Health Informatics
Undergraduate Prerequisites: (METCS570) - This course presents the details of information processing in hospitals, hospital information systems (HIS), and more broadly health information systems. It presents the architecture, design, and user requirements of information systems in health care environment. It focuses on Information Technology aspects of Health Informatics specifically addressing the design, development, operation, and management of HIS. The first part of this course covers the introductory concepts including information processing needs, and information management in health care environment. The second part covers detailed description of HIS including hospital process modeling, architecture, quality assessment, and applicable tools. The final part of the course covers management of HIS and related issues and extension of this topic to other health care organizations. The course will have a term project providing students a hands-on experience in design and research of HIS. Prereq: MET CS 580; or instructor's consent. [4 credits]
METCS783 Enterprise Architecture
Graduate Prerequisites: (METCS682) or strategic IT experience or instructor's consent - This course builds upon the strong technical foundation of our MSCIS and MSCS curricula, by providing students with the CIO-level management perspective and skills of an enterprise architect, in the context of the technologies that implement those architectures. Current technologies and processes explored in the enterprise architecture context include blockchain, microservices, multimodal/analytic databases, DevOps, SAFe (Scaled Agile Framework), containers/Docker, and some leverage of AI techniques. We cover both the migration of legacy enterprise systems and de novo enterprise architecture development, vendor selection and management, cybersecurity in the enterprise, and complex system integration. Enterprise architecture decisions are presented in the context of the business goals and alignment that are critical for success, given globalization and the reality that "all companies are now technology companies." The course content is rich with case studies that illustrate practical application of enterprise architecture approaches and lessons learned. The course also includes a number of realistic enterprise architecture assignments and an incremental term project with components spanning the course, to provide students with hands on enterprise architecture experience. Students develop the understanding and skills needed to define and implement successful enterprise architectures that provide real strategic and concrete value to organizations, such as substantially reducing IT costs while improving performance, agility and alignment of information technology to business goals. On-campus classrooms follow a "flipped classroom" format, where significant class time is devoted to in-class group workshops. Prereq: MET CS 682. Or strategic IT experience. Or instructor's consent. [4 credits]
Admission & Prerequisite Information
Admissions
Visit the Metropolitan College Graduate application page to learn more and apply.
Prerequisites
Applicants are not required to have a degree in computer science for entry to a program within the Department of Computer Science. Upon review of your application, the department will determine if the completion of prerequisite coursework will be required, based on your academic and professional background. The following prerequisite courses may be required:
METCS200 Introduction to Computer Information Systems
This course is a technically-oriented introductory survey of information technology. Students learn about basic computer information, different types of business systems and basic systems analysis, design and development. Students also study basic mathematics, software development and create simple Java programs. [4 credits]
A maximum of two graduate-level courses (8 credits) taken at Metropolitan College before acceptance into the program may be applied towards the degree.
Faculty
Eric Braude
Associate Professor and Director of Digital Learning, Computer Science
PhD, Columbia University; MS, University of Miami; MS, University of Illinois; BS, University of Natal (South Africa)
Lou Chitkushev
Associate Dean, Academic Affairs; Associate Professor, Computer Science; Director, Health Informatics and Health Sciences
PhD, Boston University; MS, Medical College of Virginia; MS, BS, University of Belgrade
John Day
Lecturer, Computer Science
MSEE, BSEE, University of Illinois
Stu Jacobs
Lecturer, Computer Science
MS, Southern Connecticut State University; BS, University of Wisconsin, Madison
Suresh Kalathur
Assistant Professor, Computer Science; Director, Analytics
PhD, Brandeis University; MS, Indian Institute of Technology; BS, Regional Engineering College (Warangal, India)
Vijay Kanabar, PMP
Associate Professor, Computer Science and Administrative Sciences; Director, Project Managements
PhD, University of Manitoba (Canada); MS, Florida Institute of Technology; MBA, Webber College; BS, University of Madras (India)
Jae Young Lee
Assistant Professor, Computer Science; Coordinator, Databases
PhD, MS, University of Texas at Arlington; BS, Seoul National University (Korea)
Robert Schudy
Associate Professor, Computer Science
PhD, MS, University of Rochester; BA, University of California San Diego
Victor Shtern
Associate Professor Emeritus, Computer Science
PhD, Leningrad Aluminum Institute (Russia); MS, Leningrad Institute of Technology; MBA, Boston University
Anatoly Temkin
Assistant Professor Emeritus, Computer Science
PhD, Kazan University (Russia); MS, Moscow University
Guanglan Zhang
Associate Professor and Chair, Computer Science; Coordinator, Health Informatics
PhD, MEng, Nanyang Technological University, Singapore; BS, Luoyang Institute of Technology
Yuting Zhang
Assistant Professor, Computer Science; Coordinator, Information Security
PhD, Boston University; MS, BS University of Science and Technology Beijing
Tanya Zlateva
Dean, Metropolitan College; Professor of the Practice, Computer Science and Education; Director, Information Security
PhD, Dresden University of Technology (Germany); MS, Dresden University of Technology; BS, Dresden University of Technology
Getting Started
To learn more or to contact an enrollment advisor before you get started, request information using the button below and tell us a little about yourself. Someone will be in touch to answer any questions you may have about the program and detail the next steps in earning your degree. You can also start your application or register for a course at Metropolitan College.