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a b s t r a c t

Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-
averaged equations, of which the shallow water equations are the simplest example. We describe the
GeoClaw software that has been designed to solve problems of this nature, consisting of open source For-
tran programs together with Python tools for the user interface and flow visualization. This software uses
high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude–
longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incor-
porates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems.
Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Docu-
mentation and download information is available at www.clawpack.org/geoclaw.

Published by Elsevier Ltd.

1. Introduction

Many geophysical flow or wave propagation problems take
place over very large spatial domains, for which detailed three-
dimensional modeling of the fluid dynamics is not an efficient
option. Fortunately, two-dimensional depth-averaged equations
such as the shallow water equations often provide models that
are sufficiently accurate for many applications. Even with two-
dimensional models, however, it is often necessary to use adap-
tive mesh refinement (AMR) techniques in order to concentrate
grid cells in regions of interest, and to follow such regions as
the flow evolves. This is often the only efficient way to obtain
results that have sufficient spatial resolution where needed
without undue refinement elsewhere, such as regions the flow
or wave has not yet reached or points distant from the study
area.

We will briefly describe and illustrate the use of GeoClaw, an
open source research code that uses high-resolution finite vol-
ume methods together with adaptive mesh refinement to tackle
geophysical flow problems. In particular, this code has recently
been used together with the shallow water equations to model
tsunamis and dam-break floods. In Section 7 we give a brief
illustration of each. For other geophysical flow problems it
may be necessary to replace the shallow water equations by a
different set of depth-averaged equations. For example, in

modeling landslides, debris flows, or lahars, it is necessary to
incorporate terms modeling internal stress or pore pressure
(e.g. [13,41]). The software is written in a manner that allows
such extensions.

GeoClaw is based on the Clawpack software and is incorpo-
rated as a part of the general Clawpack distribution [30]. Claw-
pack (Conservation Laws Package) is an open source software
package that has been under development since 1994 and is
widely used for both teaching and research purposes. It is de-
signed to solve hyperbolic systems of partial differential equa-
tions (PDEs) in one, two, and three space dimensions. This
class of PDEs generally models wave propagation or fluid trans-
port, and a wide variety of physical problems give rise to math-
ematical models of hyperbolic form, including for example
compressible gas dynamics, linear and nonlinear acoustics, and
elastic wave propagation. The theory of nonlinear hyperbolic sys-
tems and a variety of applications are described in [27], which
also describes in detail the high-resolution finite volume meth-
ods implemented in Clawpack. Nearly all of the examples given
in this text are available as working examples via the Clawpack
website.

Clawpack is written in a formulation that allows the user to
specify the system of equations being solved by providing a
‘‘Riemann solver’’ as described in Section 3. The software incor-
porates a general form of AMR as reviewed briefly in Section 4,
in a manner that is easy to apply to many hyperbolic problems.
However, there are several difficulties that arise when solving
depth-averaged equations over realistic topography or bathyme-
try that required some substantial modifications to the general
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approach taken in Clawpack. The GeoClaw variant of the code
provides an implementation specific to such problems.

In particular, this code addresses the following issues:

� The flow takes place over topography or bathymetry that may
be specified via multiple data sets covering overlapping regions
at different resolutions. (Henceforth we will generally use the
term topography to refer also to bathymetry.)
� Some problems can be tackled on purely Cartesian grids, but

many applications require using longitude–latitude grids on
the earth’s surface.
� The flow is of bounded extent; the depth goes to zero at the

margins and the ‘‘wet–dry interface’’ is a moving boundary that
must be captured as part of the flow. This is handled by allow-
ing the fluid depth to be zero in some grid cells (‘‘dry cells’’).
Cells can change dynamically between wet and dry to model
evolving flows or inundation, and AMR can be used to provide
sufficient resolution of the shoreline or margin.
� There often exist nontrivial steady states (such as an ocean at

rest) that should be maintained exactly. Often the desired flow
or wave propagation is a small perturbation of this steady state,
as in tsunamis. For finite volume methods that conserve mass
by using the depth as a primary variable, this requires the use
of a ‘‘well-balanced’’ numerical method as discussed in Section
3.

These issues and the algorithms in GeoClaw are discussed in
more detail elsewhere [17,18,21,32,33] and here we give only a
brief summary of some key aspects of the numerical algorithms
(in Section 3) and the AMR procedure (in Section 4).

The computational core of GeoClaw is written in Fortran, but a
user interface written in Python is provided to simplify the setup of
a single run, or of a series of runs as is often required for parameter
studies, sensitivity studies, or probabilistic assessments of hazards.
Python and Matlab plotting tools are also provided for viewing the
results in various forms, either on the dynamically changing set of
adaptive grids or on a set of fixed grids, or in other forms such as
gauge plots of depth vs. time at fixed spatial locations. Some of
these software tools are described briefly in Section 6, and more
details can be found in the on-line documentation [31].

2. Depth-averaged mathematical models

The simplest depth-averaged set of fluid equations in two lat-
eral space dimensions are the shallow water equations

ht þ ðhuÞx þ ðhvÞy ¼ 0;

ðhuÞt þ hu2 þ 1
2

gh2
� �

x

þ ðhuvÞy ¼ �ghBx � Du;

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2

gh2
� �

y

¼ �ghBy � Dv ;

ð1Þ

where u(x,y, t) and v(x,y, t) are the depth-averaged velocities in the
two horizontal directions, B(x,y, t) is the topography or bathymetry,
and D = D(h,u,v) is the drag coefficient. Coriolis terms can also be
added to the momentum equations. Eq. (1) have the form

qt þ f1ðqÞx þ f2ðqÞy ¼ wðq; x; yÞ; ð2Þ

where q = (h,hu,hv) is the vector consisting of the depth and
momentum of the fluid. In the absence of bathymetry (B � constant,
so Bx = By = 0) and drag (D � 0), the source terms would be zero
(w � 0) and these equations would express the conservation of
mass and horizontal momentum. We use conservative finite vol-
ume methods that in general conserve mass to machine precision
(since there is no source term in the mass equation) and would also

conserve momentum in the absence of source terms. This is true
even when AMR is applied, with the exception of cells that intersect
the coastline, as discussed further in Section 4.

Note that for an ocean at rest, in which h(x, t) + B(x,y) � 0 (sea
level) in all wet cells, the topography source terms exactly cancel
the derivatives of the hydrostatic pressure 1

2 gh2. Maintaining this
balance numerically is critical and is discussed in Section 3. The
drag term could have many forms; for the experiments reported
here we use

D ¼ gM2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2Þ

p
h5=3 ; ð3Þ

where M is the Manning coefficient, which we take to be 0.025.
(Typical values for the Manning coefficient for a given substrate
are empirically based. See [10] for a description and examples of
values used in various applications.)

Most tsunamis are generated by motion of the sea floor due to
an earthquake or submarine landslide, setting the entire water col-
umn in motion. The wave length is generally very long compared
to the depth of the ocean, and under these conditions the shallow
water equations (1) are generally appropriate. This has been con-
firmed in comparisons done by many groups (e.g. [50,25,34,44]),
although in some cases it is believed that dispersive terms may
need to be included (e.g. [22,43]), particularly when modeling tsu-
namis generated by submarine landslides, which typically have
short wavelengths (e.g. [35,48]). In Section 7 we illustrate the
use of GeoClaw for tsunami modeling using the shallow water
equations. Adding dispersive terms would generally require the
use of implicit time stepping algorithms, which are not yet imple-
mented in GeoClaw. Development of an implicit version of the
AMR routines in Clawpack is a current project and this may be pos-
sible in the future.

For other applications it is less clear that the classical shallow
water equations are sufficient. For shallow flow on steep terrain,
such as following a dam break for example, vertical acceleration
terms may need to be added to improve the model. However, the
simple equations (1) are often still used for many practical prob-
lems and can give fairly accurate results. In Section 7.3 we display
some dam-break results from [19]. Some possible extensions to
other depth-averaged systems of equations are mentioned in Sec-
tion 8.

3. Numerical methods

The algorithms used in GeoClaw are described in detail else-
where; see in particular [33]. Here we only give a brief summary
with pointers to other sources for further reading. GeoClaw is
based on Clawpack, which provides a general implementation of
‘‘wave-propagation algorithms’’, a class of high-resolution finite
volume methods in which each grid cell is viewed as a volume over
which cell averages of the solution variables q are computed. Log-
ically rectangular grids are used and Q n

ij denotes the cell average in
cell (i, j) at time tn. In each time step the cell averages are updated
by waves propagating into the grid cell from each cell edge. These
are Godunov-type methods in which the waves are computed by
solving a ‘‘Riemann problem’’ at each cell edge. The Riemann prob-
lem is an initial value problem using the shallow water equations
together with piecewise constant data determined by the cell aver-
ages of the dependent variables and topography on each side of the
interface. The advantage of Godunov-type methods is that they
provide a robust approach to solving problems with discontinuous
solutions, in particular shock waves that generally arise in the solu-
tion to nonlinear hyperbolic equations. In the shallow water equa-
tions, shocks are ‘‘hydraulic jumps’’ or ‘‘bores’’, as often arise in
practical flow problems. The Riemann problem defined at each cell
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interface allows for shock waves in each Riemann solution and
‘‘approximate Riemann solvers’’ are used that rapidly produce ro-
bust solutions as a building block for the numerical method. Cor-
rection terms are also incorporated so that the computed
solution is second-order accurate in smooth regions of the flow.

GeoClaw employs a variant of the f-wave formulation, de-
scribed in [18], which allows the topography source terms to be di-
rectly incorporated into the Riemann problem. The f-wave
formulation of the wave-propagation algorithms was originally
presented for the shallow water equations in [4]. In this approach
it is the difference in the flux normal to the cell interface that is
split into propagating waves (rather than the jump in Q), but only
after modifying the momentum components of the flux difference
by the topography source terms. This is done in such a way that the
methods are well-balanced for the ocean at rest: if the initial data
is in equilibrium with zero velocities and a flat surface (h + B = con-
stant) then the modified flux difference is the zero vector, leading
to zero-strength f-waves and no change to the solution. This ap-
proach to well balancing is discussed in more detail in [4,29,33]
and Section 17.14 of [27].

The f-waves modify the cell averages on each side of the
interface. We also solve a ‘‘transverse Riemann problem’’ in
which the waves moving normal to the cell edge are split in
the transverse direction and modify the cell averages in adjacent
rows of grid cells. This improves stability and accuracy of the
method and this general approach is discussed in more detail
in [26] and Chapters 20–21 of [27], for example. The f-waves
are also used to define correction terms modeling second deriv-
atives normal to the interface that, together with the transverse
terms, make the method second order accurate for smooth solu-
tions. Before calculating these terms, however, wave limiters are
applied to the f-waves to reduce their amplitude in regions
where the solution varies rapidly. This results in a ‘‘high-resolu-
tion method’’ that avoids nonphysical oscillations in regions
where the solution is rapidly varying. This methodology has
been well developed in the context of shock-capturing for
general nonlinear hyperbolic systems of equations and leads to
a robust method.

Developing a Riemann solver that works robustly in the pres-
ence of dry states is particularly challenging—it must handle the
case where one state in the Riemann problem is already dry as well
as situations where a cell dries out as a wave recedes, and must
work robustly when the topography has arbitrary jumps from
one cell to the next. Details of the solver we use are given in
[17–19]. Incorporation of these dry state solvers is an important
aspect of GeoClaw, since we model the moving shoreline or margin
of a flow implicitly as the interface between wet and dry cells. This
generally means that the shoreline is represented by a stair-step
pattern on a Cartesian grid. By using adaptive refinement we are
able to use fine enough grids in regions of interest that this can
provide sufficient resolution, but this also means that the dry-state
algorithms must also function well in conjunction with AMR grids
and at the interfaces between grids at different levels of refine-
ment. This was one of the more difficult aspects of developing
and debugging the GeoClaw extension.

The topography source terms (those involving Bx and By on the
right hand side of (1)) are incorporated in the Riemann solver in or-
der to obtain a well-balanced method and to handle the dry state
problem. On the other hand, the drag source terms are handled
via a fractional step approach: after each time step of the hyper-
bolic problem a time step is taken in which the momenta are
adjusted due to the drag terms. Coriolis terms can also be incorpo-
rated in the same manner and this is included as an option in Geo-
Claw, though for tsunami modeling at least this appears to be a
negligible effect, both in our own experiments and elsewhere in
the literature, e.g., [25].

In general Clawpack allows the solution of hyperbolic problems
on any logically rectangular grid, with an arbitrary mapping func-
tion specified that maps points in computational space (a rectan-
gular grid with uniform spacing) to the physical domain. In two
space dimensions the grid cells are always assumed to be quadri-
laterals with linear cell edges joining vertices that are obtained
by applying the mapping function to the rectangular grid of verti-
ces in the computational domain. On the sphere with longitude–
latitude coordinates, the cell edges are great-circle geodesics and
the edge lengths and cell areas must be measured on the sphere.

The wave-propagation algorithms with transverse Riemann
solvers work very robustly, even on highly distorted grids or with
non-smooth mapping functions. Unlike many approaches to
mapped grids, we do not incorporate metric terms that depend
on derivatives of the mapping function into the differential equa-
tions. Instead, we always solve Riemann problems for the original
set of equations in the direction orthogonal to each cell edge. The
lengths of the edges and the area of the quadrilateral cell then
come into the formulas for updating cell averages. The transverse
wave propagation also takes account of the fact that adjacent cell
edges are not necessarily orthogonal to one another. For propaga-
tion on the earth, we use distances and areas as measured on a
sphere, although in principle this could be replaced by a geoid or
other surface. Currently in GeoClaw the domain choices are limited
to the sphere with longitude–latitude coordinates or purely Carte-
sian domains, primarily because the more general routines for
integrating topography data sets (see Section 5) over a general
quadrilateral have not yet been developed. Longitude–latitude
coordinates are suitable for modeling tsunamis on the earth, where
the domain of interest is bounded away from the poles. In recent
work we have also explored another class of quadrilateral grids
on the sphere and present some results using AMR for a tsu-
nami-type problem over synthetic bathymetry on the whole
sphere in [5].

4. Adaptive mesh refinement

In this section we describe the patch-based mesh refinement
that is used to span the orders of magnitude in spatial scales exhib-
ited by many geophysical flow problems. For example, to go from
ocean scale propagation to the resolution of small-scale coastline
features in a single tsunami model, meter-scale resolution may
be needed in a small subset of a domain that covers millions of
square kilometers. Multiple levels of patches can be used until a
sufficiently fine resolution is reached. We also give an overview
of the numerical algorithms needed to initialize and remove fine
grid patches, and present the organization of the time stepping
procedures on the grid hierarchy.

The time step on the refined patches is chosen so that stability
of the explicit finite volume method is maintained. This generally
requires refining in time by the same factor as in space. For exam-
ple, if the level 2 grids are refined in both x and y by a factor of 4
relative to level 1, then four time steps on all level 2 grids must
be taken for each time step on level 1. The code is organized so that
the time step is first taken on level 1, which covers the entire do-
main. Then four time steps are taken on each of the level 2 grids.
In each time step it is necessary to fill in ‘‘ghost cell’’ values around
the edges of each level 2 grid in order to provide boundary condi-
tions for the time step. For each ghost cell, the value is either taken
from a neighboring grid at the same level, if one exists, or other-
wise is obtained by space–time interpolation from the values on
the underlying coarse grid, which has already been advanced in
time.

This same procedure is used recursively at all levels: after each
time step on the level 2 grids, the required number of time steps
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will be taken for all level 3 grids and so on. This AMR procedure is
described in more detail in [7,33] and has been successfully used
for many years in Clawpack for problems such as shock wave prop-
agation where dozens of grid patches are used to track shock
waves oblique to the grid.

The application to tsunami modeling prompted the addition of a
new feature to the code: the capability of specifying anisotropic
refinement in time, in which the time step from one level to the
next may be refined by a different factor than the refinement in
space. This is crucial for problems where very fine grids are used
only near the coast of an ocean, since in the shallow water equa-
tions the wave speed is given by

ffiffiffiffiffiffi
gh

p
. In an ocean with a maximum

depth of 4000 m, say, this gives a wave speed of 200 m/s (and in
some regions the maximum ocean depth is much greater). If a fine
grid level covers only portions of the continental shelf with a max-
imum depth of 100 m, say, then the maximum wave speed on this
level is roughly 32 m/s. Hence the refinement factor in time could
be up to 6 times smaller than the spatial refinement factor on this
level. Since the bulk of the computational work is often on the fin-
est grids, this can make a substantial difference in computing time.

Grids are refined by flagging cells where the resolution is insuf-
ficient and then clustering the flagged cells into refinement
patches. Flagging is done either using an error estimate (Richard-
son extrapolation), by examining gradients of the solution (which
will detect where the largest waves are), or for the tsunami appli-
cation simply by flagging cells where the surface elevation is per-
turbed from sea level above a specified level. In addition, it is
possible to specify rectangular regions where a certain level of res-
olution is required. This can be used to insure that particular por-
tions of a coastline are always refined to a resolution of meters
whereas the deep ocean uses a mesh width of many kilometers.
These routines are all part of the GeoClaw software, controlled
by user-specified tolerances along with optional user-specified re-
gions in space and time where a minimum and maximum allow-
able level refinement is specified. Regardless of which method
(or combination of methods) is used to control the refinement
criteria, the result is a set of flagged cells needing to be covered
by finer grids.

Using heuristics from the pattern recognition literature [8],
these flagged cells are clustered into grid patches that are efficient,
in the sense that the grids do not contain too many unflagged cells
(which would be wasteful), while also not introducing too many
separate patches (since there is boundary overhead associated
with each fine grid patch). The grids also should obey a proper nest-
ing criterion—a grid patch at level 4 should be surrounded by a le-
vel 3 patch, and not border directly on level 2 patches. Figs. 3 and 4
show several frames from a 5 level computation. In this example
the grids were refined by a factor of 4 in going from each level to
the next (hence a total refinement factor of 44 = 256 in each direc-
tion from coarsest to finest grids).

Every few timesteps the features in the solution needing
refinement will have moved, and the grid patches should move
too. The grids do not actually move; rather, at discrete times
new grid patches are created and their solution is interpolated
from the finest previously existing grids, which are then re-
moved. This interpolation step must be done carefully. For
example, a constant sea level should be maintained even in
the presence of variable bathymetry so that no waves are gener-
ated solely from grid refinement. This is accomplished by
interpolating the surface elevation h + B for coarser grids and
then computing the depth h in the fine cells by subtracting
the fine cell value of topography B. This maintains conservation
of mass provided that the fine and coarse topography are consis-
tent, in the sense that the topography value used in a coarse cell
should be the average of the values in all fine cells that cover
this cell. This is ensured by computing exact integrals of a single

piecewise bilinear representation of the topography, as described
further in the next section.

Similarly when a grid is removed, the coarse grid solution
underneath it should be the volume-weighted average of the fine
grid cells it contained so that mass is not lost or gained. Most of
the time these numerical procedures are straightforward, but there
are difficulties associated with the wet–dry interfaces. A coarse cell
that covers a shoreline region will be either wet or dry, depending
on the level of the averaged topography. Suppose it is dry, for
example. When the cell is refined, typically some of the fine cells
will have to be initialized with nonzero depth in order to represent
the shoreline and to maintain the constant sea level required be-
fore a wave arrives. Hence it is essential that water be introduced
(mass increased) in this situation. These subtleties are described
more fully in [33].

5. Topography data sets

To use GeoClaw the user must provide one or more files that
specify the topography for the terrain on which the flow evolves.
Each topography data set specifies the z coordinate (relative to
sea level, for example) at a set of points on a rectangular grid (a
longitude–latitude grid if this coordinate system is being used).
Several different formats are allowed (see the documentation [31]).

Appropriate data sets for many regions of the earth are available
online, for example from the National Geophysical Data Center
(NGDC) [39]. A few data sets for test problems are available in
the GeoClaw topographic database [16], and more will be added
in the future. The test problems in GeoClaw include Python scripts
to automatically download this data as needed. Some example in-
stead use synthetic data (for example the tsunami model presented
in Section 7.1) and again a Python script is provided to create this.

Some applications also require a dataset that describes the mo-
tion of the topography relative to an initial topography, for exam-
ple if seafloor motion resulting from an earthquake or submarine
landslide is used to generate a tsunami. In this case one or more
files must also be provided to specify the relative displacement
at one or more times.

Often more than one topography file is used at different resolu-
tions. For example, in a tsunami simulation a large region of the
ocean may be modeled, for which a fairly coarse resolution such
as the 10-min or 4-min ETOPO2 data available from NGDC is suffi-
cient. These have resolutions of roughly 18.5 km or 7.5 km, respec-
tively in each direction near the equator. Since the wavelength of
tsunami waves is typically 10 s–100 s of km this is sufficient for
modeling propagation across the ocean. However, it is not suffi-
cient for modeling inundation of specific regions along the coast,
and so this data must generally be supplemented with one or
topography files at much higher resolution over small regions.

In GeoClaw, an arbitrary number of topography files can be pro-
vided for a single run and at each point in space the topography
will be determined from the dataset covering this point at the fin-
est resolution. The user should be aware, however, that this means
there will generally be discontinuities in the effective topography
along the boundaries of fine scale datasets.

In the same way that hn
ij represents the cell average of the fluid

depth for a finite volume method, we also need a cell average Bij of
the topography in each grid cell. Topography data sets generally
give the pointwise value of B(x,y) on a grid of spatial locations.
To convert this into cell averages, we construct a piecewise bilinear
function that interpolates the pointwise values and then compute
the exact integral of this interpolating function over a grid cell to
obtain Bij. This is easy to do if there is a single best-resolution data
set in the region around a cell, but if a grid cell covers an area
where two or more different data sets must be sampled then
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computation of the integral is more difficult. This often happens in
realistic tsunami simulations. Fine grid topography for a small
region of the coast may lie entirely within one grid cell on the
coarsest computational grids, for example. We have implemented
this quadrature in full generality to guarantee that the topography
values used are consistent between different adaptive mesh refine-
ment levels.

6. Software tools and user interface

GeoClaw is comprised of a set of library routines written in
Fortran 77 and 95, in addition to a set of Python modules called
PyClaw. The Fortran library builds on the AMRClaw library of
Clawpack, which was developed to apply AMR more generally to
hyperbolic problems. GeoClaw replaces many of the routines in
AMRClaw with new ones specifically designed for geophysical flow
problems. Most of the core computation is done in the Fortran rou-
tines. Python is used to fetch and operate on the topography, setup
the simulation run parameters, setup the plotting options and cre-
ate plots. More details about many of the tools mentioned in this
section can be found in the on-line GeoClaw documentation [31].

We use the Subversion version control software and the Trac
interface as a development wiki and for its ticket system for bug
tracking. These can be found via the Clawpack webpage [30].

6.1. Problem specification

GeoClaw uses a Python script to prescribe most of the input
parameters. The script constructs a data object that contains values
for all parameters that GeoClaw needs to run, and then writes
them out to a set of ASCII files that are read into the GeoClaw For-
tran code at run time. There are several reasons for taking this ap-
proach to prescribing the input files. A major advantage is that it is
easier to maintain backward compatibility as Clawpack and Geo-
Claw evolve. If a new feature is added that requires new input
parameters, these can be added to the Fortran code and default val-
ues added to PyClaw so that old applications continue to run with-
out change to the user’s input script. It is also easier to write a
flexible parser in Python than in Fortran, and the use of a Python
script for setting the parameters allows the user to use loops or
functions, for example to define an array of desired output times
using the linspace command of NumPy. Sample input files can
be viewed in the documentation (see the sections on setrun.py

or the sample codes to accompany this paper at [6].
The Fortran code is a stand-alone code that reads the input files

created by the Python script as data and handles memory alloca-
tion using a combination of Fortran 95 dynamic memory opera-
tions and a large work array that is managed by our own Fortran
routines to efficiently allocate and deallocate storage needed for
all of the AMR grids. The Fortran allocate statement is used only
if the size of the work array needs to be increased during the com-
putation, in which case it is generally doubled in size. Software
such as f2py allows one to easily call Fortran from Python code
and a future project is the ability to control time-stepping from a
Python wrapper that would be able to produce plots as the compu-
tation proceeds, for example. In one space dimension the PyClaw
software also includes a pure Python version of the finite volume
methods with no Fortran component. This is useful as a test bed
and teaching tool but runs considerably slower than the Fortran
version.

6.2. Plotting

Early versions of the Clawpack software included a set of Matlab
plotting routines for visualizing the results. Some specialized

versions of the Matlab plotting routines were created for dealing
with topographic data sets and are available in GeoClaw. Recently,
however, the main development of plotting tools for Clawpack has
shifted from Matlab to Python for a number of reasons. Many users
of Clawpack do not have access to Matlab and it is desirable to have
an open source alternative. Moreover, in the past few years sub-
stantial improvements have been made in Python plotting pack-
ages that provide quality that equals or exceeds that of Matlab
graphics. For two-dimensional plots of the type shown in this pa-
per, we use the matplotlib module [36].

We have developed a Python plotting module that allows the
user to easily specify a set of plots to be produced for each frame
of a simulation. When AMR is being used it is necessary to loop
over all grids and combine the solution on each grid into a single
plot. It is often desirable to combine several plots in a single figure.
For example, we may want to do a pseudo-color plot of the water
surface elevation using one color map while the topography in dry
regions is also plotted with a different color map. Contour lines of
bathymetry may be added to this along with indications of loca-
tions of tide gauges, resulting in a plot such as the ones shown in
Section 7. The logic of looping over the grids is handled by the plot-
ting module and the interface provides a mechanism for specifying
a variety of different plots or combinations of plots on a single axis
without the user needing to deal with the AMR data structures.
Other useful tools such as codes for dealing with the topographic
data sets and colormaps appropriate for these problems are also
included.

There are also several ways the user can view plots coming from
a simulation. There is an interactive Python module Iplotclaw for
stepping through the frames of a simulation and producing the
plots on the screen, facilitating data exploration via zooming in
on features of interest, for example. Alternatively, it is easy to gen-
erate a set of hardcopy files in formats such as png or jpg, one for
each figure at each time frame, together with a set of webpages de-
signed to easily browse through the collection of plots. Webpages
are automatically created to loop through all frames of each figure,
creating an animation that is often extremely useful in developing
a better understanding of the time-evolution of the flow. This set of
webpages also simplifies the process of archiving past experiments
for later viewing, or for sharing simulations with others. Examples
can be viewed on the webpages that accompany this paper [6] and
in the gallery of Clawpack and GeoClaw applications in the docu-
mentation. Many of these tools have been developed with the
aim of encouraging users to adopt the paradigm of reproducible re-
search in computational science. The approach we have taken with
Clawpack is discussed in more detail in [28].

For three-dimensional surface plots we are currently investigat-
ing several options, including Mayavi [37], which is included
(along with matplotlib) in the Enthought Python Distribution
[14], and VisIt, an open source visualization package being devel-
oped at Lawrence Livermore National Laboratory [47]. VisIt pro-
vides more functionality for large scale visualization problems
and is designed to work well with AMR data and distributed mem-
ory supercomputers. Development of 3D plotting tools for GeoClaw
and Clawpack more generally is an on-going project.

6.3. Extending GeoClaw

An important aspect of GeoClaw is the ease at which GeoClaw
can be extended to include other physics and algorithms. These
extensions can be added in a number of ways, for example through
modification of the Riemann solvers or by adding a source term.
Different physics can be incorporated into the Riemann solver, to
model problems for which the shallow water equations are not
sufficient. Source terms, represented by w on the right hand side
of Eq. (2), are used to incorporate bottom friction terms and
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Coriolis terms, for example. These can be extended to model other
terms, such as the wind forcing of a tropical storm to model storm
surge. A fractional step procedure is used in which time steps on
the homogeneous hyperbolic system are alternated with time
steps on the source terms, and so the user need only supply a sub-
routine that takes a time step on the system qt = w(q).

Another aspect that users may way want to modify is the algo-
rithm used to flag grid cells for refinement. Currently, GeoClaw
uses displacement from sea level in addition to a set of fixed refine-
ment regions that can be specified by the user. One could alterna-
tively refine based on the momentum or speed of the fluid, for
example.

The Clawpack and GeoClaw documentation contains more
information on these routines and how they can be extended. A
number of other extensions are currently being developed and
some of these are briefly discussed in Section 8.

7. Applications

We briefly describe three applications of GeoClaw. The first is a
new synthetic tsunami test problem. The second example models
the 27 February 2010 earthquake in Chile as an illustration of the
use of real data sets, and is included in the GeoClaw distribution.
Variants of these problems are also presented in [33]. The third
example is the simulation of the Malpasset dam catastrophe of
1959, which has been well studied and often used as a benchmark
problem, and for this problem we give a summary of the GeoClaw
results that were first presented in [19].

7.1. Synthetic tsunami test

First we present some results obtained using a synthetic data
set that has been designed to illustrate the power of our adaptive
refinement approach with a realistic range of spatial scales, but
in a context where it is also possible to assess the accuracy of
the solution. We start with a radially symmetric ocean that has a
depth depending only on distance from some central point, which
we take to be longitude x0 = 0 and latitude y0 = 40�N (see Fig. 1(a)).
Distance is measured as the great circle distance on a spherical
earth by the formula

dðx; y; x0; y0Þ ¼ 2R arcsin ðsinð0:5ðy� y0ÞÞ
2

�

þ cosðy0Þ cosðyÞ sinð0:5ðx� x0ÞÞ2Þ1=2

where R = 6367.5 � 106 m is the average radius of the earth. In this
formula we assume the longitude-latitude pairs (x,y) and (x0,y0) are

in radians to avoid the factors p/180. The bathymetry profile is
shown in Fig. 1(b), where the horizontal scale is in kilometers and
the vertical scale in meters. The central portion of the ocean is flat
and is bounded by a continental slope and flat continental shelf, fol-
lowed by a linear beach. We use a continuous piecewise cubic func-
tion whose derivative is also continuous except at r3, the start of the
beach:

BðdÞ ¼

z1 if d 6 r1;

CðdÞ if r1 6 d 6 r2;

z2 if r2 6 d 6 r3;

z2 þ rðr � r3Þ if d P r3;

8>>><
>>>:

ð4Þ

where the cubic C(d) is given by

CðdÞ ¼ z1 þ
ðx2 � z1Þðd� r1Þ

r2 � r1
1� 2

d� r2

r2 � r1

� �

and smoothly connects the ocean floor to the continental shelf. Here
r1 = 1500 � 103 m is the start of the continental slope,
r2 = 1580 � 103 m is the start of the flat continental shelf, and
r3 = 1640 � 103 m is the start of the beach, which has slope
r = 0.02. We take z1 = �4000 m for the depth of the ocean and
z2 = �100 m for the depth of the shelf. The initial shoreline is at
1645 � 103 m.

As a smaller scale feature we add an island on the continental
shelf at one point that can be varied. The island is defined by a
piecewise function of distance about a specified center point
(x1,y1) (again using great circle distance). The center point is cho-
sen to have distance 1600 km from the center of the ocean (hence
45 km off shore). The island is specified by B2(d) = 120(1 � (d/r4)2

(1 � 2(d � r4)/r4)) for d 6 r4 and zero outside this radius. Here d is
the distance from (x1,y1) and the radius of the island is
r4 = 30 � 103 m. The island rises from the continental shelf to a
peak height of 20 m above sea level. Fig. 1(c) shows how the cross
section is modified along the radial slice that passes through the
center of the island.

The full bathymetry at any longitude–latitude point is thus gi-
ven by

Bðx; yÞ ¼ B1ðdðx; y; x0; y0Þ þ B2ðdðx; y; x1; y1ÞÞ:

A Python script that can be used to generate bathymetry files with
arbitrary resolution is provided in the directory for this example,
which can be downloaded from [6]. Fig. 1(a) shows the entire ocean
in longitude–latitude coordinates. The dashed line indicates the ex-
tent of the continental shelf. As initial data we take an ocean at rest
and add a Gaussian hump of water at the center of the ocean:

Fig. 1. (a) Geometry of the radially symmetric ocean. The outer solid curve is the position of the shoreline, with constant distance from the center when measured on the
surface of a sphere. The dashed line shows the extent of the continental shelf. The boxes labelled Test 1 and Test 2 are regions where an island is located in the tests presented
in the following figures. The small circle near the center shows the extent of the hump of water used as initial data. (b) The topography defined by the piecewise cubic
function (4). (c) A zoom view of the topography of the continental shelf along the ray going throug the center of the island.
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hðx; y;0Þ ¼ 20 expð�0:5� 10�9dðx; y; x0; y0Þ
2Þ � Bðx; yÞ:

The innermost contour on Fig. 1(a) shows the contour where the
initial hump has an elevation of 2 m above sea level, 10% of its peak
value.

We have performed several different runs in which the central
point of the island (x1,y1) always has the same distance from
(x0,y0) but is located at different angular locations. The solution
to the shallow water equations with this set up should be exactly
radially symmetric if there were no island. With the island the
solution with different island locations should ideally be rotations
of one another. This is a good test of the numerical method since
the grid orientation to the shoreline near the island varies greatly
depending on the its location. Here we consider two test cases:
in each case an island is centered in one of the 2-degree square
boxes seen in Fig. 1(a). Fig. 2 shows a close-up of the region around
the island from each test case. Numbered gauge locations indicate
where the solution should be identical between the two cases. The
numerical solutions are shown in Figs. 3–5.

The longitude–latitude domain [�20,20] � [20,60] is covered
with a coarse 40 � 40 grid, so the mesh width is one degree on this
level 1 grid. Note that one degree of latitude is about 111 km and
one degree longitude varies from 38 km at 60�N to 96 km at
20�N. We use 5 levels of mesh refinement, with refinement factor
4 in going from each level to the next, and hence a total refinement
factor of 44 = 256 from the coarsest to finest grids. The level 5 grid
has a mesh width 1/256 � .0039 degrees, or 434 m in the latitude
direction. (More levels or higher refinement ratios could be used to
refine further at particular points along the shoreline. In the tsu-
nami computation presented in [32], for example, we used a total
factor of 4096 refinement between coarsest and finest levels.)

Refinement to level 3 is allowed over the portion of the ocean
that is in the direction of the study area. Refinement to levels 4
and 5 is only allowed in a small region near the island, as seen in
Fig. 4.

The Gaussian initial hump spreads out into a wave that propa-
gates radially. Fig. 3 shows the sea surface elevation at time
t = 5000 s, for a calculation in which only 3 levels of refinement

Fig. 2. Topography in regions near the island for Test 1 and Test 2. The solid contour lines are shoreline (B = 0) and the dashed contour lines are at elevations B = �40, �80,
�120, �160 m. Note that the continental shelf has a uniform depth of �100 m. The level 4 grid is shown onshore. The rectangle around the island shows the level 5 grid in
each computation, which is refined by an additional factor of 4 in each direction from the level 4 grids. The location of four gauges is also shown. The time history of the
surface at these gauges is shown in Fig. 5.

Fig. 3. Computed surface elevation for Test 1 at two different times. Left: at time t = 5000 s, at which point at most three refinement levels are allowed, and only in part of the
domain. Right: at time t = 10,000, when 5 levels are allowed but only near the island, which is not visible on this scale. See Fig. 4 for a zoom of the region around the island.
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have been allowed so far, in the case where the island is located in
the square indicated as Test 1 in Fig. 1(a). The edges of refinement
patches are drawn and the spreading wave is poorly resolved on
the coarse grid, but well resolved in the refined regions.

Note also that the calculation is done on the surface of the
sphere and so the wave spreads as a circle on the sphere, but in
longitude–latitude space the wave front is not circular. The wave
appears to be on track to reach all points at the shore simulta-
neously, as should happen, and this is confirmed in Figs. 4 and 5
which show nearly identical time histories at two locations near
the shore. The top row of Fig. 4 shows three later times for an is-
land located in the box labelled Test 1 in Fig. 1(a). The bottom
row of this figure shows the same three times for a second test
run, in which the island was located in the box labelled Test 2 in
Fig. 1(a).

Fig. 5 shows solution data from the computation at four differ-
ent gauges, the locations of which are shown in Fig. 2, on the radial
line from the center of the ocean that passes through the center of
the island. Gauges 1 and 2 are distance 1570 km and 1590 km from

the center, on the seaward side of the island, while Gauges 3 and 4
are distance 1610 km and 1630 km from the center of the ocean, on
the lee side. Gauges 1 and 4 are in regions that are never refined
beyond level 4, while Gauges 2 and 3 are with the region refined
to level 5. Each figure shows two curves for each gauge, one from
Test 1 (solid lines) and one from Test 2 (dashed lines). In principle
these should lie on top of each other and in fact the agreement is
quite good.

Each of these calculations (for Test 1 and Test 2) required
roughly 18 min of one processor on a 32 bit, 2.26 GHz MacBook
Pro laptop computer. Approximately 55 million grid cells were ad-
vanced in time over the entire computation, of which roughly 14 M
were on level 3, 28 M on level 4, and 11 M on level 5. Levels 1 and 2
combined accounted for less than 1 M.

7.2. The 27 February 2010 tsunami

The GeoClaw code has been used to model several historical
tsunamis using bathymetry and topography data sets obtained

Fig. 4. Top row: Surface elevation at two times for Test 1. Bottom row: Same times for Test 2. At time t = 10,000 s the wave is approaching the shore. At time t = 12,000 the
wave has reflected off the shore and is outgoing. In all cases the same contour levels are shown: the solid contours are at elevations of 0.4 m and 0.8 m above sea level, the
dashed contours are at the same elevations below sea level. The inner rectangle is the interface between level 4 and level 5 grids. The level 4 grid is shown onshore. The level 5
grid is finer by a factor of 4 in each direction.
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from NDGC [39] and other sources. Some simulations of the 26
December 2004 tsunami in the Indian Ocean following the Suma-
tra–Andaman earthquake are presented in [21,32] and several
other studies are under way to be published elsewhere. See [6]
or [31] for links to some animations.

Here we present some results for the 27 February 2010 Chile
event. This example is included in GeoClaw as a sample to illus-
trate the use of topography data sets. In this case we use 10-min
ETOPO2 topography from NGDC [39]. The seafloor motion is gener-
ated using the Okada model [40], which translates earthquake
parameters taken from [45] into seafloor deformation, using a gen-
eral Python function implementing the Okada model that is in-
cluded in GeoClaw.

It should be noted that there are many uncertainties in the data
used for tsunami modeling. In particular, the motion of the seafloor
that generates the tsunami is generally not well determined. Even
after seismologists use a multitude of seismic signal measurements
to perform source inversion and determine the slip of the earth-
quake, this typically takes place many km beneath the seafloor.
The seafloor displacement is dependent on the subsurface geologic
structure and is only approximated by the Okada model, which as-
sumes an isotropic material in a half-space. One use of tsunami
modeling is to perform source inversion directly from measure-
ments of the tsunami to estimate directly the seafloor displace-
ments. This is the primary purpose of the DART buoys
(Deep-ocean Assessment and Reporting of Tsunamis), and other
devises that measure the pressure at the seafloor in deep water
and make possible the early estimation of a tsunami’s magnitude
and destructive potential [38]. However, the paucity of such data
makes it difficult to obtain detailed reconstructions of the seafloor
displacement.

Fig. 6 shows four frames from a 3 level simulation. Level 1 has
cell size 2 degrees. Refinement factors of 2 and 6 are used, so the
finest grid has cell size of 100 and matches the topography data.
The dot labelled 32412 shows the position of DART buoy 32412
[11], which collected data during the event. Fig. 7 shows this data
together some GeoClaw modeling results. The 3 level simulation is
as described above. The uniform grid simulation was performed on
a 360 � 360 grid with 100 resolution, corresponding to the finest le-
vel of the 3 level run. The 3 level results lie on top of the uniform
grid results at early times, as one would hope to see. At later times
the 3 level simulation is less accurate because the region near the
DART buoy is no longer refined once the main tsunami wave has
moved past it. Fig. 7 also shows results obtained with a 4 level sim-
ulation using refinement factors 2, 6, and 8, so that the finest has

1.250 resolution. With this resolution the leading peak is captured
better and the amplitude of the primary wave is well estimated.

Note that there is very little evidence of spurious reflected
waves at the refinement boundaries in this figure (or in the figures
from the previous example). This is true in general with the AMR
approach used in Clawpack. Moreover, for problems where the
computational domain does not cover the full ocean (such as in
Fig. 6), it is important that the method does not generate spurious
numerical reflections at these outflow boundaries. The Godunov-
type wave-propagation algorithms do a very good job of providing
non-reflecting boundary conditions simply by using constant
extrapolation into ghost cells at the domain boundaries: the values
in interior cells adjacent to the boundaries are copied into ghost
cells. Then solving the Riemann problems at the interfaces along
the boundaries results in zero-strength waves propagating into
the domain, and hence no apparent reflection of the out-going
waves.

The 3-level computation ran in about 1.5 min on a 64 bit,
2.26 GHz MacBook Pro laptop, advancing 21 million grid cells. By
contrast, the 360 � 360 uniform grid computation on this domain
(at the resolution of the finest AMR grid) required about 8 min of
computer time, advancing 137 million grid cells.

The advantage of AMR is clear, even for this problem where we
are not zooming in on regions of the coast to model inundation.

The uniform grid calculation exhibits a larger number of ‘‘cells
advanced per second of computation’’ (285 K vs. 233 K), due to
the overhead of adaptive refinement. This overhead is greater in
GeoClaw than normally found in Clawpack because of the need
to recompute the topography in each grid cell each regridding
time. In this calculation we regrid every 3 time steps to insure
waves do not leave refinement patches between regridding. In
the future we hope to improve the efficiency of regridding the
topography.

7.3. Riverine and overland flooding

The shallow water equations are often used to model riverine or
overland flooding problems, such as those due to dam/levee
breaches (e.g. [23,46,2]). For flooding problems in rugged moun-
tainous terrain, where rapidly varying contours in the topography
create highly irregular domains, adaptive mesh refinement can be
a valuable tool because the optimal grid resolution is highly spa-
tially and temporally dependent yet unpredictable before doing
the computation. A common approach for modeling floods in com-
plicated topographic regions is to use static irregular meshes that

Fig. 5. Comparison of gauge output from Test 1 and Test 2, showing the surface elevation (vertical axis, (m)) as a function of time (horizontal axis, (s)) for the gauges shown in
Fig. 2. In each case the solid blue curve is from Test 1 and the dashed red curve is from Test 2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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are fit to the topography in some fashion (e.g. [46]). However, by
using adaptive mesh refinement, uniform rectangular grids can
be used for such problems, resolving the flood on an evolving
patchwork of finer grids that advance with the flood waves
through topography. This makes it much simpler to set up a gen-
eral problem.

We have tested GeoClaw in this context by modeling the his-
toric Malpasset dam-break flood, which occurred in southern

France in 1959 (see [19]). This thin-arch dam failed suddenly and
explosively, sending a roughly 60 m deep flood wave into the
winding ravine below, eventually inundating the Reyran River Val-
ley. This disaster has served as a valuable test case for code valida-
tion due to the extensive field data, such as high water marks,
collected after the event. For this problem we used a 6.47 km
east–west (x-direction) by 16.58 km north–south (y-direction),
rectangular grid. The coarsest level 1 grid was 16 by 40 grid cells
respectively (Dx � Dy � 404.4 m � 414.5 m). Level 2, level 3 and
level 4 grids were then used to refine the flowing water, with
refinement ratios of 8, 4 and 4, yielding �3 m � 3 m grid cells on
the finest level. Some snapshots from the simulation are shown
in Fig. 8. The maximum water depth computed by GeoClaw at var-
ious points was compared to other codes and empirical field and
model data, shown in Fig. 9. A detailed explanation of this test
problem and comparison can be found in [19].

8. Conclusions and future plans

The GeoClaw software project grew out of the TsunamiClaw
code developed by one of the authors in his 2006 PhD thesis
[17], which itself grew out of Clawpack. It has undergone several
more years of development and testing, primarily on tsunami sim-
ulation. The version recently released with Clawpack 4.5 (in July,
2010) is fairly robust and stable, but will continue to be developed

Fig. 6. Four frames from a 3 level simulation of the 27 February 2010 Chile event. The location of DART buoy 32412 is also indicated, for which the time history is shown in
Fig. 7. Note the reflection from the Gallapagos near the equator at 6 h.

Fig. 7. Time history at DART buoy 32412, together with computational results from
three GeoClaw runs as described in the text.
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and improved in the future. We are also incorporating OpenMP
into the code to take advantage of multi-core shared memory
computers.

A number of on-going projects by the authors make use of this
software. We are currently developing depth-averaged models for
two-phase flows consisting of granular-fluid mixtures, applicable
to debris-flow floods and volcanic lahars or mudslides (e.g.
[20,24,12,13]). These flows often occur in rugged mountainous re-
gions, and present many of the same difficulties as overland flood-
ing in terms of domain geometry. The shallow water equations are
also often used to model storm surge, e.g. [42,49], and we are cur-
rently investigating the use of both standard single layer shallow
water equations and also a multi-layer versions of the code as a
possible improvement. The multi-layer version may also be useful

for modeling tsunamis generated by submarine landslides, as done
for example in [15], although the multilayer shallow water equa-
tions introduce a number of new mathematical and numerical
challenges (see e.g. [1,3,9]). In the future the GeoClaw webpage
and the application gallery will show some results from these
new application areas. Animations and some GeoClaw code to
accompany the simulations presented in this paper are available
at [6].
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