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Overview

• Survey of some unique numerical issues for tsunami modeling
• well-balancing for ocean propagation
• depth-positivity (wet/dry problem)
• shoreline instabilities
• ill-posedness and instabilities (e.g., resonance, roll waves, etc.)

• Introduction to granular-fluid flows
• modeling multiphase “non-rheological” flows
• coupling with tsunamis?
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Steady-states and well balancing

• well-balancing has to do with numerically maintaining
particular steady-states

• required to resolve small perturbations to those steady-states
• cannot be determined by order of accuracy or convergence
→ should be satisfied on coarse grids
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Steady-states and well balancing

Flow dynamics are small perturbations to a balanced steady state:

qt +A(q)qx = ψ(q, x, y),

A(q)qx ≈ ψ(q, x, y)
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Steady-states and well balancing

• applications with delicate balanced steady states require
specialized methods.

• a numerical scheme is well-balanced if it exactly preserves
discontinuous steady-state weak solutions.

• traditional schemes do not satisfy this property.
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Balance law qt + f(q)x = ψ(q, x)

• Steady states arise when f(q)x = ψ(q, x)
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Balance law qt + f(q)x = ψ(q, x): fractional step method

• step 1: Qn → Q∗: solve homogeneous problem:
qt + f(q)x = 0.
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Balance law qt + f(q)x = ψ(q, x): fractional step method

• step 2: Q∗ → Qn+1: solve ODEs for the source term:
qt = ψ(q, x)
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Balancing steady states: qt + f(q)x = ψ(q, x)

• Preserving steady states qt + f(q)x = ψ(q, x).
• W = [q, ϕ(q), b]T : Wt +A(W)Wx = 0.
• The steady state field

A(W)Wx = 0, ⇒Wx = r0(W), λ0(W) = 0
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Balance law qt + f(q)x = ψ(q, x): steady state wave

• solve augmented homogeneous system: Wt +A(W)Wx = 0.
• motionless steady states: stationary steady state wave only
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Balance law qt + f(q)x = ψ(q, x): steady state wave

• solve augmented homogeneous system: Wt +A(W)Wx = 0.
• flowing steady states: stationary steady state wave only
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Balance law qt + f(q)x = ψ(q, x): steady state wave

• solve augmented homogeneous system: Wt +A(W)Wx = 0.
• near or non steady states: moving waves are deviation to
steady state
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Shorelines and inundation

• shallow water equations present difficulties where h→ 0

• determining the motion of the shoreline can be difficult
• often ad hoc approaches are used
• this is prone to numerical instabilities
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Shorelines and inundation

• the equations are only valid where h > 0

• the Riemann problem between wet and dry states can be
exactly solved

• → only for the homogeneous problem (no bathymetry!)
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The Riemann problem at the shoreline.

motionless steady state at the shoreline: no waves.
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The Riemann problem at the shoreline.

flow at the shoreline: velocity insufficient for inundation.
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The Riemann problem at the shoreline.
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The Riemann problem at the shoreline.

flow at the shoreline: inundation.
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Overland flooding: Malpasset dam, France 1959
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Overland flooding: Malpasset dam, France 1959
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Landslides and Debris Flows

Debris flows, landslides etc.: liquified masses of soil and rock.

Indonesian Lahar Movie Ritigraben Switzerland Debris Flow Movie
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Debris-flow mobilization

Mobilization: qt + f(q)x +W(q)qx = ψ(q, x)

• failure occurs when the driving forces slightly exceed the shear
strength at any one point: a small perturbation to a balanced
steady state: f(q)x +W(q)qx ≈ ψ(q, x)

• failure: an equilibrium is perturbed...what happens next?
1 rapid temporary instability: (shear contraction → increased

pore pressure → decreased shear strength → landslide.)
2 quick stabilization: (shear dilation → decreased pore pressure
→ shear strength reestablished → localized slump.)

3 anything intermediate...e.g., stick-slip.

• modeling the outcome at least requires well-balanced
methods...if it can be done at all. Numerical conservation
must be maintained for f(q)x while simultaneously being
well-balanced.
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Mathematical model

Model equations are depth-averaged:

• Integrating out the vertical component gives 2D system for
h, u, v,m, pb

• degree of accuracy lost upon depth-averaging depends on
shallowness;

• computationally tractable for large-scale problems.
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Mathematical model

Model equations are a hyperbolic system:

• similar in form to the shallow water equations;
• strictly hyperbolic system (desirable stability properties);

qt +A(q)qx + B(q)qy = ψ(q),

where q = (h, hu, hv, hm, pb)
T

• coupled evolution of pore pressure and solid-volume fraction
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Mathematical model

Pore-fluid pressure solid-volume fraction coupling:

• dilation/contraction of solid phase affects pore-pressure
• pore-pressure mediates Coulomb solid stress through buoyancy
(effective stress)

• frictional stress determines stability of sediment mass
• dilation/contraction based on dilatancy angle
• feedback loop: shearing ⇔ contraction/dilation ⇔
pore-pressure ⇔ frictional resistance

David L. George GeoClaw and tsunami modeling



Mathematical model

Modeling mobilization/stability:

• an initial rise in pore pressure can perturb stability
• evolution and feedback determine whether mass destabilizes
into debris flow

• contractive case: shearing leads to higher pressure & less
resistance (positive feedback)

• dilative case: shearing leads to lower pressure & higher
resistance (negative feedback)
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USGS experimental debris-flow flume

Play Movie
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USGS experimental debris-flow flume

Simulating natural initiation by rising pore-pressure
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USGS experimental debris-flow flume
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USGS experimental debris-flow flume

Comparison of fluid-pore pressure
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USGS experimental debris-flow flume

Play Movie
David L. George GeoClaw and tsunami modeling



USGS experimental debris-flow flume

Comparison of downstream (32m) depth and fluid-pore pressure
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Some future directions

• depth-averaged models can be coupled
• landslide→ tsunamis through “dtopo”
• landslides ↔ tsunami
• granular-fluid model near inundation fronts

• always consider the possibility of numerical artifacts and/or
instabilities in numerical solutions.

• validate, verify, compare, share.

Thank You!
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