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Overview

e Survey of some unique numerical issues for tsunami modeling
o well-balancing for ocean propagation
o depth-positivity (wet/dry problem)
e shoreline instabilities
e ill-posedness and instabilities (e.g., resonance, roll waves, etc.)
e Introduction to granular-fluid flows

e modeling multiphase “non-rheological” flows
e coupling with tsunamis?
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Steady-states and well balancing
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Flow dynamics are small perturbations to a balanced steady state:

qt + A(q)qﬂff = 1/’(% €, y)7
A(9)qz = ¥ (q, 7, y)
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Steady-states and well balancing

e applications with delicate balanced steady states require
specialized methods.

e a numerical scheme is well-balanced if it exactly preserves
discontinuous steady-state weak solutions.

e traditional schemes do not satisfy this property.
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Balance law ¢; + f(q). = ¥(q, x)

e Steady states arise when f(q), = (¢, x)
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Balance law ¢; + f(q). = 1(q, x): fractional step method

e step 1: Q™ — Q*: solve homogeneous problem:
¢+ f(q)z =0.
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Balance law ¢; + f(q). = 1(q, x): fractional step method

e step 2: Q" — Q"' solve ODEs for the source term:

q = Y(q,x)
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Balancing steady states: ¢; + f(q). = ¥(q, )

o Preserving steady states ¢; + f(q)z = ¥(q, ).
o W=[q,0(q),0]": Wy + AW)W, =0.
e The steady state field

AWW, =0, =W, =rW), XXW)=0

David L. George GeoClaw and tsunami modeling



Balancing steady states: ¢; + f(q). = ¥(q, )

e Preserving steady states ¢; + f(¢)» = ¥(q, x).
° W=q,¢(q),8": Wi+ AW)W, = 0.
e The steady state field

David L. George GeoClaw and tsunami modeling



e Preserving steady states ¢; + f(q). = ¥(q, x).
o W=lg,0(q),0]": Wy + AW)W, = 0.
e The steady state field

AW, =0, =W, =r"W), X’W)=0




Balancing steady states: ¢; + f(q). = ¥(q, )

o Preserving steady states ¢; + f(q)z = ¥(q, ).
o W=[q,0(q),0]": Wy + AW)W, =0.
e The steady state field

AWW, =0, =W, =rW), XXW)=0

David L. George GeoClaw and tsunami modeling



Balancing steady states: ¢; + f(q). = ¥(q, )

¢ Preserving steady states ¢; + f(q)z = ¥(q, ).
° W=g,0(q),8": Wi + AW)W, = 0.
e The steady state field

AWW, =0, =W, =r"W), X’W)=0

David L. George GeoClaw and tsunami modeling



Balance law ¢; + f(q). = ¥(q, x): steady state wave

e solve augmented homogeneous system: W, + A(W)W, = 0.
e motionless steady states: stationary steady state wave only
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Balance law ¢; + f(q). = ¥(q, x): steady state wave

e solve augmented homogeneous system: W, + A(W)W, = 0.
e flowing steady states: stationary steady state wave only
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Balance law ¢; + f(q). = ¥(q, x): steady state wave

e solve augmented homogeneous system: W; + A(W)W, = 0.
e near or non steady states: moving waves are deviation to
steady state
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Shorelines and inundation

shallow water equations present difficulties where h — 0
determining the motion of the shoreline can be difficult
often ad hoc approaches are used

this is prone to numerical instabilities
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e the equations are only valid where h > 0

e the Riemann problem between wet and dry states can be
exactly solved

e — only for the homogeneous problem (no bathymetry!)
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The Riemann problem at the shoreline.

motionless steady state at the shoreline: no waves.
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The Riemann problem at the shoreline.

flow at the shoreline: velocity insufficient for inundation.
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The Riemann problem at the shoreline.
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Overland flooding: Malpasset dam, France 1959
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Overland flooding: Malpasset dam, France 1959
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Overland flooding: Malpasset dam, France 1959

%10 q(1) attime 23.3333
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Landslides and Debris Flows

Debris flows, landslides etc.: liquified masses of soil and rock.

Indonesian | ahar Mowvid Ritigraben Switzerland Debris Flow Movig
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Debris-flow mobilization

Mobilization: ¢; + f(q)s + W(q)¢e = ¥(q, )

e failure occurs when the driving forces slightly exceed the shear
strength at any one point: a small perturbation to a balanced
steady state: f(q)s + W(q)g =~ ¥(q, )

e failure: an equilibrium is perturbed...what happens next?

@ rapid temporary instability: (shear contraction — increased
pore pressure — decreased shear strength — landslide.)

@ quick stabilization: (shear dilation — decreased pore pressure
— shear strength reestablished — localized slump.)

© anything intermediate...e.g., stick-slip.

e modeling the outcome at least requires well-balanced
methods...if it can be done at all. Numerical conservation
must be maintained for f(q), while simultaneously being
well-balanced.
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Mathematical model

Model equations are depth-averaged:

e Integrating out the vertical component gives 2D system for
h,u,v,m,pp

e degree of accuracy lost upon depth-averaging depends on
shallowness;

e computationally tractable for large-scale problems.
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Mathematical model

Model equations are a hyperbolic system:

e similar in form to the shallow water equations;

e strictly hyperbolic system (desirable stability properties);

a + A(q)gz + B(a)gy = ¥(q),
where ¢ = (h, hu, hv, hm, py

)T

e coupled evolution of pore pressure and solid-volume fraction
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Mathematical model

Pore-fluid pressure solid-volume fraction coupling:

q

@,
Y. fuid suface
<\

q

< Y
//;\ B }\.3 5 contractionmep- W} Ts

Y. fuid surtace

<= dilation

dilation/contraction of solid phase affects pore-pressure

pore-pressure mediates Coulomb solid stress through buoyancy

(effective stress)

frictional stress determines stability of sediment mass

dilation/contraction based on dilatancy angle

feedback loop: shearing < contraction/dilation <
pore-pressure < frictional resistance
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Mathematical model

Modeling mobilization /stability:

o Y fuid surface
q 7 41—%' L]
= k_J';Y fuid suface 7( \E
(D . » )
\\//'b S }\3 5 contractionm=p ‘, / } e
x 7 <= dilation
/s 5
\./ N
QO 7

—~ m
V3o 9V3

e an initial rise in pore pressure can perturb stability

7() m=_2_

e evolution and feedback determine whether mass destabilizes
into debris flow

e contractive case: shearing leads to higher pressure & less
resistance (positive feedback)

e dilative case: shearing leads to lower pressure & higher
resistance (negative feedback)
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USGS experimental debris-flow flume
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USGS experimental debris-flow flume
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Simulating natural initiation by rising pore-pressure




Comparison of fluid-pore pressure
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USGS experimental debris-flow flume
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Comparison of downstream (32m) depth and fluid-pore pressure
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Some future directions

o depth-averaged models can be coupled

e landslide— tsunamis through “dtopo”
e landslides <> tsunami
e granular-fluid model near inundation fronts

e always consider the possibility of numerical artifacts and/or
instabilities in numerical solutions.

e validate, verify, compare, share.

Thank Youl
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