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Outline

PASI : Tsunami Workshop Jan 2-14 2013

We solved exactly the Riemann problem for the 
constant coefficient linear system case, e.g. linear 
shallow water equations

We described what is involved in solving the Riemann 
problem for the nonlinear shallow water wave 
equations. 

How do these Riemann solvers make it into an actual 
code?

Do we actually solve the non-linear problem at every 
grid cell interface?

How accurate are these methods?
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Riemann problem for linear systems
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Solving the Riemann problem for linear problem
qt + A qx = 0

(1) Compute eigenvalues and eigenvectors of matrix A

(2) Compute characteristic variables by solving

(3) Use eigenvalues or “speeds” to determine piecewise 
constant solution

R � = qr � q�

q(x, t) = q⇧ +
�

p : �p<x/t

�p rp

= qr �
�

p : �p>x/t

�p rp
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One dimensional Cartesian grid 
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Cell centers : 

Cell edges : 

xi = ax + (i� 1/2)�x, i = 1, 2, . . . ,Mx

xi�1/2 = ax + (i� 1)�x, i = 1, 2, . . . ,Mx + 1

{ cell center

cell edge

�x

Time step over interval           : 

tn = n�t, n = 1, 2, . . . Nout

[0, T ]
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Update cell averages explicitly

PASI : Tsunami Workshop Jan 2-14 2013

QiQi�1 Qi+1

QiQi�1 Qi+1

u > 0
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Update cell averages explicitly
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QiQi�1 Qi+1

�xQn+1
i = �xQn

i � u �t
�
Qn

i �Qn
i�1

⇥

u > 0

In time      ,  mass in cell      increases by shaded area : �t
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Update cell averages explicitly
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QiQi�1 Qi+1

u < 0

�xQn+1
i = �xQn

i � u �t
�
Qn

i+1 �Qn
i

⇥

In time      ,  mass in cell      increases by shaded area : �t
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Wave propagation viewpoint - scalar equation
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where

u+ = max(u, 0), u� = min(u, 0)

Qn+1
i = Qn

i �
�t

�x

�
u+(Qn

i �Qn
i�1) + u�(Qn

i+1 �Qn
i )

⇥

We can define waves at each interface as : 

Wi�1/2 ⇥ Qi �Qi�1Waves : 

Qn+1
i = Qn

i �
�t

�x

�
u+Wi�1/2 + u�Wi+1/2

⇥
Our scheme might look like : 

“wave propagation algorithm” (R. J. LeVeque)
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Wave propagation viewpoint - scalar equation
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Qn+1
i = Qn

i �
�t

�x

�
u+Wi�1/2 + u�Wi+1/2

⇥

We can write this in terms of fluctuations :

A+�Qi�1/2 ⌘ u+Wi�1/2

A��Qi+1/2 ⌘ u�Wi+1/2

fluctuation 

Q

n+1
i = Q

n
i � �t

�x

�
A+�Qi�1/2 +A��Qi+1/2

�

A+�Qi�1/2

The first order term in the 
update used by Clawpack 
and GeoClaw
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Wave propagation viewpoint - systems
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Qn+1
i = Qn

i �
�t

�x

�
m⇤

p=1

(�p)+Wp
i�1/2 +

m⇤

p=1

(�p)�Wp
i+1/2

⇥

where the waves are now defined from an eigenvalue 
decomposition of the jump in value at each interface

Written in terms of fluctuations : 

A+�Qi�1/2 �
m�

p=1

(�p)+Wi�1/2

A��Qi�1/2 �
m�

p=1

(�p)�Wi�1/2

Waves : Wp
i�1/2 ⌘ ↵prp

(�p)� = min(�p, 0)

(�p
)

+
= max(�p, 0)

R↵ = qr � q`
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Clawpack - rp1ad.f
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      sqrtgh = sqrt(grav*h_mean)
      do  i = 2-mbc,mx+mbc
         do m = 1,2
            delta(m) = qr(i,m) - qr(i-1,m)
         enddo

c        # Speeds
         s(i,1) = u_mean - sqrtgh
         s(i,2) = u_mean + sqrtgh

         a1 = (h_mean*delta(2) - sqrtgh*delta(1))/(2*grav*h_mean)
         a2 = (h_mean*delta(2) + sqrtgh*delta(1))/(2*grav*h_mean)

c        # Waves
         wave(i,1,1) = -a1*sqrtgh
         wave(i,2,1) = a1*grav
         wave(i,1,2) = a2*sqrtgh
         wave(i,2,2) = a2*grav

c        # Fluctuations
         do m = 1,meqn
            amdq(i,m) = 0
            apdq(i,m) = 0
            do mw = 1,mwaves
               amdq(i,m) = amdq(i,m) + min(s(i,mw), 0.d0) * wave(i,m,mw)
               apdq(i,m) = apdq(i,m) + max(s(i,mw), 0.d0) * wave(i,m,mw)
            enddo
         enddo
      enddo

Speeds

Waves

Fluctuations
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Nonlinear case
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Given an exact solution, we can also construct waves, 
speeds and fluctuations

q` qrt

q⇤

W1 ⌘ q⇤ � q`

W2 ⌘ qr � q⇤
Waves : 

A+�Qi�1/2 ⌘ f(qr)� f(q⇤)

A��Qi+1/2 ⌘ f(q⇤)� f(q`)
Fluctuations : 

Speeds : Shock speed or average speed in a rarefaction

transonic case?
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Connection to flux formulation
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Numerical fluxes can be written in terms of fluctuations : 

or

Flux differences can be expressed in terms of left going and 
right going fluctuations : 
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for “Roe averaged” values    .

q
t

+ f(q)
x

= 0

Roe linearization for the non-linear case
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We solve a linearized system at each cell interface, at each 
time step

bq

q
t

+ f 0(q̂)q
x

= 0

f(qr)� f(q`) = f 0(q̂)(qr � q`)

For conservation, we need    to satisfy :  q̂

q
t

+A(q̂)q
x

= 0

P. Roe (JCP, 1981) showed an approach for many important 
systems.
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Roe averaged values for SWE
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ĥ =
h` + hr

2
, û =

p
h`u` +

p
hrurp

h` +
p
hr

• Compute Roe averaged values : 

• Evaluate eigenvalues and eigenvectors at these values. 

• Compute waves, speeds and fluctuations as in the linear 
case.   Does not require the nonlinear root-finder.

Roe averages are also available for the Euler equations and
other important physical systems.

Other approximate Riemann solvers are available.
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Roe solver in Clawpack

PASI : Tsunami Workshop Jan 2-14 2013

      do i = 2-mbc,mx+mbc
         ......................................................
c        # compute  Roe-averaged quantities:
         u_roe = (ur/sqrt(hr) + ul/sqrt(hl))/(sqrt(hl) + sqrt(hr))
         h_mean = (hl + hr)/2.d0
         sqrtgh_roe = sqrt(grav*h_mean)

c        # wave speeds
         s(i,1) = u_roe - sqrtgh_roe
         s(i,2) = u_roe + sqrtgh_roe

c        # compute coeffs in the evector expansion of delta(1),delta(2)
         a1 =(-delta(2) + (u_roe + sqrtgh_roe)*delta(1))/(2*sqrtgh_roe)
         a2 = (delta(2) - (u_roe - sqrtgh_roe)*delta(1))/(2*sqrtgh_roe)

c        # finally, compute the waves.
         wave(i,1,1) = a1
         wave(i,2,1) = a1*(u_roe - sqrtgh_roe)
         wave(i,1,2) = a2
         wave(i,2,2) = a2*(u_roe + sqrtgh_roe)
      
         ..................................................
            do  mw=1,mwaves
               amdq(i,m) = amdq(i,m) + min(s(i,mw), 0.d0) * wave(i,m,mw)
               apdq(i,m) = apdq(i,m) + max(s(i,mw), 0.d0) * wave(i,m,mw)
            enddo
      
      enddo

Speeds

Waves

Fluctuations
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Using Riemann solvers
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Question : There is only one shock and one rarefaction, but 
we solve a Riemann problem (either exactly, or approximately) 
at each cell interface.  What happens in the smooth regions?

Answer : In smooth regions, shocks/rarefactions are weak.  They 
only have strength on the order of the mesh cell size, i.e.

Physical shock

qr � q` ⇠ O(�x)

q` qr

qr � q` ⇠ O(�x)
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Upwind method
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First order scheme (200 points)
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Upwind method
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First order scheme (200 points)
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The upwind method
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The upwind method

Q

n+1
i = Q

n
i � �t

�x

�
A+

�Qi�1/2 +A�
�Qi+1/2

�

= Q

n
i � �t

�x

ū(Q

n
i �Qi�1), for ū > 0

is only a first order approximation, but gives a good second 
order approximation to the equation

q

t

+ ūq

x

=
ū�x

2

✓
1� ū�t

�x

◆
q

xx

The “diffusion term” is proportional to the mesh spacing and 
the Courant number

modified PDE
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Improved accuracy
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Why not include these “diffusion” terms in the numerical 
scheme to get better accuracy?

Q

n+1
i �Q

n
i

�t

+ u

Q

n
i �Q

n
i�1

�x

=
u�x

2

✓
1� u�t

�x

◆ ✓
Q

n
i+1 � 2Q

n
i + Q

n
i�1

(�x)2

◆

Re-arranging terms, we get the second order “Lax-Wendroff”  
method.
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The Lax-Wendroff  method
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Q

n+1
i = Q

n
i �

u�t

�x

�
Q

n
i �Q

n
i�1

�
� 1

2
u�t

�x

✓
1� u�t

�x

◆ �
(Qn

i+1 �Q

n
i )� (Qn

i �Q

n
i�1)

�{ {
Upwind term Second order correction

The Lax-Wendroff method gives a third order approximation to 
the modified equation  

q

t

+ uq

x

= �u(�x)2

6

 
1�

✓
u�t

�x

◆2
!

q

xxx

Errors are dispersive
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Lax Wendroff  method
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Q

n+1
i = Q

n
i �

u�t

�x

�
Q

n
i �Q

n
i�1

�
� 1

2
u�t

�x

✓
1� u�t

�x

◆ �
(Qn

i+1 �Q

n
i )� (Qn

i �Q

n
i�1)

�

Q

n+1
i = Q

n
i �

u�t

�x

�
Q

n
i �Q

n
i�1

�
� 1

2
u�t

�x

(�x� u�t)
�
�

n
i � �

n
i�1

�

Slopes Waves

�

n
i =

Q

n
i+1 �Q

n
i

�x

Wn
i�1/2 = Qn

i �Qn
i�1

Waves

slopes

Thursday, January 10, 13



Wave propagation viewpoint
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Q

n+1
i = Q

n
i �

�t

�x

(uWn
i�1/2)�

1
2

u�t

�x

✓
1� u�t

�x

◆ ⇣
Wn

i+1/2 �Wn
i�1/2

⌘
For            : u > 0

In wave propagation form, we can write this as :  

where second order correction terms are defined as

Q

n+1
i = Q

n
i � �t

�x

�
A+�Qi�1/2 +A��Qi+1/2

�
� �t

�x

�
Fi+1/2 � Fi�1/2

�

Fi�1/2 ⌘ 1

2
|u|

✓
1� |u|�t

�x

◆
Wn

i�1/2
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Wave propagation algorithm for systems
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where the second order corrections are defined as  

Fi�1/2 ⌘ 1

2

mX

p=1

|�p|
✓
1� �t

�x

|�p|
◆
Wp

i�1/2

Q

n+1
i = Q

n
i � �t

�x

(A+�Qi�1/2 +A��Qi+1/2)�
�t

�x

�
Fi+1/2 � Fi�1/2

�

For systems (both linear and nonlinear), we have  the update 
formula
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The Lax-Wendroff  method
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Second order terms included (200 points)
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The Lax-Wendroff  method
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Second order terms included (200 points)
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First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 4.11]

First order REA algorithm

PASI : Tsunami Workshop Jan 2-14 2013
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Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.4]

Second order REA algorithm
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Oscillations

Any of these slope choices will give oscillations near
discontinuities.

Ex: Lax-Wendroff:

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.6 ]

Oscillations
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Average value increases

Lax-Wendroff slope
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High-resolution methods

Want to use slope where solution is smooth for “second-order”
accuracy.

Where solution is not smooth, adding slope corrections gives
oscillations.

Limit the slope based on the behavior of the solution.

�n
i =

�
Qn

i+1 �Qn
i

�x

⇥
⇥n

i .

⇥ = 1 =⇤ Lax-Wendroff,

⇥ = 0 =⇤ upwind.

Might also take 1 < ⇥ ⇥ 2 to sharpen discontinuities.

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.4]

High resolution methods

PASI : Tsunami Workshop Jan 2-14 2013
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Minmod slope

minmod(a, b) =

⇤
⇧

⌅

a if |a| < |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ⇥ 0

Slope:

⇥n
i = minmod((Qn

i �Qn
i�1)/�x, (Qn

i+1 �Qn
i )/�x)

=
�

Qn
i+1 �Qn

i

�x

⇥
⇥(�n

i )

where

�n
i =

Qn
i �Qn

i�1

Qn
i+1 �Qn

i

⇥(�) = minmod(�, 1) 0 ⇥ ⇥ ⇥ 1

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.8]

Minmod slope

PASI : Tsunami Workshop Jan 2-14 2013
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Piecewise linear reconstructions

Lax-Wendroff reconstruction:

Minmod reconstruction:

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.8]

Minmod reconstruction

PASI : Tsunami Workshop Jan 2-14 2013
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Some popular limiters
Linear methods:

upwind : ⇥(�) = 0
Lax-Wendroff : ⇥(�) = 1

Beam-Warming : ⇥(�) = �

Fromm : ⇥(�) =
1
2
(1 + �)

High-resolution limiters:

minmod : ⇥(�) = minmod(1, �)
superbee : ⇥(�) = max(0, min(1, 2�), min(2, �))

MC : ⇥(�) = max(0, min((1 + �)/2, 2, 2�))

van Leer : ⇥(�) =
� + |�|
1 + |�|

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.11]

Limiters
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Examples of limiters 
available in Clawpack
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Hierarchy of  methods for systems
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Waves Wp
i�1/2 ⌘ ↵prp

Upwind Q

n+1
i = Q

n
i � �t

�x

�
A+�Qi�1/2 +A��Qi+1/2

�

Lax Wendroff  Q

n+1
i = Q

n
i � (upwind)� �t

�x

�
Fi+1/2 � Fi�1/2

�

High Resolution Q

n+1
i = Q

n
i � (upwind)� �t

�x

⇣
eFi+1/2 � eFi�1/2

⌘

Fi�1/2 ⌘ 1

2

mX

p=1

|�p|
✓
1� �t

�x

|�p|
◆
Wp

i�1/2
eFi�1/2 ⌘ 1

2

mX

p=1

|�p|
✓
1� �t

�x

|�p|
◆
�Wp

i�1/2

Fluctuations A+�Qi�1/2 ⌘
mX

p=1

(�p)+Wi�1/2 A��Qi�1/2 ⌘
mX

p=1

(�p)�Wi�1/2

limited wave
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High resolution methods
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• Wave limiters reduce oscillations near discontinuities, but 
preserve second order accuracy in smooth regions

• Methods are no longer formally second order accurate, 
but are “high resolution”.  

• Often magnitude of the error is reduced by the use of 
limiters, 

• Useful even for linear problems such as advection

• Clawpack has several limiters available

• Limiters only affect second order correction terms;  first 
order method does not use limiters
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High resolution methods
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Second order method with limiter (200 points)
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High resolution methods
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Second order method with limiter (200 points)
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What next?
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How do these Riemann solvers make it into an actual 
code?  Clawpack is based on solving Riemann problems.

Do we actually solve the non-linear problem at every 
grid cell interface? No!  One can use approximate 
Riemann solvers.

How accurate are these methods? (second order, or 
high resolution with limiters)

Well-balancing

What do we do in two-dimensions?

Adaptive mesh refinement?

Thursday, January 10, 13


