Accuracy, limiters and approximate Riemann solvers

Donna Calhoun

Boise State University

PASI 2013
Valparaiso, Chile
January 2-I3

Outline

IV We solved exactly the Riemann problem for the constant coefficient linear system case, e.g. linear shallow water equations
IV We described what is involved in solving the Riemann problem for the nonlinear shallow water wave equations.
\square How do these Riemann solvers make it into an actual code?
\square Do we actually solve the non-linear problem at every grid cell interface?
\square How accurate are these methods?

Riemann problem for linear systems

Solving the Riemann problem for linear problem

$$
q_{t}+A q_{x}=0
$$

(I) Compute eigenvalues and eigenvectors of matrix A
(2) Compute characteristic variables by solving

$$
R \alpha=q_{r}-q_{\ell}
$$

(3) Use eigenvalues or "speeds" to determine piecewise constant solution

$$
\begin{aligned}
q(x, t)= & q_{\ell}+\sum_{p: \lambda^{p}<x / t} \alpha^{p} r^{p} \\
= & q_{r}-\sum_{p: \lambda^{p}>x / t} \alpha^{p} r^{p}
\end{aligned}
$$

One dimensional Cartesian grid

Cell centers :

$$
x_{i}=a_{x}+(i-1 / 2) \Delta x, \quad i=1,2, \ldots, M_{x}
$$

Cell edges :

$$
x_{i-1 / 2}=a_{x}+(i-1) \Delta x, \quad i=1,2, \ldots, M_{x}+1
$$

Time step over interval $[0, T]$:

$$
t_{n}=n \Delta t, \quad n=1,2, \ldots N_{\text {out }}
$$

Update cell averages explicitly

PASI :Tsunami Workshop Jan 2-I4 2013

Update cell averages explicitly

In time Δt, mass in cell C_{i} increases by shaded area :

$$
\Delta x Q_{i}^{n+1}=\Delta x Q_{i}^{n}-u \Delta t\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

Update cell averages explicitly

In time Δt, mass in cell C_{i} increases by shaded area :

$$
\Delta x Q_{i}^{n+1}=\Delta x Q_{i}^{n}-u \Delta t\left(Q_{i+1}^{n}-Q_{i}^{n}\right)
$$

Wave propagation viewpoint - scalar equation

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(u^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+u^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right)
$$

where

$$
u^{+}=\max (u, 0), \quad u^{-}=\min (u, 0)
$$

We can define waves at each interface as :

$$
\text { Waves: } \quad \mathcal{W}_{i-1 / 2} \equiv Q_{i}-Q_{i-1}
$$

Our scheme might look like :

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(u^{+} \mathcal{W}_{i-1 / 2}+u^{-} \mathcal{W}_{i+1 / 2}\right)
$$

"wave propagation algorithm" (R.J. LeVeque)

Wave propagation viewpoint - scalar equation

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(u^{+} \mathcal{W}_{i-1 / 2}+u^{-} \mathcal{W}_{i+1 / 2}\right)
$$

We can write this in terms of fluctuations:

$$
\begin{array}{c|c}
\mathcal{A}^{+} \Delta Q_{i-1 / 2} \equiv u^{+} \mathcal{W}_{i-1 / 2} & \begin{array}{l}
\text { The first order term in the } \\
\mathcal{A}^{-} \Delta Q_{i+1 / 2} \equiv u^{-} \mathcal{W}_{i+1 / 2} \\
\text { update sucd by Clawpack } \\
\text { and Geoclaw }
\end{array} \\
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right)
\end{array}
$$

Wave propagation viewpoint - systems

$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \mathcal{W}_{i-1 / 2}^{p}+\sum_{p=1}^{m}\left(\lambda^{p}\right)^{-} \mathcal{W}_{i+1 / 2}^{p}\right)$
where the waves are now defined from an eigenvalue decomposition of the jump in value at each interface

$$
\text { Waves: } \quad \mathcal{W}_{i-1 / 2}^{p} \equiv \alpha^{p} r^{p}
$$

Written in terms of fluctuations :

$$
R \alpha=q_{r}-q_{\ell}
$$

$$
\begin{aligned}
\mathcal{A}^{+} \Delta Q_{i-1 / 2} & \equiv \sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \mathcal{W}_{i-1 / 2} \\
\mathcal{A}^{-} \Delta Q_{i-1 / 2} & \equiv \sum_{p=1}^{p}\left(\lambda^{p}\right)^{+}=\max \left(\lambda^{p}, 0\right) \\
\mathcal{W}_{i-1 / 2} & \left(\lambda^{p}\right)^{-}=\min \left(\lambda^{p}, 0\right)
\end{aligned}
$$

Clawpack - rp1ad.f

```
sqrtgh = sqrt(grav*h_mean)
do i = 2-mbc,mx+mbc
    do m = 1,2
        delta(m) = qr(i,m) - qr(i-1,m)
    enddo
    # Speeds
    s(i,1) = u_mean - sqrtgh
    s(i,2) = u_mean + sqrtgh
    a1 = (h_mean*delta(2) - sqrtgh*delta(1))/(2*grav*h_mean)
    a2 = (h_mean*delta(2) + sqrtgh*delta(1))/(2*grav*h_mean)
    # Waves
    wave(i,1,1) = -a1*sqrtgh
    wave(i,2,1) = a1*grav
    wave(i,1,2) = a2*sqrtgh
    wave(i,2,2) = a2*grav
    # Fluctuations
    do m = 1,meqn
        amdq(i,m) = 0
        apdq(i,m) = 0
        do mw = 1,mwaves
            amdq(i,m) = amdq(i,m) + min(s(i,mw), O.dO) * wave(i,m,mw)
            apdq(i,m) = apdq(i,m) + max(s(i,mw), O.dO) * wave(i,m,mw)
        enddo
    enddo
enddo
```


Nonlinear case

Given an exact solution, we can also construct waves, speeds and fluctuations

$$
\mathcal{W}^{1} \equiv q^{*}-q_{\ell} \quad \mid \text { transonic case? }
$$

Waves:

$$
\begin{aligned}
& \mathcal{W}^{2} \equiv q_{r}-q^{*} \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2} \equiv f\left(q_{r}\right)-f\left(q^{*}\right)
\end{aligned}
$$

Fluctuations :

$$
\mathcal{A}^{-} \Delta Q_{i+1 / 2} \equiv f\left(q^{*}\right)-f\left(q_{\ell}\right)
$$

Speeds : Shock speed or average speed in a rarefaction

Connection to flux formulation

Numerical fluxes can be written in terms of fluctuations :

$$
F_{i-1 / 2} \equiv f\left(Q_{i}\right)-\mathcal{A}^{+} \Delta Q_{i-1 / 2}
$$

or

$$
F_{i-1 / 2} \equiv f\left(Q_{i-1}\right)+\mathcal{A}^{-} \Delta Q_{i-1 / 2}
$$

Flux differences can be expressed in terms of left going and right going fluctuations :

$$
F_{i+1 / 2}-F_{i-1 / 2}=\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}
$$

Roe linearization for the non-linear case

$$
q_{t}+f(q)_{x}=0
$$

We solve a linearized system at each cell interface, at each time step

$$
q_{t}+f^{\prime}(\hat{q}) q_{x}=0 \longleftrightarrow q_{t}+A(\hat{q}) q_{x}=0
$$

for "Roe averaged" values \widehat{q}.
For conservation, we need \hat{q} to satisfy :

$$
f\left(q_{r}\right)-f\left(q_{\ell}\right)=f^{\prime}(\hat{q})\left(q_{r}-q_{\ell}\right)
$$

P. Roe (JCP, I98I) showed an approach for many important systems.

Roe averaged values for SWE

- Compute Roe averaged values:

$$
\hat{h}=\frac{h_{\ell}+h_{r}}{2}, \quad \hat{u}=\frac{\sqrt{h_{\ell}} u_{\ell}+\sqrt{h_{r}} u_{r}}{\sqrt{h_{\ell}}+\sqrt{h_{r}}}
$$

- Evaluate eigenvalues and eigenvectors at these values.
- Compute waves, speeds and fluctuations as in the linear case. Does not require the nonlinear root-finder.

Roe averages are also available for the Euler equations and other important physical systems.

Other approximate Riemann solvers are available.

Roe solver in Clawpack

```
do i = 2-mbc,mx+mbc
    # compute Roe-averaged quantities:
    u_roe = (ur/sqrt(hr) + ul/sqrt(hl))/(sqrt(hl) + sqrt(hr))
    h_mean = (hl + hr)/2.d0
    sqrtgh_roe = sqrt(grav*h_mean)
    # wave speeds
    s(i,1) = u_roe - sqrtgh_roe
    s(i,2) = u_roe + sqrtgh_roe
    # compute coeffs in the evector expansion of delta(1),delta(2)
    a1 =(-delta(2) + (u_roe + sqrtgh_roe)*delta(1))/(2*sqrtgh_roe)
    a2 = (delta(2) - (u_roe - sqrtgh_roe)*delta(1))/(2*sqrtgh_roe)
    # finally, compute the waves.
    wave(i,1,1) = a1
    wave(i,2,1) = a1*(u_roe - sqrtgh_roe)
    wave(i,1,2) = a2
    wave(i,2,2) = a2*(u_roe + sqrtgh_roe)
        do mw=1,mwaves
        amdq(i,m) = amdq(i,m) + min(s(i,mw), 0.d0) # wave(i,m,mw)
        apdq(i,m) = apdq(i,m) + max(s(i,mw), 0.d0) * wave(i, m,mw)
enddo
do mw=1,mwaves
```


Using Riemann solvers

Question :There is only one shock and one rarefaction, but we solve a Riemann problem (either exactly, or approximately) at each cell interface. What happens in the smooth regions?

Answer : In smooth regions, shocks/rarefactions are weak. They only have strength on the order of the mesh cell size, i.e.

$$
q_{r}-q_{\ell} \sim O(\Delta x)
$$

Upwind method

First order scheme (200 points)

Upwind method

First order scheme (200 points)

The upwind method

The upwind method

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right) \\
& =Q_{i}^{n}-\frac{\Delta t}{\Delta x} \bar{u}\left(Q_{i}^{n}-Q_{i-1}\right), \quad \text { for } \quad \bar{u}>0
\end{aligned}
$$

is only a first order approximation, but gives a good second order approximation to the equation

$$
q_{t}+\bar{u} q_{x}=\frac{\bar{u} \Delta x}{2}\left(1-\frac{\bar{u} \Delta t}{\Delta x}\right) q_{x x}
$$

The "diffusion term" is proportional to the mesh spacing and the Courant number

Improved accuracy

Why not include these "diffusion" terms in the numerical scheme to get better accuracy?

$$
\begin{gathered}
q_{t}+u q_{x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right) q_{x x} u>0 \\
\frac{Q_{i}^{n+1}-Q_{i}^{n}}{\Delta t}+u \frac{Q_{i}^{n}-Q_{i-1}^{n}}{\Delta x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right)\left(\frac{Q_{i+1}^{n}-2 Q_{i}^{n}+Q_{i-1}^{n}}{(\Delta x)^{2}}\right)
\end{gathered}
$$

Re-arranging terms, we get the second order "Lax-Wendroff" method.

The Lax-Wendroff method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\underbrace{\frac{u \Delta t}{\Delta x}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)}-\frac{1}{2} \frac{u \Delta t}{\Delta x}\left(1-\frac{u \Delta t}{\Delta x}\right)\left(\left(Q_{i+1}^{n}-Q_{i}^{n}\right)-\left(Q_{i}^{n}-Q_{i-1}^{n}\right)\right)
$$

Upwind term

Second order correction

The Lax-Wendroff method gives a third order approximation to the modified equation

$$
q_{t}+u q_{x}=-\frac{u(\Delta x)^{2}}{6}\left(1-\left(\frac{u \Delta t}{\Delta x}\right)^{2}\right) q_{x x x}
$$

Errors are dispersive

Lax Wendroff method

$$
\begin{aligned}
& Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)-\frac{1}{2} \frac{u \Delta t}{\Delta x}\left(1-\frac{u \Delta t}{\Delta x}\right)\left(\left(Q_{i+1}^{n}-Q_{i}^{n}\right)-\left(Q_{i}^{n}-Q_{i-1}^{n}\right)\right) \\
& Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)-\frac{1}{2} \frac{u \Delta t}{\Delta x}(\Delta x-u \Delta t)\left(\sigma_{i}^{n}-\sigma_{i-1}^{n}\right)
\end{aligned}
$$

Slopes

$$
\sigma_{i}^{n}=\frac{Q_{i+1}^{n}-Q_{i}^{n}}{\Delta x}
$$

Waves

$\mathcal{W}_{i-1 / 2}^{n}=Q_{i}^{n}-Q_{i-1}^{n}$

Wave propagation viewpoint

For $u>0$:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(u \mathcal{W}_{i-1 / 2}^{n}\right)-\frac{1}{2} \frac{u \Delta t}{\Delta x}\left(1-\frac{u \Delta t}{\Delta x}\right)\left(\mathcal{W}_{i+1 / 2}^{n}-\mathcal{W}_{i-1 / 2}^{n}\right)
$$

In wave propagation form, we can write this as :

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right)-\frac{\Delta t}{\Delta x}\left(\mathcal{F}_{i+1 / 2}-\mathcal{F}_{i-1 / 2}\right)
$$

where second order correction terms are defined as

$$
\mathcal{F}_{i-1 / 2} \equiv \frac{1}{2}|u|\left(1-\frac{|u| \Delta t}{\Delta x}\right) \mathcal{W}_{i-1 / 2}^{n}
$$

Wave propagation algorithm for systems

For systems (both linear and nonlinear), we have the update formula
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right)-\frac{\Delta t}{\Delta x}\left(\mathcal{F}_{i+1 / 2}-\mathcal{F}_{i-1 / 2}\right)$
where the second order corrections are defined as

$$
\mathcal{F}_{i-1 / 2} \equiv \frac{1}{2} \sum_{p=1}^{m}\left|\lambda^{p}\right|\left(1-\frac{\Delta t}{\Delta x}\left|\lambda^{p}\right|\right) \mathcal{W}_{i-1 / 2}^{p}
$$

The Lax-Wendroff method

Second order terms included (200 points)

The Lax-Wendroff method

Second order terms included (200 points)

First order REA algorithm

Cell averages and piecewise constant reconstruction:

After evolution:

Second order REA algorithm

Cell averages and piecewise linear reconstruction:

After evolution:

Oscillations

Any of these slope choices will give oscillations near discontinuities.

Ex: Lax-Wendroff:

Lax-Wendroff slope

High resolution methods

Want to use slope where solution is smooth for "second-order" accuracy.

Where solution is not smooth, adding slope corrections gives oscillations.

Limit the slope based on the behavior of the solution.

$$
\sigma_{i}^{n}=\left(\frac{Q_{i+1}^{n}-Q_{i}^{n}}{\Delta x}\right) \Phi_{i}^{n}
$$

$\Phi=1 \Longrightarrow$ Lax-Wendroff,
$\Phi=0 \Longrightarrow$ upwind.

Minmod slope

$$
\operatorname{minmod}(a, b)= \begin{cases}a & \text { if }|a|<|b| \text { and } a b>0 \\ b & \text { if }|b|<|a| \text { and } a b>0 \\ 0 & \text { if } a b \leq 0\end{cases}
$$

Slope:

$$
\begin{aligned}
\sigma_{i}^{n} & =\operatorname{minmod}\left(\left(Q_{i}^{n}-Q_{i-1}^{n}\right) / \Delta x,\left(Q_{i+1}^{n}-Q_{i}^{n}\right) / \Delta x\right) \\
& =\left(\frac{Q_{i+1}^{n}-Q_{i}^{n}}{\Delta x}\right) \Phi\left(\theta_{i}^{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\theta_{i}^{n} & =\frac{Q_{i}^{n}-Q_{i-1}^{n}}{Q_{i+1}^{n}-Q_{i}^{n}} \\
\Phi(\theta) & =\operatorname{minmod}(\theta, 1) \quad 0 \leq \Phi \leq 1
\end{aligned}
$$

Minmod reconstruction

Lax-Wendroff reconstruction:

Minmod reconstruction:

Limiters

Linear methods:

$$
\begin{aligned}
\text { upwind : } & \phi(\theta)=0 \\
\text { Lax-Wendroff : } & \phi(\theta)=1 \\
\text { Beam-Warming : } & \phi(\theta)=\theta \\
\text { Fromm : } & \phi(\theta)=\frac{1}{2}(1+\theta)
\end{aligned}
$$

High-resolution limiters:

$$
\begin{aligned}
\operatorname{minmod}: & \phi(\theta)=\operatorname{minmod}(1, \theta) \\
\text { superbee : } & \phi(\theta)=\max (0, \min (1,2 \theta), \min (2, \theta)) \\
\mathrm{MC}: & \phi(\theta)=\max (0, \min ((1+\theta) / 2,2,2 \theta))
\end{aligned}
$$

van Leer : $\quad \phi(\theta)=\frac{\theta+|\theta|}{1+|\theta|}$

Hierarchy of methods for systems

Waves

$$
\mathcal{W}_{i-1 / 2}^{p} \equiv \alpha^{p} r^{p}
$$

Fluctuations $\quad \mathcal{A}^{+} \Delta Q_{i-1 / 2} \equiv \sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \mathcal{W}_{i-1 / 2} \quad \mathcal{A}^{-} \Delta Q_{i-1 / 2} \equiv \sum_{p=1}^{m}\left(\lambda^{p}\right)^{-} \mathcal{W}_{i-1 / 2}$
Upwind

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right)
$$

Lax Wendroff

$$
Q_{i}^{n+1}=Q_{i}^{n}-(\text { upwind })-\frac{\Delta t}{\Delta x}\left(\mathcal{F}_{i+1 / 2}-\mathcal{F}_{i-1 / 2}\right)
$$

High Resolution $\quad Q_{i}^{n+1}=Q_{i}^{n}-($ upwind $)-\frac{\Delta t}{\Delta x}\left(\widetilde{\mathcal{F}}_{i+1 / 2}-\widetilde{\mathcal{F}}_{i-1 / 2}\right)$

$$
\mathcal{F}_{i-1 / 2} \equiv \frac{1}{2} \sum_{p=1}^{m}\left|\lambda^{p}\right|\left(1-\frac{\Delta t}{\Delta x}\left|\lambda^{p}\right|\right) \mathcal{W}_{i-1 / 2}^{p} \quad \widetilde{\mathcal{F}}_{i-1 / 2} \equiv \frac{1}{2} \sum_{p=1}^{m}\left|\lambda^{p}\right|\left(1-\frac{\Delta t}{\Delta x}\left|\lambda^{p}\right|\right) \Phi \mathcal{W}_{i-1 / 2}^{p}
$$

High resolution methods

- Wave limiters reduce oscillations near discontinuities, but preserve second order accuracy in smooth regions
- Methods are no longer formally second order accurate, but are "high resolution".
- Often magnitude of the error is reduced by the use of limiters,
- Useful even for linear problems such as advection
- Clawpack has several limiters available
- Limiters only affect second order correction terms; first order method does not use limiters

High resolution methods

Second order method with limiter (200 points)

High resolution methods

Second order method with limiter (200 points)

What next?

IV How do these Riemann solvers make it into an actual code? Clawpack is based on solving Riemann problems.
IV Do we actually solve the non-linear problem at every grid cell interface? No! One can use approximate Riemann solvers.

V How accurate are these methods? (second order, or high resolution with limiters)
\square Well-balancing
What do we do in two-dimensions?
DAdaptive mesh refinement?

