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Presentation Outline
Overview of water wave modeling 

approaches
Review of depth-integrated 

theories
Numerical modeling schemes
Validation and Benchmarking



Available Models - Overview
 Shallow water (2HD, >25h, 1CU)

 Earthquake tsunami source 
 Long Wave, Deep ocean propagation
 Large-scale (O(1 km)) runup patterns

 Boussinesq (2HD, >2h, 50CU)
Many landslide tsunami sources
 Dispersive (short) wave propagation

 but if we want to model dispersion, we have to be 
able to resolve dispersive waves, x~O(h)

 Nearshore, nonlinear evolution
 Empirical, but calibrated breaking models

 Navier-Stokes (3D, 500CU)
 Anything

 have to resolve the scale of interest
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History of Depth-Integrated Approach
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• What is a “depth-integrated” equation?
– A quick derivation:
– Shallow water wave equations:

–Accurate only for very long waves, kh<~0.25 
(wavelength > ~ 25 water depths)



History of Depth-Integrated Approach
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Should be small compared to A(x,t)

– Boussinesq Equations (Peregrine, 1967; Ngowu, 1993):

– Functions B, C lead to 3rd order spatial derivatives in model (eqns)
– Accurate for long and intermediate depth waves, kh<~3 

(wavelength > ~ 2 water depths)



– High-Order Boussinesq Equations (Gobbi et al., 2000):

– Accurate for long, intermediate, and moderately deep waves, 
kh<~6 (wavelength > ~ 1 water depth)

– Functions D, E lead to 5th order spatial derivatives in model 

History of Depth-Integrated Approach
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History of Depth-Integrated Approach
• Difficult to solve the high-order model

– Momentum equation:

– To solve consistently, numerical truncation error (Taylor series 
error) for leading term must be less important than included terms.

• For example: 2nd order in space finite difference:

• High-order model requires use of 6-point difference formulas 
(x6 accuracy)

• Additionally, time integration would require a t6 accurate 
scheme
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…but if we want a practical nearshore model, what 
about mixing, rotation, and turbulence??

• Fundamentally, the perturbation-type Boussinesq 
derivation is a small-parameter (h/L) expansion of 
potential flow

• To derive the analytic vertical profile of velocity, 
some assumption of the vertical structure must be 
made
– Horizontal vorticity at the order of analysis=0

• Typical Boussinesq-type models include only the 
expansion terms to n=1

• High-order models include to n=2
– In the limit as n -> infinity x=y≡0.  
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If any two components of 
vorticity are zero, then the full 
vorticity transport equations 

show that, if the flow has ANY 
vertical structure, the remaining 
vorticity component must also 

be zero
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If any two components of 
vorticity are zero, then the full 
vorticity transport equations 

show that, if the flow has ANY 
vertical structure, the remaining 
vorticity component must also 

be zero

Under what modeling 
conditions does the flow have 

no vertical structure?



For approximate solutions:

where n is the order of approximation, e.g. n=1 for shallow water, n=2 for Boussinesq, 
etc.

– As we increase the order of approximation, vertical 
vorticity should become smaller and smaller

– Regardless of how we start (potential flow or Eulers 
equations) by assuming zero horizontal vorticity to 
the order of derived equations, full equations tell us 
we are implicitly making a statement about vertical 
vorticity.  Our physical asymptote is potential flow…

*shallow water (n=1), z=O(1)



Current & Vertical Vorticity Modeling
Can we vs. Should we?

• Boussinesq is an expansion of potential flow
– In the limit as n -> infinity
x=y≡0.  If this is true, then
z≡0 as well.  Thus at the mathematical limit of 
the equations, they are irrotational

• Two choices:
– Think practically (be an engineer) - if it 

works…
• Similar arguments made for pushing the 

dispersion accuracy limit past kh=1
– Go back to the beginning of the derivation 

and figure out a way to include horizontal 
vorticity explicitly in the physics
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Including Horizontal Vorticity in the Boussinesq-type 
Derivation

 First, realize that with a single-fluid layer, the source of horizontal vorticity 
will be through no-slip boundary shear (forget about breaking…)

 Need to include viscous effects

 Start with spatially filtered N-S equations, and then depth-average

Stochastic BSM by 
Hinterberger, Frohlich, Rodi
(2007)



Horizontal vorticity effects

Linear shear distribution e.g. 
Rodi (1980)



: Elder (1959)

Horizontal vorticity effects



: Smagorinsky model (1963)

Horizontal vorticity effects



Horizontal vorticity effects



Inclusion of Rotational & Turbulent Effects in 
Depth-Integrated Models

• Theory: Kim et al. (2009, Ocean Modelling); Kim & Lynett (2011, Physics of 
Fluids)





• Theory: Kim et al. (2009, Ocean Modelling); Kim & Lynett (2011, Physics of 
Fluids)

O(1) Shallow Water terms

O(2) Dispersive Corrections

O() Turbulent-Rotational Corrections

O() 
Turbulent Mixing 

in Horizontal 
Plane. Eddy 

viscosity closed 
with Smagorinsky 

model

O() 
Turbulent 
Mixing in 

Vertical Plane. 
Eddy viscosity 

closed with 
Elder’s model

O() 
Bottom 
Stress, 

closed with 
Mannings, 
Moody, etc.

O() Depth-
averaging 

stress 
terms, 

closed with 
BSM

Inclusion of Rotational & Turbulent Effects in 
Depth-Integrated Models



Boussinesq-Numerical Algorithm
COULWAVE

Time integration :

4th-order Predictor–Corrector scheme

Leading-order term : 

4th-order MUSCL-TVD scheme, FVM

Yamamoto & Daiguji (1993)

High-order term : 

FVM discretization by Lacor et al.(2004)

4th-order or 2nd-order accuracy



The whole domain is divided into several sub-domains, 
each is processed in a single processor.

WHOLE DOMAIN
SUB-DOMAINS

DECOMPOSE

Communication between adjacent processors

Communication in parallel tridiagonal solver

Parallel Boussinesq Approach



Benchmarking Coastal Wave Models
 Community effort to standardize runup 

benchmarking of tsunami and wave codes (Long 
Wave Runup Workshops)

 NOAA has generated a validation procedure, for 
which all tsunami codes used for NOAA (e.g. 
National Tsunami Hazard Mitigation Program) 
purposes must satisfactorily complete

 Rely heavily on highly-controlled laboratory data and 
analytical solutions
 Uncertainties and lack of precision in field runup data 

 Here, provide an overview of the most common 
benchmark cases
 So of these can be simulated during the lab sessions later



 Carrier and Greenspan –
analytic solution to nonlinear 
shallow water equations for 
single harmonic wave runup 
and rundown on a plane beach

 Numerical simulation:
 Wave amplitude = 0.003 m, 

wave period = 10 s
 Still water depth = 0.5 m
 Beach slope = 1:25
 x = 0.02 m

Analytic runup 
shown by dashed 

line

Standard Runup Benchmarks – 1HD



Standard Runup Benchmarks – 1HD
 Analytic solution to NLSW for arbitrary initial condition

 Carrier et al (2004)



 Analytic solution to NLSW for 
arbitrary initial condition
 Carrier et al (2004)

Standard Runup Benchmarks – 1HD



 Runup of solitary waves
 Comparison with experimental data taken from 

Synolakis (1987)
 Numerical simulation parameters:

 Wave height / water depth = 0.4
 Beach slope = 1:20
 Wave breaking model – “Eddy-viscosity” model 

(e.g. Kennedy et al., 2000)

Standard Runup Benchmarks – 1HD
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 Runup of solitary waves
 Comparison with 

experimental data taken 
from Synolakis (1987)

 Numerical simulation 
parameters:
 Wave height / water 

depth = 0.04
 Beach slope = 1:20

Comparison with 
experimental 
data:

Numerical results

Experimental 
data

Standard Runup Benchmarks – 1HD



 Runup of breaking 
solitary waves
 Wave height / 

water depth = 
0.28

 Beach slope = 
1:20

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

-0.1
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0.4
z/

h
VOF 2DVert          
Experiment          
Extrapolation Method
Lagragian Bouss     
Stair-Stepped NLSW   

Standard Runup Benchmarks – 1HD



 Runup of solitary wave 
around a circular island
 Experimental data taken 

from Liu et al. (1995)

 Physical setup:
 Still water depth = 0.32 

m
 Slope of side walls = 1:4
 Depth profile 

E
levation (m

)
Standard Runup Benchmarks – 2HD



 Numerical simulation of 
conical island runup:
 Wave amplitude = 

0.028 m
 Still water depth = 

0.32 m
 Beach slope = 1:4
 x = 0.1 m

Free 
surface

(island is 
black)

Inundation

Initial dry land 
is shown in 

red –
inundation is 
shown by the 

green

Standard Runup Benchmarks – 2HD



 Runup of solitary 
wave around a 
circular island
 Experimental data 

taken from Liu et 
al. (1995)

Time series 
comparisons 

experimental

numerical

1

43

2

island
1 2

3

4

Incident 
wave 
direction

Standard Runup Benchmarks – 2HD



 Runup of solitary 
wave around a 
circular island
 Experimental data 

taken from Liu et 
al. (1995)

Inundation 
comparisons 

Black dots represent 
the maximum 

experimental runup, 
while the light red 

shows the inundated 
area

Standard Runup Benchmarks – 2HD



 Tsunami Approach on Complex Bathymetry (lab scale recreation of 
tsunami flooding near Monai on Okushiri Island due to 1993 tsunami)
 Plan view

Standard Runup Benchmarks – 2HD



 Tsunami Approach on 
Complex Bathymetry
 Comparison w/ video 

data

Standard Runup Benchmarks – 2HD



 High-order (two-layer) model and conventional order (highly nonlinear 
version of Nwogu) model will be compared with experiments
 All numerical simulation parameters identical 

 Experiments to be compared:
 Regular waves breaking on a planar slope (Hansen & Svendsen, 

1979)
 Cnoidal waves breaking on a planar slope (Ting & Kirby, 1995, 1996)
 Regular waves breaking over a submerged bar (Dingemans, 1994)
 Regular and irregular waves breaking onto a shelf (Lee, 2005)
 Irregular waves breaking over real bathymetry – field data 

(Raubenhiemer, 2002)

Standard Wave Evolution Benchmarks – 1HD



Regular Wave Breaking

exp. data

one-layer 
(Boussinesq)

two-layer



exp. data

one-layer 
(Boussinesq)

two-layer

Regular Wave Breaking



Cnoidal Wave Breaking



Cnoidal Wave Breaking - Spilling

exp. data

one-layer 
(Boussinesq)

two-layer
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Evolution over a 3D Shoal
 Vincent & Briggs (1989) experiments

Plan View

Side View

Standard Wave Evolution Benchmarks – 2HD



 Numerical simulation: a/h=0.0427, kh=1.92

Standard Wave Evolution Benchmarks – 2HD
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 Compare One-Layer (Boussinesq), Two-Layer Model, and Experiment 
along centerline of basin

Experimen
t

Boussines
q

Two-Layer

kh=4.4

Time
?

Standard Wave Evolution Benchmarks – 2HD



u1 = 0.111m/s, u2 = 0.264m/s, Re = 5550

Experiment by Babarutsi and Chu (1998)

http://ceprofs.tamu.edu/plynett/isec/shear.avi

Shallow Turbulence Benchmarks



with BSM without BSM

with BSM without BSM

Shallow Turbulence Benchmarks



 Basin: 
48.8m x 26.5m x 2.1m

 Piston-type wavemaker

 Bridge spanning width 
of basin

51

 Complex shelf

 Planar beach

 Water depth: 0.78m

Wave & Shallow Turbulence Benchmark



Wave & Shallow Turbulence Benchmark



Wave & Shallow Turbulence Benchmark
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Future Work – This Summer

 Add a bump to the apex of the shelf

http://ceprofs.tamu.edu/plynett/isec/P_NEEStsunamos3.E_DyeStudy.T_Trial06.cam11.avi



Flow through Complex Topography Benchmark
Large-Scale Laboratory Experiments



• Co-located wave gage and ADV 
measurements along transects

• Overhead optical measurements for front 
tracking and bore speed

• 5-40 trials used to calculate mean properties
• Max stroke wave pulse, ~20 cm, period ~ 5 

sec

Flow through Complex Topography Benchmark
Large-Scale Laboratory Experiments



• Co-located wave gage and ADV 
measurements along transects

• Overhead optical measurements for front 
tracking and bore speed

• 5-40 trials used to calculate mean properties
• Max stroke wave pulse, ~20 cm, period ~ 5 

sec

Flow through Complex Topography Benchmark
Large-Scale Laboratory Experiments





Flow through Complex Topography Benchmark
Experiment – Simulation Comparisons

Optical, overhead camera

ADV

Simulation



Simulation

Physical Model

Flow through Complex Topography Benchmark
Experiment – Simulation Comparisons



Conclusions
 Provide a background on state-of-the-art coastal wave 

modeling
 Many different “high-order” corrections to the traditional 

Boussinesq model
 Better linear (and nonlinear) dispersion
O(1) nonlinearity (to order of included dispersion)
 Rotational and turbulent effects

 All come with additional (and sometimes substantial) 
computational cost
 Is the magnitude of the correction greater than uncertainties 

in specifying the physical problem?
 Breaking models will always be highly ad-hoc when used 

with depth-integrated models
 Science vs Engineering



“Boussinesq” Equations
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Continuity Equation New terms, 
due to the 

Boussinesq-
type derivation



“Boussinesq” Equations
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History of Depth-Integrated Approach
• What is a “depth-integrated” equation??

– Deriving the shallow water wave equations:
• Assumption or scaling gives:
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