
GPU Computing with CUDA
Lecture 2 - CUDA Memories

Christopher Cooper 
Boston University

August, 2011
UTFSM, Valparaíso, Chile

1



Outline of lecture

‣ Recap of Lecture 1

‣Warp scheduling

‣CUDA Memory hierarchy

‣ Introduction to the Finite Difference Method

2



Recap

‣GPU 

- A real alternative in scientific computing

- Massively parallel commodity hardware

‣Market driven development

‣ Cheap!

‣CUDA

- NVIDIA technology capable of programming massively parallel 
processors with general purpose

- C/C++ with extensions

3



Recap

‣GPU chip

- Designed for high throughput 
tasks

- Many simple cores

- Fermi:
‣ 16 SMs
- 32 SPs (cores)
- Shared, registers, cache
- SFU, CU
‣ 1TFLOP peak throughput
‣ 144GB/s peak bandwidth

4

SM

SP



Recap

‣ Programming model 

- Based on threads

- Thread hierarchy: grouped in thread blocks

- Threads in a thread block can communicate

‣Challenge: parallel thinking

- Data parallelism

- Load balancing

- Conflicts

- Latency hiding
5



CUDA - Programming model

‣Connecting the hardware and the software

6

Software representation

Hardware



CUDA - Programming model

‣Connecting the hardware and the software

6

Thread blockThread

Software representation

Hardware



CUDA - Programming model

‣Connecting the hardware and the software

6

Software representation

Hardware



CUDA - Programming model

‣Connecting the hardware and the software

6

Software representation

Hardware



CUDA - Programming model

‣Connecting the hardware and the software

6

Software representation

Hardware



How a Streaming Multiprocessor (SM) works

‣CUDA Threads are grouped in thread blocks

- All threads of the same thread block are executed in the same SM at 
the same time

‣ SMs have shared memory, then threads within a thread block can 
communicate

- The entirety of the threads of a thread block must be executed 
before there is space to schedule another thread block

7



How a Streaming Multiprocessor (SM) works

‣Hardware schedules thread blocks onto available SMs

- No guarantee of order of execution

- If a SM has more resources the hardware will schedule more blocks

8SM Block 1

Block 7

Block 15

Block 100



How a Streaming Multiprocessor (SM) works

‣Hardware schedules thread blocks onto available SMs

- No guarantee of order of execution

- If a SM has more resources the hardware will schedule more blocks

8SM

Block 1
Block 7

Block 15

Block 100



How a Streaming Multiprocessor (SM) works

‣Hardware schedules thread blocks onto available SMs

- No guarantee of order of execution

- If a SM has more resources the hardware will schedule more blocks

8SM

Block 1

Block 7
Block 15

Block 100



How a Streaming Multiprocessor (SM) works

‣Hardware schedules thread blocks onto available SMs

- No guarantee of order of execution

- If a SM has more resources the hardware will schedule more blocks

8SM

Block 1

Block 7

Block 15

Block 100



How a Streaming Multiprocessor (SM) works

‣Hardware schedules thread blocks onto available SMs

- No guarantee of order of execution

- If a SM has more resources the hardware will schedule more blocks

8SM

Block 7

Block 15

Block 100



How a Streaming Multiprocessor (SM) works

‣Hardware schedules thread blocks onto available SMs

- No guarantee of order of execution

- If a SM has more resources the hardware will schedule more blocks

8SM

Block 7

Block 15

Block 100



Warps

‣ Inside the SM, threads are launched in groups of 32 called warps

- Warps share the control part (warp scheduler)

- At any time, only one warp is executed per SM

- Threads in a warp will be executing the same instruction

- Half warps for compute capability 1.X

- Fermi:

‣Maximum number of active threads 1024*8*32 = 262144

9



Warps

‣ Inside the SM, threads are launched in groups of 32 called warps

- Warps share the control part (warp scheduler)

- At any time, only one warp is executed per SM

- Threads in a warp will be executing the same instruction

- Half warps for compute capability 1.X

- Fermi:

‣Maximum number of active threads 1024*8*32 = 262144

9

Max threads 
per block



Warps

‣ Inside the SM, threads are launched in groups of 32 called warps

- Warps share the control part (warp scheduler)

- At any time, only one warp is executed per SM

- Threads in a warp will be executing the same instruction

- Half warps for compute capability 1.X

- Fermi:

‣Maximum number of active threads 1024*8*32 = 262144

9

Max blocks 
per SMMax threads 

per block



Warps

‣ Inside the SM, threads are launched in groups of 32 called warps

- Warps share the control part (warp scheduler)

- At any time, only one warp is executed per SM

- Threads in a warp will be executing the same instruction

- Half warps for compute capability 1.X

- Fermi:

‣Maximum number of active threads 1024*8*32 = 262144

9

SMs
Max blocks 

per SMMax threads 
per block



Warp designation

‣Hardware separates threads of a 
block into warps

- All threads in a warp correspond 
to the same thread block

- Threads are placed in a warp 
sequentially

- Threads are scheduled in warps

10

Block N

16x8 TB

Block N, Warp 1

Block N, Warp 2

Block N, Warp 3

Block N, Warp 4 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!



Warp scheduling

‣ The SM implements a zero-overhead warp scheduling

- Warps whose next instruction has its operands ready for 
consumption are eligible for execution

- Eligible warps are selected for execution on a prioritized scheduling 
policy

- All threads in a warp execute the same instruction

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!



Warp scheduling

‣ Fermi

- Double warp scheduler

- Each SM has two warp 
schedulers and two 
instruction units

12



Memory hierarchy

‣CUDA works in both the CPU and GPU

- One has to keep track of which memory is operating on 
(host - device)

- Within the GPU there are also different memory spaces

13



Memory hierarchy

‣Global memory

- Main GPU memory

- Communicates with host

- Can be seen by all threads

- Order of GB

- Off chip, slow (~400 
cycles)

14
__device__ float variable;



Memory hierarchy

‣ Shared memory

- Per SM

- Seen by threads of the same thread block

- Order of kB

- On chip, fast (~4 cycles)

‣ Registers

- Private to each thread

- On chip, fast

15

float variable;

__shared__ float variable;



Memory hierarchy

‣ Local memory

- Private to each thread

- Off chip, slow

- Register overflows

‣Constant memory

- Read only

- Off chip, but fast (cached)

- Seen by all threads

- 64kB with 8kB cache
16

float variable [10];

__constant__ float variable;



Memory hierarchy

‣ Texture memory

- Seen by all threads

- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global

17

texture<type, dim> tex_var;
cudaChannelFormatDesc();
cudaBindTexture2D(...);
tex2D(tex_var, x_index, y_index); 



Memory hierarchy

‣ Texture memory

- Seen by all threads

- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global

17

texture<type, dim> tex_var;
cudaChannelFormatDesc();
cudaBindTexture2D(...);
tex2D(tex_var, x_index, y_index); 

Initialize



Memory hierarchy

‣ Texture memory

- Seen by all threads

- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global

17

texture<type, dim> tex_var;
cudaChannelFormatDesc();
cudaBindTexture2D(...);
tex2D(tex_var, x_index, y_index); 

Initialize

Options



Memory hierarchy

‣ Texture memory

- Seen by all threads

- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global

17

texture<type, dim> tex_var;
cudaChannelFormatDesc();
cudaBindTexture2D(...);
tex2D(tex_var, x_index, y_index); 

Initialize

Options

Bind



Memory hierarchy

‣ Texture memory

- Seen by all threads

- Read only

- Off chip, but fast (cached) if cache hit

- Cache optimized for 2D locality

- Binds to global

17

texture<type, dim> tex_var;
cudaChannelFormatDesc();
cudaBindTexture2D(...);
tex2D(tex_var, x_index, y_index); 

Initialize

Options

Bind

Fetch



Memory hierarchy

18



Memory hierarchy

‣Case of Fermi

- Added an L1 cache to each SM

- Shared + cache = 64kB:

‣ Shared = 48kB, cache = 16kB

‣ Shared = 16kB, cache = 48kB

19



Memory hierarchy

‣Use you memory strategically

- Read only: __constant__ (fast)

- Read/write and communicate within a block: __shared__ (fast and 
communication)

- Read/write inside thread: registers (fast)

- Data locality: texture

20



Resource limits

‣Number of thread blocks per SM at the same time is limited by

- Shared memory usage

- Registers

- No more than 8 thread blocks per SM

- Number of threads

21



Resource limits - Examples

Number of blocks

How big should my blocks be? 8x8, 16x16 or 64x64?

‣ 8x8
8*8 = 64 threads per block, 1024/64 = 16 blocks. An SM can have up 
to 8 blocks: only 512 threads will be active at the same time

‣ 16x16
16*16 = 256 threads per block, 1024/256 = 4 blocks. An SM can take 
all blocks, then all 1024 threads will be active and achieve full capacity 
unless other resource overrule

‣ 64x64
64*64 = 4096 threads per block: doesn’t fit in a SM

22

Max threads 
per block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!



Resource limits - Examples

Registers

We have a kernel that uses 10 registers. With 16x16 block, how many 
blocks can run in G80 (max 8192 registers per SM, 768 threads per 
SM)?

10*16*16 = 2560. SM can hold 8192/2560 = 3 blocks, meaning we will 
use 3*16*16 = 768 threads, which is within limits.

If we add one more register, the number of registers grows to 11*16*16 
= 2816. SM can hold 8192/2816 = 2 blocks, meaning we will use 
2*16*15 = 512 threads. Now as less threads are running per SM is more 
difficult to have enough warps to have the GPU always busy!

23© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!



Introduction to Finite Difference Method

‣ Throughout the course many examples will be taken from Finite 
Difference Method

‣Also, next lab involves implementing a stencil code

‣ Just want to make sure we’re all in the same page!

24



Introduction to Finite Difference Method

‣ Finite Difference Method (FDM) is a numerical method for solution 
of differential equations

‣Domain is discretized with a mesh

‣Derivative at a node are approximated by the linear combination of 
the values of points nearby (including itself)

25

Example using first order 
one sided difference

∂y

∂x i
≈ yi − yi−1

xi − xi−1



FDM - Accuracy and order

‣ From Taylor’s polynomial, we get

‣ Sources of error

- Roundoff (Machine)

- Truncation (R(x)): gives the order of the method

26

f(x0 + h) = f(x0) + f ′(x0) · h + R1(x)

f ′(x0) =
f(a + h)− f(a)

h
−R(x)



FDM - Stability

‣ Stability of the algorithm may be conditional

‣ Explicit method

‣ Implicit

‣Crank Nicolson

27

un+1
j − un

j

k
=

un
j+1 − 2un

j + un
j−1

h2

∂u

∂t
=

∂2u

∂x2

Conditionally stable
k

h2
< 0.5

un+1
j − un

j

k
=

un+1
j+1 − 2un+1

j + un+1
j−1

h2
Unconditionally stable

un+1
j − un

j

k
=

1
2

(
un

j+1 − 2un
j + un

j−1

h2
+

un+1
j+1 − 2un+1

j + un+1
j−1

h2

)

Unconditionally stable



FDM - 2D example

‣We’re going to be working with this example in the labs

‣ Explicit diffusion

28

un+1
i,j = un

i,j +
αk

h2
(un

i,j+1 + un
i,j−1 + un

i+1,j + un
i−1,j − 4un

i,j)

∂u

∂t
= α

∂2u

∂x2



FDM on the GPU

‣Mapping the physical problem to the software and hardware

‣ Each thread will operate on one node: node indexing groups them 
naturally!

29

un+1
i,j = un

i,j +
αk

h2
(un

i,j+1 + un
i,j−1 + un

i+1,j + un
i−1,j − 4un

i,j)



FDM on the GPU

‣Mapping the physical problem to the software and hardware

‣ Each thread will operate on one node: node indexing groups them 
naturally!

29

un+1
i,j = un

i,j +
αk

h2
(un

i,j+1 + un
i,j−1 + un

i+1,j + un
i−1,j − 4un

i,j)

Thread blockThread = node



FDM on the GPU

‣Mapping the physical problem to the software and hardware

‣ Each thread will operate on one node: node indexing groups them 
naturally!

29

un+1
i,j = un

i,j +
αk

h2
(un

i,j+1 + un
i,j−1 + un

i+1,j + un
i−1,j − 4un

i,j)


