
Power Aware Computing Hardware Management Software for Android Mobile Systems
Ari Cotler[1,2], Dean Shi[2], Onur Sahin[2], Ayse Coskun[2]

Glenbrook North High School, 2300 Shermer Road, Northbrook, IL 60062[1]; Boston University Electrical and Computer 

Engineering Department, 8 St Marys St, Boston, MA 02215, PHO340[2]

Abstract
Hardware resource management software has not been optimized for maximum 

power efficiency for Android mobile devices, resulting in shorter battery discharging 

time. We created an Android application that dynamically manages the power usage 

of the central processing unit (CPU) and the graphics processing unit (GPU). The 

application allows the user to independently switch on or off each core of the quad 

core processor as well as to implement CPU and GPU frequency changes from 

sliders. In order to test the power efficiency of the application, we used a Wattsup

power meter which logs power consumption. We tested Antutu, a commonly used 

CPU benchmark test and Smash Hit, an Android game, with our automatic 

temperature and power data recording scripts both with the Android system CPU and 

GPU governors activated as well as with different power profiles. The data shows that 

it is more efficient to run with a fewer number of active cores and at lower frequencies. 

However, if less cores are used to split the workload, they are more likely to overheat, 

leading to performance loss and the need for thermal management. The data also 

shows that the difference between running cores at medium or high frequency is 

negligible as the power consumption differed by less than a watt. A new approach to 

resource and power management for Android mobile devices using custom governors 

to automate hardware changes can increase power efficiency. The system would be 

able to efficiently manage hardware usage, reduce power consumption and ultimately 

increase battery life.

Objective
To monitor Android Mobile device hardware usage and increase power efficiency 

by implementing core and frequency changes.

Introduction
• Current Android hardware management software is suboptimal such that 

Android mobile devices consume more power than necessary, limiting battery 

runtime.

• Development of custom resource and power management software to 

manage device power consumption can significantly increase battery runtime.

• When the Central Processing Unit (CPU) or Graphics Processing Unit (GPU) 

are in high demand, the Android device consumes more power.

• However, not all cores of the CPU need to be active or running at full 

frequency when a user performs simple tasks such as checking email or using 

a social media application.

• By dynamically scaling CPU and GPU frequencies and controlling which CPU 

cores are active at any given time, we are able to increase power efficiency 

without decreasing functionality.

• We are currently developing a system governor for the Android operating 

system to increase battery life and lower operating temperature so as to 

promote maximum hardware efficiency.

References
1. Ayse K. Coskun, “Power Management in Mobile Devices” Circuit Celler 288, 2014

2. Yang, Lei, et al. "HAPPE: Human and Application-Driven Frequency Scaling for Processor Power Efficiency." Mobile Computing,

IEEE Transactions on 12.8 (2013): 1546-1557.

Results
• Power consumption increased as more cores were activated. For each trial, the core(s) running on the 

lowest frequencies used the least amount of power throughout the duration of the trial (Figure 6).

• Power consumption differed only by a fraction of a watt when the CPU was run at medium or high 

frequency (Figures 7 and 8). In contrast, running the cores at medium or high frequency required two 

or more watts of power than running the cores at low frequency. 

• In a control trial using Antutu with the Android mpdecision CPU governor active, power consumption 

peaked at 13.2 watts and then decreased (Figure 9). When the governors were disabled and all cores 

were activated on high, the peak power was only 9.2 watts and remained constant while the 

application was running, resulting in greater overall consumption (Figure 8).

• Power consumption was compared using three and four cores at high frequencies. When four cores 

were used, power peaked at 9.2 watts and remained relatively constant (Figure 8). However, when 

three cores were used, power peaked at 9.3 watts but then rapidly decreased indicating less overall 

power usage with three cores (Figure 10). 

• Core temperatures increased rapidly when the CPU was in high demand and then decreased after the 

period of utilization (Figures 11, 12 and 13).

• Core temperatures increased more rapidly with three cores running at high frequency (Figure 12) 

compared to four cores (Figure 13). 

3.2

3.8

4.4

5

5.6

6.2

6.8

7.4

8

0 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

W
at

ts
)

Time (Seconds)

Figure 6. Power usage with four cores
(cores 0-3) running Antutu at low
frequency

3.2
3.8
4.4

5
5.6
6.2
6.8
7.4

8
8.6
9.2
9.8

10.4

0 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

W
at

ts
)

Time (Seconds)

Figure 7. Power usage with four cores
(cores 0-3) running Antutu at medium
frequency

3.2
3.8
4.4

5
5.6
6.2
6.8
7.4

8
8.6
9.2
9.8

0 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

W
at

ts
)

Time (Seconds)

Figure 8. Power usage with four cores
(cores 0-3) running Antutu at high
frequency

3.2
4.2
5.2
6.2
7.2
8.2
9.2

10.2
11.2
12.2
13.2
14.2
15.2

0 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

W
at

ts
)

Time (Seconds)

Figure 9. Power usage with Android
default governor mpdecision active

3.2
3.8
4.4

5
5.6
6.2
6.8
7.4

8
8.6
9.2
9.8

0 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

W
at

ts
)

Time (Seconds)

Figure 10. Power usage with three cores
(cores 0-2) running Antutu at high frequency

50

55

60

65

70

75

80

0 10 20 30 40 50 60 70 80

Te
m

p
er

at
u

re
 (

C
)

Time (Seconds)

Core 0

Core 1

Core 2

Core 3

Figure 11. Core temperatures with Android
default governor mpdecision active

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Te
m

p
er

at
u

re
 (

C
)

Time (Seconds)

Core 0

Core 1

Core 2

Core 3

Figure 12. Core temperatures with three
cores (cores 0-2) running Smash Hit at
high frequency

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Te
m

p
er

at
u

re
 (

C
)

Time (Seconds)

Core 0

Core 1

Core 2

Core 3

Figure 13. Core temperatures with
four cores (cores 0-3) running Smash
Hit at high frequency

Conclusion
Power can be conserved when a user is running a non CPU or GPU intensive application by setting the CPU and 

GPU to lower frequencies and turning off unused cores. However, if less cores are available to spit the workload, 

the cores will heat up more quickly, which may cause performance loss. Device performance indicators such as 

frame rate and application runtime will be tested to see how the core and frequency changes affect the user’s 

experience. The next step will be to develop a custom kernel in which hardware and frequency changes occur 

automatically with custom governors so the user does not need to initiate the core and frequency changes. The 

long-term goal is to develop an automated system to efficiently manage hardware usage, reduce power 

consumption and ultimately increase battery life.

Figure 4. Smash Hit, a CPU and GPU intensive game Figure 5. Antutu, a CPU intensive benchmark test

Methods and Equipment
• Study procedures were performed with a Qualcomm development board 

with a quad core Snapdragon 600 CPU and an integrated Adreno 320 

GPU (Figure 1). A block diagram of the development board is presented 

in figure 2.

• Buttons were created to disable the Android operating system default 

CPU and GPU governors so as to implement custom power profiles 

(Figure 3).

• A Wattsup power meter was used to log data every second over a set 

interval of time so as to keep a common timescale. 

• Two applications were used for testing; Antutu (Figure 4), a commonly 

used CPU benchmark test and Smash Hit (Figure 5), a CPU and GPU 

intensive game. 

• A twenty second period of inactivity was used before and 

after each trial to establish a baseline for trend comparison. 

• Shell commands were used to read the system’s core and GPU 

temperature files and send the data to a log file. 

• Timestamps were used to track the logging intervals.

• An “if statement” was added to the program to set the four cores to their 

lowest frequency if the temperature exceeded 90o C, allowing the cores 

to cool down to prevent the board from crashing. 

Figure 3. Qualcomm development board

Figure 1. The CPU/GPU scaling application Figure 2. IFC6410 development 

board block diagram


