MODULE 1: INTRODUCTION SUMMER CHALLENGE

Electrical Engineering: Smart Lighting

Emre Ates PhD Student Boston University <u>ates@bu.edu</u>

Overview

- Welcome!
- Introductions
- Course Structure and Objectives
- What is Electrical Engineering?
- Devices, Communication, Networks

Introductions

- Instructor: Emre Ates (<u>ates@bu.edu</u>)
- Teaching Assistants
 - Victor Ly
- Students...
 - Introduce yourself
 - Share 2 facts about yourself
 - Remember what is said! (We will come back to this later)

Introductions

- The Multimedia Communications Lab (MCL)
 - Primary Focus: "Ubiquitous distributed computing."
 - Various data communication techniques for a variety of content.
- The Engineering Research Center for Lighting Enabled Systems and Applications (LESA)
 - 10 years \$18M+ from National Science Foundation
 - Core Academic Members

Engineering Light for a "brighter" future!

Course Objectives

- Become familiar with:
 - The basic electrical components, circuits, signals and tools
 - Networking and communications concepts
 - Lighting and Light Emitting Diode (LED) technology
 - Visible Light Communication (VLC) technology

Course Overview

- PC Login: .\Challenge password: Summer2018
- Course website: <u>http://www.bu.edu/peaclab/BUSC18/</u>
- Course Schedule:

Module	Торіс	Activities
1	Introduction	Electrical Engineering, Networks, Data Communication, and Smart Lighting
2	Analog Discovery Board	Operating the Analog Discovery Board, Electricity, and Signals
3	Basic Circuits	Investigate the operation of resistive and capacitive circuits
4	LEDs	LED operation and Electrical Characterization
5	PDs and VLC links	PD Operation and Optical Channel Characterization
6	The Smart Lighting Board	VLC Transceiver PCB assembly Assignment: Presentation Topic Decision
7	Analog Transmission	Investigate VLC transmission using analog signals
8	Digital Transmission	Investigate VLC transmission using digital signals
9	VLC Applications	Arduinos, VLC text messages, and presentation rehearsal
10	Presentations	Student presentations

Lab Notebooks

- Entries:
 - Name / Group Members Names
 - Date of Entry
 - Experiment overview & hypothesis
 - Sketches of experimental setup
 - Measurements
 - Calculations
 - Results & observations
 - Open questions

Networks and Device Communication

- What are some devices that communicate?
- OSI Reference

Physical Layer

- How can information pass from point to point?
 - Audio waves

Radio Waves

Vibrations

Light Signals

Attenuation

- Electrical Signals
- What happens when the signal is passed over a longer distance?

Data Link Layer

- Simplex / Duplex
 - Handshake Message / Acknowledgement
 - Full duplex vs half duplex
 - Broadcasting
- Multiple Access
 - Resource Allocation Techniques: TDMA, FDMA, CDMA

►☆

Probabilistic Multiple Access Technique: CSMA

U1 U2 U3 U4 U1 U2 U3 U4 ···

- Wireless Considerations
 - Hidden Node Problem

►☆

Network Layer

- Nodes, Links, and Graphs
- Addressing

- If you pass the message, how does the next device know the destination of the message?
- Message passing
 - Full vs Partial knowledge
 - Internet Protocol (IP)

- Wireless Mesh Network
 - Fully wireless networks also use routing concepts.
 - Small conversations can occur simultaneously with minimal interference!

Transport Layer

Sliding Windows, bandwidth 6 packets/RTT

Think – Pair – Share

What did you

