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Sine Wave Prediction

RMSE: 0.00652 Order: (1, 0, 1)

Train/Test Split: 324/80 (80%/20%) No Rolling Window

Outdoor Air Temperature Prediction

RMSE: 47.3 Order: (1, 1, 2)

Train/Test Split: 2035/871 (70%/30%) Rolling Window Size: 1 

IT Power Prediction

RMSE: 16677.88 Order: (1, 1, 1)

Train/Test Split: 2035/871 (70%/30%) Rolling Window Size: 1

        In a Smart Grid system, electricity 
providers determine power demand from 
energy users and match their supply 
accordingly. This saves power and reduces 
costs for all parties involved.  

        Users can participate in the Smart Grid 
by giving electricity providers a bid for how 
much power they will use for a given amount 
of time in the future, allowing providers to 
adjust how much power gets generated, 
stored, and distributed. Having a model that 
can accurately predict a user’s power 
demand is a key part of this process.

        Using data from the Massachusetts 
Green High Performance Computing Center 
(MGHPCC), an academic data center, I have 
constructed an ARIMA time series 
forecasting model to generate out-of-sample 
IT (computing/non-cooling) power 
predictions.

Preprocessing
Resampling: 

Every 8 hours (4 data points per day)

Interpolation: 
Missing Values are an average of their two 

closest neighboring values.

Above: Data Before Resampling

Above: Data After Resampling

Improving Overall Model Strength
Used three datasets to develop a robust model: 
Sine Wave 
- Seasonality + linear trend
- Regular, predictable patterns
Outdoor Air Temperature Data
- Noisy data + seasonality
- Patterns can be estimated visually
IT Power Data
- No clear seasonality
- Noisy data + linear trend

Rolling Window Approach
By predicting only one future value at a time, 
the forecasts became more accurate than when 
many forecasts were made at once. This sort of 
continuously rolling approach should make the 
model more robust when handling new data 
over a long period of time; It was a key factor in 
the model’s success.

Error Calculations
Root Mean Square Error (RMSE) was the 
method used to determine the model’s 
deviations from the real values in the dataset. It 
can be expressed as the equation 

(Holmes)

RMSE is the standard deviation of the difference 
between the predictions and real values. A 
perfect model would have an RMSE of zero.
I found that less seasonal data showed a greater 
RMSE than data with regular seasonality. 

Overall Prediction Trends
Predicted values tended to stay closer to the 
moving average in noisy datasets, rarely 
matching the highest and lowest values. This 
could potentially by improved by increasing the 
p value, which would greatly increase the 
amount of time the model needs to run.

ARIMA Model
(AutoRegressive Integrated Moving Average)

Original IT Power Series vs IT Power Differenced Once

Proper differencing gives the data a constant overall mean, used 
as a baseline from which variations can be predicted.
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3 variables make up the Order: (p, d, q)
p = lag order (number of lags;   determined by correlation between lags 
and present values) → determined from autocorrelation (acf) plots
d = order of differencing 
q = moving average order (size of averaging window) → determined from 
partial autocorrelation (pacf) plots

- Model commonly used to produce 
time series forecasts

- Found in the Statsmodels library for 
Python

- Train/Test split must not be 
randomized since time sequence 
matters in pattern detection

(Brownlee)
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