

Temperature Prediction in Monolithic 3D Using Machine Learning Based Models Alan Zhou^{1,2}, Amin Khodaverdian², Prof. Ayse K. Coskun²

Episcopal Academy, 1785 Bishop White Drive, Newtown Square, PA 19073¹, Department of Electrical & Computer Engineering, Boston University, 8 St. Mary's Street, Boston, MA 02215²

Introduction

Background:

- Monolithic 3D (M3D) integration is an emerging technology enabling the stacking of multiple transistor, or active, layers (also called tiers) within one Integrated Circuit (IC) [1]
- PACT is a compact thermal simulator developed by PEACLab that can generate accurate temperature data
- Previous work [2] developed a linear regression model to predict on-chip temperatures for the Intel i7 6950×Extreme Edition processor
- M3D systems face additional thermal issues due to various factors, making thermal management a critical issue [3]
- Runtime thermal management provide one way to manage high temperatures

Methods

The Model:

- Decision Tree Regression model from Scikit Learn • Default hyperparameters
- Inputs:
 - Power Per Node
 - Node Location/Index
 - Temperature readings from sensors

Dataset:

- 360 different workloads
- Each workload contains a 100x100 temperature node grid for each layer
- Train/test split of 0.75/0.25 and 0.65/0.35 for model with and without layer info,

• Predict a 100x100 temperature node grid output from PACT for each active layer in a two-tiered M3D processor using a nonlinear regression model

Results

Testing:

- Model was tested with two imputation methods and 10, 20, and 50 temperature readings given
- Model was also tested with taking away layer input, varying max depths, and a new workload

- Null temperature data filled using
 - Minimum temperature reading given
 - Hybrid approach
 - Bottom layer filled with Sklearn iterative imputer
 - Top layer filled with minimum value

Overall:

- Model is generally more accurate for layer 2
- Achieved a maximum R^2 score of 0.871, with both min and hybrid imputation, using 20 temperature readings
- Takes < I second to generate a prediction for one layer
- Taking away the layer input allows the model to predict layer I of the new workload better

Predictions from min, 10 temp readings on workload from dataset(right) and min, 10 readings, and no layer model on new workload(left)

Conclusion	References
 Decision Tree Regressor achieved good accuracy for predicting layer 2 temperatures, and decent accuracy for predicting layer 1 temperatures. Both data imputation methods had similar results, with a maximum overall R^2 score of 0.871 Increasing the number of temperature inputs to 20 slightly increased accuracy, while 50 temperature readings and a new workload decreased accuracy The decrease in accuracy could be a result of overfitting, limiting max depth and giving less input columns may have helped with overfitting. 	 [1] K. Dhananjay, P. Shukla, V. F. Pavlidis, A. Coskun and E. Salman, "Monolithic 3D Integrated Circuits: Recent Trends and Future Prospects," 2021. 1 [2] Knox, C, Yuan, Z, & Coskun, AK. "Machine Learning and Simulation Based Temperature Prediction on High-Performance Processors." 2022. 1 [3]. P. Shukla, A. K. Coskun, V. F. Pavlidis, and E. Salman, "An overview of thermal challenges and opportunities for monolithic 3D ICs," 2019. 2.

Future Work:

- Train the model using a larger dataset
- Tune the model hyperparameters, or try other regression models (e.g. Random Forest)
- Test the model with greater variation of temperature sensors and do multiple trials with varying sensor locations

Acknowledgements

I would like to thank Professor Coskun for giving me opportunity to work on this project in the PEACLab. I would also like to thank Amin Khodaverdian for providing me mentorship and support throughout the project. Finally, I would like to thank Hudson Reynolds, Peter Zhao, Connor Casey, and the RISE program.