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A B S T R A C T

The network architecture of the human brain has become a feature of increasing interest to the neuroscientific
community, largely because of its potential to illuminate human cognition, its variation over development and
aging, and its alteration in disease or injury. Traditional tools and approaches to study this architecture have
largely focused on single scales—of topology, time, and space. Expanding beyond this narrow view, we focus this
review on pertinent questions and novel methodological advances for the multi-scale brain. We separate our
exposition into content related to multi-scale topological structure, multi-scale temporal structure, and multi-
scale spatial structure. In each case, we recount empirical evidence for such structures, survey network-based
methodological approaches to reveal these structures, and outline current frontiers and open questions.
Although predominantly peppered with examples from human neuroimaging, we hope that this account will
offer an accessible guide to any neuroscientist aiming to measure, characterize, and understand the full richness
of the brain's multiscale network structure—irrespective of species, imaging modality, or spatial resolution.

1. Introduction

Over the past decade, the neuroimaging community has witnessed a
paradigm shift. The view that localized populations of neurons and
individual brain regions support cognition and behavior has gradually
given way to the realization that connectivity matters (Bassett and
Bullmore, 2006; Sporns, 2011; Bullmore and Bassett, 2011; Bressler
and Menon, 2010; Park and Friston, 2013). The complex spatiotem-
poral activity patterns that have been associated with cognition are
underpinned by expansive networks of anatomical connections
(Hagmann et al., 2008; Hermundstad et al., 2013; Goñi et al., 2014).
This shift has occurred in parallel with the maturation of another field,
network science, which has made available a large set of analytic tools
and frameworks for characterizing the organization of complex net-
works (Newman, 2003; Borgatti et al., 2009; Barabási, 2016).

As with any new field, the best practices for constructing and
analyzing brain networks are still evolving. Among recent develop-
ments is the understanding that brain networks are fundamentally
multi-scale entities (Bassett and Siebenhuhner, 2013). The meaning of
“scale” can vary depending on context; here we focus on three possible
definitions relevant to the study of brain networks. First, a network's
spatial scale refers to the granularity at which its nodes and edges are
defined and can range from that of individual cells and synapses
(Jarrell et al., 2012; Shimono and Beggs, 2015; Schroeter et al., 2015;
Lee et al., 2016) to brain regions and large-scale fiber tracts (Bullmore

and Bassett, 2011). Second, networks can be characterized over
temporal scales with precision ranging from sub-millisecond
(Khambhati et al., 2015; Burns et al., 2014) to that of the entire
lifespan (Zuo et al., 2010; Betzel et al., 2014; Gu et al., 2015b), to
evolutionary changes across different species (van den Heuvel et al.,
2016). Finally, networks can be analyzed at different topological scales
ranging from individual nodes to the network as a whole (Stam and
Reijneveld, 2007; Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). Collectively, these scales define the axes of a three-dimensional
space in which any analysis of brain network data lives (Fig. 1). Most
brain network analyses exist as points in this space—i.e. they focus on
networks defined singularly at one spatial, temporal, and topological
scale. We argue that, while such studies have proven illuminating, in
order to better understand the brain's true multi-scale, multi-modal
nature, it is essential that our network analyses begin to form bridges
that link different scales to one another.

In this review, we focus on two specific aspects of the multi-scale
brain. First, we present and discuss variations of network algorithms
(particularly, community detection) that make it possible to describe a
network at multiple topological scales (Porter et al., 2009; Fortunato,
2010). We choose to focus on community detection—which we define
carefully in the next section—because it encompasses one of the most
frequently used set of tools capable of extracting and characterizing
network organization across a continuous range of scales. We do, of
course, make mention of other alternatives. Next, we discuss the topic
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of multi-scale temporal networks and a set of multi-layer techniques
for exploring brain networks at different temporal resolutions. In this
section, we draw particular focus to the topic of multi-slice/layer
community detection and its role in characterizing time-varying
connectivity. Throughout both sections, we also comment on metho-
dological limitations of these methods, the best practices for their
application, and possible future directions. This review is written for
the neuroimaging community, and so the literature we cover and the
examples that we present are selected to be especially relevant for
researchers working with MRI data (whether functional, diffusion, or
structural). Nonetheless, our frank discussion of multi-scale methods
and views are broadly relevant and applicable to researchers working
with other data modalities (including EEG, MEG, ECOG, and fNIRS)
and at other spatial scales in humans or other species.

2. Functional and structural brain networks

With MRI data, network nodes are almost always parcels of gray-
matter voxels (sometimes the voxels, themselves, are used as nodes,
van den Heuvel et al., 2008). Brain networks come in two basic flavors
that differ from one another based on how connections are defined
among nodes. Structural or anatomical connectivity (SC) networks
refer to nodes linked by physical connections. With MRI data, these
connections usually reflect white-matter fiber tracts reconstructed from
the application of tractography algorithms to diffusion images.
Functional connectivity (FC) networks, on the other hand, refer to
the strength of the statistical relationship between nodes’ activity over
time (Friston, 2011). Usually this statistical relationship is operatio-
nalized as a Fisher-transformed correlation coefficient (Zalesky et al.,
2012) or a coherence measure (Zhang et al., 2016). Both SC and FC
networks are represented with a connectivity matrix, A, whose element
Aij is equal to the connection weight between regions i and j.

3. Multi-scale network analysis

Network analysis is the process of interrogating an SC or FC

network using tools derived from graph theory in order to better
understand its character. It is important to note that this type of
analysis takes explicit account of the network architecture of SC and
FC—i.e. that the collective organization and configuration of connec-
tions gives rise to system-level behavior. It is therefore distinct from
other techniques that examine SC and FC connection weights in
isolation (Simpson and Laurienti, 2016). Network science, which has
existed as a field long before the advent of network neuroscience, has
contributed a large number of measurements of a network that can
help reveal its function, highlight influential nodes, and identify
features that contribute to its robustness and vulnerability. The
topological scale at which a network is described depends upon what
features of the network these measures highlight. Some measures are
simple; a node's degree (or the weighted analog, strength) simply
counts the number of connections incident on any node and can be
interpreted as a measure of a node's influence, with high-degree nodes
exhibiting the greatest influence (Takeuchi et al., 2015). Degree is an
example of a strictly local measure—it characterizes only a single node.
At the opposite end of the spectrum are measures that describe the
organization of the network as a whole. A network's characteristic path
length, for example, is the average number of steps it takes to go from
one node to another. Short path lengths imply, at least in theory, that
information can be quickly shared across the network (Santarnecchi
et al., 2014; Li et al., 2009).

Degree and path length, along with other local and global network
measures, are useful for characterizing networks at their most extreme
topological scales: at the level of a network's most commonly studied
fundamental units (its nodes; although see Giusti et al., 2016 and
Bassett et al., 2014 for alternatives) and the level of the network as a
collective. Between these two scales lies a mesoscale, an intermediate
scale at which a network can be characterized not in terms of local and
global properties, but also in terms of differently sized clusters of nodes
that adopt different types of configurations. It is at this mesoscale that
we can observe community structure (Fortunato, 2010), cores and
peripheries (Borgatti and Everett, 2000), and rich clubs (Colizza et al.,
2006). It is essential to note that the mesoscale, unlike local and global

Fig. 1. The multi-scale brain. Brain networks are organized across multiple spatiotemporal scales and also can be analyzed at topological (network) scales ranging from individual nodes
to the network as a whole. Images of neuronal ensemble recordings, segmented axons, brain evolution, and gray-matter development adapted with permission from Buzsáki (2004),
Beyer et al. (2013), Krubitzer (2009) and Gogtay et al. (2004).

R.F. Betzel, D.S. Bassett NeuroImage 160 (2017) 73–83

74



scales, is defined as a range of scales situated between two extremes.
Therefore, mesoscale structures have the capacity to emerge, persist,
and dissolve over multiple topological scales. In general, the detection
of such structures is performed algorithmically, usually through the
application of tools designed to detect specific types of mesoscale
structure. As a simple illustration, consider a network with community
structure. In the context of networks, communities refer to sub-
networks (clusters of nodes and their edges) that are internally dense
(many within-community edges) and externally sparse (few between-
community edges) (Porter et al., 2009; Newman, 2012). One intuitive
(and quite palatable) hypothesis is that brain networks are organized
into hierarchical communities, meaning that communities at any
particular scale can be sub-divided into smaller communities, which
in turn can be further sub-divided, and so on (Meunier et al., 2010b;
Bassett et al., 2010; Hilgetag and Hutt, 2014). This hierarchy can be
“cut” at any particular level to obtain a single-scale description of the
network's communities, but doing so ignores the richness engendered
by the hierarchical nature of the communities. Similar arguments can
be applied to other types of meso-scale organization, such as core–
periphery (Bassett et al., 2013b) and rich clubs (van den Heuvel and
Sporns, 2011).

In the following subsections, we review analysis techniques for the
detection of mesoscale structure in brain networks, focusing on
communities due to their inherent multi-scale nature. We pay parti-
cular attention to techniques that make it possible to detect community
structure over a range of topological scales, thereby uncovering a
richer, more detailed multi-scale description of brain networks.

3.1. Multi-scale community structure

Local and global properties of networks are straightforward to
compute because the units of analysis—individual nodes and the whole
network—are immediately evident and require no additional search.
Mesoscale structure, however, is not always evident. Its presence or
absence in a network depends on the configuration of edges among the
network's nodes—that is, the network's topology. Real-world networks
are composed of many nodes and edges arranged in complex patterns
that can obscure structural regularities. Due to this complexity, if one
wishes to observe mesoscale structure in networks, one must search for
it algorithmically. In the case of community structure (Meunier et al.,
2010b; Sporns and Betzel, 2016), there is no shortage of algorithms for
doing so. They range both in terms of how they define communities and
also their computational complexity (Palla et al., 2005; Ahn et al.,
2010; Rosvall and Bergstrom, 2008; Delvenne et al., 2010; Karrer and
Newman, 2011). Whether the plurality of methods is viewed as a
shortcoming or an advantage, the enterprise of community detection is
one of the better-developed and continually growing sub-fields of
network analysis (Fortunato, 2010; Fortunato and Hric, 2016).

While each community detection technique offers its own unique
perspective on how to identify communities in networks, the method
that is most widely used and arguably the most versatile is modularity
maximization (Newman and Girvan, 2004). Modularity maximization
partitions a network's nodes into communities so as to maximize an
objective function known as the modularity (or just “Q”). The
modularity function compares the observed pattern of connections in
a network against the pattern that would be expected under a specified
null model of network connectivity. That is, the weight of each existing
edge is directly compared against the weight of the same edge if
connections were formed under the null model. Some of the observed
connections will be unlikely to exist under the null model or will be
stronger than the null model would predict. Modularity maximization
tries to place as many of the stronger-than-expected connections within
communities as possible.

More formally, if the weight of the observed and expected connec-
tion between nodes i and j are given by Aij and Pij, respectively, and
σ K∈ [1,…, ]i indicates to which of K communities node i is assigned,

then the modularity can be calculated as:

∑Q A P δ σ σ= [ − ] ( ),
ij

ij ij i j
(1)

where δ (··) is the Kronecker delta function and is equal to 1 if its
arguments are the same and 0 otherwise. Multiple methods exist to
actually maximize Q, but in the end they all result in an estimate of a
network's community structure: a partition of the network nodes into
communities.

The number and size of communities in the partition with the
biggest Q represent the communities present in the network, right?
Unfortunately, the answer to this question is “not always.” Modularity
and other similar quality functions exhibit a “resolution limit” that
limits the size of detectable communities (Fortunato and Barthelemy,
2007); communities smaller than some size, even if they otherwise
adhere to our intuition of a community, are mathematically undetect-
able. In order to detect communities of all sizes, modularity has been
extended in recent years to include a resolution parameter, γ, that can
be tuned to uncover communities of different size (Reichardt and
Bornholdt, 2006). The augmented modularity equation then reads:

∑Q γ A γP δ σ σ( ) = [ − ] ( ).
ij

ij ij i j
(2)

The resolution parameter was initially introduced as a technique for
circumventing the resolution limit. Inadvertently, it has contributed to
the versatility of the modularity measure. The resolution parameter
effectively acts as a tuning knob, making it possible to obtain estimates
of small communities when it is at one setting and larger communities
when it is at another setting: when γ is big or small maximizing
modularity will return correspondingly small or large communities. If
we smoothly tune the resolution parameter from one extreme to the
other, we can effectively obtain estimates of a network's community
structure, all the way from the coarsest scale at which all network nodes
fall into the same community up through the finest scale where
network nodes form singleton communities. Varying the resolution
parameter to highlight communities of different sizes is known as
multi-scale community detection (Fenn et al., 2009). It should be
noted that there exist possible definitions of modularity functions that
do not suffer from resolution limits in the first place (Traag et al.,
2011). A full discussion of these functions is beyond the scope of this
review.

3.1.1. Multi-scale community structure in the neuroimaging
literature

Multi-scale analyses of real-world networks have revealed known
structural motifs in proteins (Delmotte et al., 2011; Delvenne et al.,
2010), dynamic patterns in financial systems (Fenn et al., 2009, 2012),
and “force chains” in physical systems of particles (Bassett et al.,
2015a). Most studies of community structure in brain networks,
however, have focused on communities at a single scale (Hagmann
et al., 2008; Power et al., 2011; Gu et al., 2015b) or, in the event that
investigators wish to examine multiple scales, have resorted to
heuristics such as recursive partitioning (He et al., 2009; Bassett
et al., 2010), edge thresholding (Power et al., 2011), or by accepting
sub-optimal solutions through the modification of existing algorithms
(Meunier et al., 2010a). The multi-scale modularity maximization
approach and related techniques (Delvenne et al., 2010; Schaub
et al., 2012; Kheirkhahzadeh et al., 2016) can seamlessly scan all
topological scales by tuning the resolution parameter, which entails no
additional assumptions. While single-scale approaches to community
detection are not fundamentally wrong, they miss out on the richness
that may be present at other scales. For example, a single-scale
estimate of the community structure for a hierarchically modular
network would detect only one of the hierarchical scales present in
the system.

Nonetheless, there is a growing number of studies that have

R.F. Betzel, D.S. Bassett NeuroImage 160 (2017) 73–83

75



employed multi-scale community detection techniques (Rubinov et al.,
2015) (Fig. 2). Some of these studies used the multi-scale approach to
identify single-scale modules, but at a resolution parameter that differs
from the default (γ = 1) (Gu et al., 2015a; Betzel et al., 2016d; Nicolini
and Bifone, 2016). In other words, they obtained estimates of
community structure over multiple scales and defined a secondary
objective function that, when optimized, identified from among that set
of partitions a scale at which to focus on. Other approaches have
explicitly set out to compare community structure detected at different
resolutions. In the aging literature, for example, a number of studies
have reported that communities become less segregated across the
human lifespan (Chan et al., 2014, Betzel et al., 2014). In a recent
study, however, the authors analyzed the community structure of
resting-state FC networks across the lifespan and at different values
of γ (Betzel et al., 2015). They showed that community structure, and
specifically the extent to which communities are segregated from one
another, exhibits an interaction between age and scale; smaller
communities become less segregated with age, while larger commu-
nities become increasingly segregated. However, had the authors only
explored community structure at a single topological scale, they would
have never observed the reported interaction.

Other studies have estimated multi-scale community structure
towards more theoretical ends. For example, in Lohse et al. (2014),
the authors characterize different spatial and topological properties of
anatomical brain networks as a function of γ, and use a measure of
community radius (Doron et al., 2012) to show that large communities
(as measured by the number of nodes) are embedded in large physical
spaces. This mapping of a large topological entity to a large physical
entity is not required of networked systems (Barthelemy, 2011), and its
existence suggests the presence of non-trivial constraints on the
embedding of the brain's network architecture within the confines of
the human skull (Bullmore and Sporns, 2012). Indeed, the multiscale
nature of the brain's modular architecture is strikingly similar to the
hierarchical modularity observed in large-scale integrated circuits,
whose abstract (and rather complex) topology has been mapped cost-
efficiently (meaning with a predominance of short wires) into the two-

dimensional space of a computer chip (Bassett et al., 2010; Klimm
et al., 2014). This efficient mapping can be uncovered by testing for the
presence of Rentian scaling (Sperry et al., 2016), a property by which
the number of edges crossing the boundary of a spatial parcel of the
network scales logarithmically with the number of nodes inside the
parcel. Hierarchically modular networks—including the human brain,
the C. elegans neuronal network, and even the London underground—
that have been efficiently embedded into physical space commonly
display Rentian scaling, while those that have not been efficiently
embedded do not show this property.

3.1.2. Implementation and practical considerations
Community detection, generally, is easy to do but difficult to do well

(Fortunato and Hric, 2016). Modularity maximization for community
detection begins with the assumption that the network is modular
(Lancichinetti et al., 2011), and as a technique is prone to false
positives (Guimera et al., 2004). Moreover, detecting the globally
optimal partition is computationally intractable (Good et al., 2010),
the most popular algorithm for maximizing modularity generates
variable output (Blondel et al., 2008), and the composition of detected
communities can be biased by the overall density of the network
(Fortunato and Barthelemy, 2007). These are issues associated with
modularity maximization before sweeping γ. Adding the resolution
parameter can further amplify these complications; these issues are
manifest at every level of γ. How can the prospect of multi-scale
modularity maximization be performed in a principled, careful, and
thoughtful way?

3.1.3. Selecting the resolution parameter
One of the most important issues is to select the topological scale(s)

of interest, which is tantamount to focusing on a subset of γ values.
Without prior knowledge of the number and size of communities, there
is no good rationale for preferring one value of γ over another
(including γ = 1). There are, however, a few approaches described in
the existing literature for selecting a scale of interest from among the
communities detected over a range of γ values. Intuitively, if a

Fig. 2. Schematic figure illustrating multi-scale community detection. Networks exhibit community structure over a range of different topological scales. In panels (A) and (B) we show
communities detected in a structural connectivity network at two different topological scales (the colors in the surface plots indicate the community to which each region is assigned). We
investigate these scales by tuning the resolution parameter in modularity maximization (a common community detection approach) to γ = 1 and γ = 2.5. In panel (C) we illustrate the

multi-resolution approach for “sweeping” through a range of resolution parameters to detect communities at different scales, this time using a synthetic network constructed to have
hierarchical community structure (hierarchical levels that divide the network into 2, 4, and 8 communities). To identify topological scales of interest (ranges of γ), we calculated the mean
pairwise variation of information (VI) of all partitions detected at each value of γ. Low values of VI indicate that on average the detected partitions were similar to one another. The
metric VI achieves local minima at scales that uncover the planted hierarchical communities; at values of γ where none of the planted hierarchical communities are detected, VI takes on
non-zero values, indicating lack of consensus across detected partitions and highlighting values of γ at which community structure is not present.
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network's organization at a particular scale is truly well-described by
communities, then we might also believe that our algorithms will easily
detect this organization. In this case, the known variability in the
output of some modularity maximization techniques (Blondel et al.,
2008) can actually work in our favor. When variability is low—i.e. the
algorithm converges to similar community structure estimates over
multiple runs—it might be indicative of especially well-defined com-
munities. Under this assumption, we repeatedly maximize modularity
at different values of γ and calculate the pairwise similarity of the
detected communities (Doron et al., 2012). We can then focus on
community structure detected at γ values where the similarity is great
(and variability low) (see Betzel et al., 2016d; Gu et al., 2015a; Chai
et al., 2016; Mattar et al., 2015 for examples where this approach has
been applied). Similarity of partitions can be estimated using a number
of measures such as normalized mutual information (Lancichinetti
et al., 2009), variation of information (Meilă, 2003), or the z-score of
the Rand coefficient (Traud et al., 2011).

Other approaches have also been suggested. One possibility is to
use statistical arguments to focus on specific scales of γ. For example,
we could estimate the probability of observing a community of a
particular size by chance, and then focus on the scale where the
detected communities’ sizes deviate most from chance (Traag et al.,
2013). Another possibility assumes that “good” community structure is
not fleeting—i.e. that it should persist over some range of γ (Fenn et al.,
2009). Under this assumption we can calculate the average similarity
between partitions detected at every pair of γ values and cluster the
resulting similarity (or distance) matrix. The clusters correspond to
collections of detected partitions that are all highly similar to one
another—the absence of clusters suggests that if community structure
exists at different scales, then it is short-lived and possibly of less
interest (Lambiotte et al., 2014). At the very least, in the event that one
does not wish to scan multiple topological scales, a good method for
demonstrating the robustness of a result that depends upon the
composition of detected communities is to vary γ slightly from the
selected value to verify that community structure is consistent (see, for
example: Betzel et al., 2016e).

3.1.4. Consensus community structure and communities of interest
Choosing the γ value(s) at which to analyze a network's community

structure is the first hurdle. There remain the unresolved questions of
how to define consensus communities that are representative over a
group of partitions and how to determine whether all (or just some) of
the detected consensus communities are of interest (the group of
partitions could come from multiple optimizations of a modularity
maximization algorithm or a collection of partitions obtained from
many individuals). There are now multiple approaches for choosing a
consensus partition, including “similarity maximization” (choosing the
consensus partition as the one with greatest average similarity to the
other partitions) Doron et al. (2012) and variants of the “association-
recluster” framework (using a clustering algorithm to find consensus
communities in a co-occurrence or association matrix that stores the
frequency with which nodes co-occur in a community over an ensemble
of partitions) (Lancichinetti and Fortunato, 2012; Bassett et al., 2013a;
Betzel et al., 2016d). Because these approaches are now well-known
and widely used, we will not discuss them further here.

We do, however, find it prudent to discuss the final question:
“should we analyze all the communities in the partition?” The notion of
defining a partition in which all nodes get assigned to one community
or another presupposes that this type of structure exists in the first
place. Is this a reasonable assumption? The presence of hubs
(Hagmann et al., 2008) and rich-clubs (van den Heuvel and Sporns,
2011) suggests that at least some brain network nodes fail to strictly
adhere to the community template—hub nodes, by definition, are
highly connected and span multiple modules. In short, maximizing
modularity always partitions the network into clusters, but are all the
clusters really communities? There are multiple ways to address this

question. One possibility is, again, to invoke a statistical argument and
ignore communities with properties consistent with what you might
expect by chance. For instance, you could calculate the modularity
contribution made by each community (defined in Bassett et al., 2012
and applied in Betzel et al., 2014, 2016d) and compare the observed
values against a random null model (e.g., permute the community
labels and recalculate modularity contributions, optimize modularity
for rewired networks and compare the observed modularity to that of
the randomized networks). The gold standard technique, however,
would be a tool that does not force all nodes to be in a community and
only detects communities that are inconsistent with a random null
model. Such a tool exists in the form of the OSLOM algorithm
(Lancichinetti et al., 2011), which works by first identifying the worst
node in a community (i.e. the one with the fewest within-community
connections). Next, the community is assigned a “C-score” defined as
the probability of observing a node in the same community that makes
more within-community connections than expected in a random net-
work. To the best of author's knowledge and at the time of writing this
review, OSLOM has not yet been applied to brain network data.

In this section, we highlighted the fact that networks can exhibit
non-random organization across a range of topological scales, from
that of individual nodes up to the entire network. To develop a more
complete understanding of the network's organization and develop
deeper insight into its function, we argue that it is essential to focus not
only on one single scale, but to embrace the multi-scale topological
nature of brain networks and characterize brain networks using
appropriately multi-scale tools. The result is a richer picture of a brain
network. That added richness may be necessary to form a deeper
understanding of how brain network structure is associated with
human behavior and cognition, and ultimately how it is altered in
disease.

3.2. Multi-scale rich club and core–periphery organization

In addition to community structure, networks can exhibit a range of
mesoscale organizations. These include rich club and core–periphery
structure, both of which have been investigated in the context of brain
networks. While not the explicit focus of this review, we felt that we
would be remiss not to briefly mention the available tools to study
multi-scale rich club and core–periphery organization.

We recall that a rich club is a group of hubs (high degree, high
strength nodes) that are also densely interconnected to one another
(Colizza et al., 2006; Opsahl et al., 2008). Rich clubs are hypothesized
to act as integrative structures in SC networks by linking modules to
one another and facilitating rapid transmission of information (van den
Heuvel and Sporns, 2011). Core–periphery structure is a related
concept, which assumes that the network consists of one (or a few)
dense cores, with which peripheral nodes interact, though the periph-
eral nodes rarely interact with one another (Borgatti and Everett, 2000;
Holme, 2005; Rombach et al., 2014). Similar to rich clubs, cores play
an integrative role, serving as a locus for different brain regions to link
up and exchange information.

Similar to communities, there is a tendency in the network science
literature to concoct binary assignments of nodes as either belonging to
or not belonging to a network's cores and rich clubs. This dichotomy
aids in the interpretation of results, but ultimately belies the complexity
and richness of core–periphery and rich club organization in a
network, both of which can persist over multiple topological scales.
Whereas communities can be identified by maximizing a modularity
function, rich clubs are detected by calculating a rich-club coefficient,
ϕ k( ), which measures the density of connections among nodes with
degree k or greater (Fig. 3A). If this coefficient is greater than what
would be expected under a random network model, there is evidence
that the rich club is statistically significant. In practice, there is nearly
always a plurality of statistically significant rich clubs, and hence a
plurality of rich club nodes. The absence of a singular rich club gives
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rise to multiple complementary views of how hub nodes interact with
one another and how they contribute to brain function (Fig. 3B,C). A
similar argument applies for core–periphery structure, where nodes
can be more or less core- or periphery-like in a graded sense, defying
the dichotomy of being one or the other (Fig. 3D–F).

Is there a practical way to assess these types of multi-scale rich
clubs and core–periphery structures? In the case of rich clubs, one
natural solution is to report the range of statistically significant rich
clubs and characterize the composition of rich clubs across that range.
In the case of core-periphery organization, one can study a parameter-
ized landscape of core–periphery architecture, offering a continuous
description of cores of different sizes, and with differing softness of the
boundary between the core-like nodes and the periphery-like nodes
(Rombach et al., 2014; Bassett et al., 2013b) (Fig. 3D–F). These and
other approaches that are similar in spirit may offer additional insights
into the multi-scale architecture of the brain in a manner that
complements the assessment of hierarchical community structure
described in detail in earlier sections (Fig. 4).

3.3. Multi-scale temporal networks

At this point, we take a step back and note that brain networks, both

functional and structural, are not static but instead fluctuate over
timescales ranging from the sub-second (Kopell et al., 2014; Calhoun
et al., 2014) to the lifespan (Di Martino et al., 2014). These fluctuations
in network organization, especially over short timescales (< that of a
single scan session), have become frequent topics of investigation
(Bassett et al., 2011b; Allen et al., 2012; Bassett et al., 2015b; Zalesky
et al., 2014; Betzel et al., 2016b).

How do we study a network that changes over multiple timescales?
One promising approach is to use multi-layer network models of
temporal networks (Kivelä et al., 2014; De Domenico et al., 2013).
The multi-layer network model is flexible enough to deal with networks
that vary along dimensions other than time (Muldoon and Bassett,
2016), but when applied to temporal networks it treats estimates of the
network's topology at different time points as “layers”. For example, a
layer could represent a functional network estimated from a few
minutes of observational data acquired during an fMRI BOLD scan
(Telesford et al., 2016) or it could represent the structural connectivity
of an individual participant at a particular age in a developmental or
lifespan study (Betzel et al., 2015). Whereas traditional network
analysis would characterize each layer independently of one another,
multi-layer network analysis treats the collection of layers as a single
object, characterizing its structure as a whole to explicitly bridge

Fig. 3. Multi-scale rich club and core-periphery analysis. (A) The rich club coefficient, ϕbin, for the observed network (black) and the mean over an ensemble of random networks (gray)
as a function of node degree, k. The ratio of these two measures defines the normalized rich club coefficient, ϕnorm. Values of k for which the observed rich club coefficient is statistically
greater than that of a random network define the rich club regime. (B) Most studies focus on a rich club defined at a single k value and use it to classify edges as “rich club” (rich node to
rich node), “feeder” (rich node to non-rich node), or “non-rich club” (non-rich node to non-rich node). The number of edges assigned to each class is highly dependent upon the k at
which the rich club is defined. (C) We show edge classifications at three different values of k, in order to highlight that classifications (and the subsequent interpretation) can vary
dramatically, even across statistically significant rich clubs. (D) Core–periphery classification can be performed using a parameterized model (Rombach et al., 2014). The parameters
α β( , ) determine the size of the core relative to the periphery and how sharply the two are divided from one another (Bassett et al., 2013b). At different parameter values the model

identifies different cores and different peripheries, and assigns each node a “coreness” score. (E) As an example, we show two sets of coreness scores ordered from smallest to largest. The
two sets vary in terms of the core size and constitution. (F) For the same two sets, we show the topographic distribution of coreness scores. Note: In both the rich club and core–periphery
examples, the network studied was a structural network used in a previous study (Betzel et al., 2016c).
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multiple temporal scales. Equally important, the multi-layer network
model is agnostic (from a mathematical perspective) to the timescales
represented by the layers, and can therefore accommodate virtually any
timescale made accessible using neuroimaging technologies.

3.3.1. Multi-scale, multi-layer network analysis
Most of the familiar network measurements have been generalized

so that they can be computed on a multi-layer network. For example,
path length, clustering, and some centrality measures are all easily
calculated (Kivelä et al., 2014). While a few recent studies have begun
to investigate these measures in multi-frequency brain networks (De
Domenico et al., 2016; Brookes et al., 2010; Battiston et al., 2016), the
most widely used multi-layer measure in network neuroscience is that
of multi-layer, multi-scale community detection (Mucha et al., 2010)
(Fig. 4). Though there are several different approaches for detecting
communities in temporal networks, including non-negative matrix
factorization (Gauvin et al., 2014; Ponce-Alvarez et al., 2015), and
hidden Markov models (Robinson et al., 2015), the most popular is
multi-layer modularity maximization, which represents a powerful
extension of the standard modularity maximization framework that
makes it possible to uncover communities across layers (i.e., time, in
the case of temporal networks). The multi-layer analog resolves several
important issues. First, it confers further flexibility to the multi-layer
network model by making accessible familiar methods. Communities
can, of course, be calculated for each layer independently. This
unfortunately gives rise to ambiguities regarding the continuation of
communities from one layer to the next. The second advantage of the
multi-layer model is that by estimating the community structure of all
layers simultaneously such ambiguities are effectively resolved. Third,
it opens the possibility of defining new measures for characterizing the
flow of communities across layers (Bassett et al., 2013a; Mattar et al.,
2015; Papadopoulos et al., 2016). For example, the measure “flex-
ibility” quantifies how frequently a brain region changes its community
assignment from one layer to the next (Bassett et al., 2011b). Increased

flexibility has been associated with learning (Bassett et al., 2011b),
increased executive function (Braun et al., 2015), aging (Betzel et al.,
2015), and positive mood, novelty of experience, and fatigue (Betzel
et al., 2016e). Additionally, it can also be used to reveal a temporally
stable core of primary sensory systems along with a flexible periphery
of higher-order cognitive systems (Bassett et al., 2013b) offering an
architecture thought to be particularly conducive to flexible cognitive
control (Fedorenko and Thompson-Schill, 2014). Other statistics
including “promiscuity” offer distinct quantifications of meso-scale
network reconfiguration (Papadopoulos et al., 2016).

Importantly, multi-layer modularity maximization includes a reso-
lution parameter, γ, that functions in an analogous manner to the
resolution parameter in single-layer community detection. In conjunc-
tion with the multi-layer framework, which facilitates the investigation
of temporal networks, the resolution parameter gives a researcher the
option of incorporating multiple topological scales into a temporal
analysis of networks.

3.3.2. Practical considerations
The multi-layer model can accommodate many different types of

data collected over multiple timescales. This freedom comes at a cost,
however. In order to consider all layers as forming a single multi-layer
network object, it is currently a necessity to, either manually or in some
data-driven way, add artificial links between layers. Broadly, there are
two strategies for this approach. The first assumes that layers are not
ordinally related to one another—i.e. layers have no temporal pre-
cedence with respect to one another; a permutation of the order of
layers results in effectively the same network. If these assumptions hold
(e.g., if layers represent connectivity matrices obtained from different
task states), then it makes sense to categorically link layers to one
another (Cole et al., 2014; Mattar et al., 2015). If the layers exhibit an
ordinal relationship, then it makes more sense to link node i in layer s
to its temporally adjacent layers, s − 1 and s + 1 (Chai et al., 2016). The
decision to choose one approach over the other can, of course, influence

Fig. 4. Schematic figure illustrating multi-layer network construction and community detection. Individual networks can be combined in a meaningful way to form a multi-layer
network. In panel (A) we show four example networks, each of which contains the same 25 nodes but arranged in different configurations. The links in these networks could represent
fluctuating functional connections over time (e.g., within a single scan or over development), connections estimated during different tasks, different frequency bands, or different
connection modalities (e.g., structural connections weighted by streamline count or fractional anisotropy or functional connections measured as correlations or coherence). (B) To
combine individual layers, links are added from node i to itself across layers. These links can be added ordinally, linking a node to itself in adjacent layers, or categorically, linking a node
to itself across all layers. The result is a multi-layer network. (C) Multi-layer networks can be analyzed using many now-standard measures in network science, including—but not limited
to—community detection algorithms. The resulting estimate of communities allows us to track the formation and dissolution of communities across layers and report properties of
individual nodes—e.g., their flexiblity, which measures how frequently a node changes its community assignment.

R.F. Betzel, D.S. Bassett NeuroImage 160 (2017) 73–83

79



whatever measurement is being made on the network. Currently, it is
standard practice (at least in network neuroscience) to add ordinal
links when dealing with temporal networks.

Even with sound rationale for selecting one linking procedure over
the other, there still remains the difficult decision of how to assign the
inter-layer links a weight. Again, how these weights are selected can
have an effect on whatever measure is being computed. Without strong
evidence to select one weighting scheme over another, interlayer links
are usually assigned the same value, ω, that is sometimes varied over a
narrow range. Ideally, there would be a principled, data-driven
approach for selecting this value.

3.4. Multi-scale spatial networks

The explosion of network science into different scientific commu-
nities can be attributed, in part, to the fact that it provides a set of tools
that can be applied to network data of all types. In this review, we
focused on brain networks derived from functional and diffusion MRI,
the modalities most often used in the neuroimaging community. The
networks constructed from these data span spatial scales ranging from
that of individual voxels up to that of the whole brain. The nature of
MRI, however, makes it virtually impossible to construct brain net-
works at finer scales, such as the level of individual cells or that of
neuronal populations. Other spatial scales are, of course, accessible
using alternative imaging modalities. For example, optical imaging has
delineated cellular-level networks of mouse retina (Helmstaedter et al.,
2013; Lee et al., 2016) as well as of model organisms like the
nematode, C. elegans (Jarrell et al., 2012), or drosophila (Takemura
et al., 2013). Large-scale tract-tracing and fluorescent labeling techni-
ques have proven useful in uncovering networks at an intermediate
scale—detecting axonal projections between local processing units in
drosophila (Shih et al., 2015), and brain areas in mouse (Oh et al.,
2014) and macaque (Markov et al., 2012). Additionally, meta-analytic
studies that aggregate and summarize the results of individual tract-
tracing experiments have produced convergent maps of macaque
(Stephan et al., 2001) and rat (Bota et al., 2015) network architecture.
At these scales, the details of what each node and edge represent differ
from that of whole-brain human networks. Nonetheless, the same
network analysis tools can be brought to bear on these networks to
reveal their organization and gain insight into their function. As
microscale imaging tools become more common, and existing tools
more refined, capable of handling higher throughput, and imaging
greater volumes, they will be able to offer novel insights into how the
multi-scale spatial network structure of the brain relates to cognition
and behavior. An important step in advancing the field of network
neuroscience is understanding, specifically, how network properties at
one spatial scale are related to properties at another (van den Heuvel
et al., 2015).

Presently, of course, the analysis of human brain networks is
limited by the spatial granularity of the individual voxel. Even with
this lower bound on the size of brain network nodes, it is possible to
probe multiple spatial scales using MRI data. The most obvious
manner in which spatial scale can be examined is in the choice of
brain parcellation. MRI acquisitions return observations at the level of
individual voxels. Voxels may be noisy, suffer from signal dropout, and
due to their large number may present computational challenges to
conduct analyses at that scale. For these reasons, it has become
common to aggregate voxels into parcels or regions of interest; rather
than focus on any particular voxel, this allows us to focus on the
average properties of parcels (de Reus and Van den Heuvel, 2013).

The number of alternative parcellations is ever-growing, with each
new parcellation presenting a new criteria—e.g., spatial variation in
functional connectivity, myelination, cytoarchitectonics, etc—for
grouping voxels together into regions (Destrieux et al., 2010; Yeo
et al., 2011; Gordon et al., 2014; Glasser et al., 2015; Hermundstad
et al., 2013). The number of parcels ranges from ≈1000 (Cammoun

et al., 2012; Diez et al., 2015) to around 60 for the whole brain,
representing a massive reduction from the tens of thousands of voxels
typically imaged. Looking at parcellations of the brain from the voxel-
level down to the coarsest set of parcels, we can examine different
spatial scales of the brain. One of the findings that has come from a
detailed comparison of spatial scales is that the choice of parcellation
will tend to have implications for the network's topology (Wang et al.,
2009; Zalesky et al., 2010). For this reason, it is advised to verify that
any particular result is not driven by the particular choice of parcella-
tion; it should be reproducible (at least qualitatively) using a different
set of parcels (Bassett et al., 2011a). A potentially interesting avenue
for future work in this area is to apply multi-scale community detection
to voxel-level networks to generate parcellations of the brain at
different resolutions (Bellec et al., 2010). The parcellation-based
approach for studying different spatial scales can be used to investigate
and sub-divide specific brain areas, rather than the entire brain
(Rosenthal et al., 2016). For example, in one recent study, owed to
the retinotopic organization of the visual cortices, the authors were able
to identify distinct parcels based on their connectivity patterns
(Dawson et al., 2016).

4. Conclusion and future directions

This review deals with the topic of multi-scale brain networks. We
discuss tools for performing multi-scale network analysis, their appli-
cation to time-resolved networks that highlight network-level fluctua-
tions across multiple temporal resolutions, and finally touch briefly on
how different spatial scales of analysis are making an impact on the
field of network neuroscience. The results of network analyses at
different scales can be seen as both redundant and complementary.
In some sense, we expect to find similar network properties across
scales (van den Heuvel et al., 2016)—the same energetic and spatial
constraints that shape network structure at the scale of brain regions
and areas are at play at the cellular-level (Betzel et al., 2016a;
Henriksen et al., 2016; Vértes et al., 2012). On the other hand, the
function of network nodes and circuits as well as their biophysical
attributes likely depend critically upon the scale at which a network is
constructed and analyzed. Accordingly, we might also expect networks
to be optimized to perform scale-specific functions (Marblestone et al.,
2016), and studying a particular scale gives us a unique insight into the
network architecture underpinning those functions. Ultimately, net-
work neuroscience will need both approaches—an understanding of
network function and organization at specific scales, as well as a map
that bridges multiple different spatial, temporal, and topological scales.
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