
Chapter 2, Quantum aspects of light and matter

Near the end of his life Albert Einstein wrote, “All the fifty years of conscious brooding
have brought me no closer to the answer to the question: What are light quanta?

Of course today every rascal thinks he knows the answer, but he is deluding himself.”
We are today in the same state of “learned ignorance” with respect to light as was Einstein.

Arthur Zajonc, "Light Reconsidered," Optics & Photonic News, October 2003

Atoms, light, and their interaction

à Light is as light does

Our world is bathed in light, and every aspect of the light we see traces to its interaction with the 
atoms and molecules that make up our world. Light, matter, and their interaction form the inseparable 
fabric of our visual world.

A good place to begin learning about this visual fabric is to understand just what light is. For our 
purposes, as Forrest Gump might say, light is as light does, and what light does is to rhythmically tug 
on electrical charges—it makes charges jiggle! The number of tugs in a second is called the 
frequency of the light. Turning this around, light is produced whenever electrical charges are set in 
rhythmic motion. 

Visible, UV, and higher frequency light tugs primarily on the negatively charged electron clouds in 
matter. IR, microwave, and lower frequency light tugs primarily on the positively charged nuclei of 
matter.

That we see different colors is because electron clouds in matter have particular frequencies that they 
jiggle at. These frequencies are called resonance frequencies. The more tightly an electron cloud is 
held (by positive charged nuclei), the higher its resonant frequencies. 

If an electron cloud is tugged on at other than one of its resonant frequencies, it doesn't jiggle. 
Imagine a huge bowl of pudding. If we slowly move the bowl back and forth, the pudding is 
undisturbed. It we very rapidly jiggle the bowl, the pudding is not able to respond and so continues to 
remain undisturbed. But if we jiggle the bowl at just the right frequency, we can set the pudding to 
jiggle at just the same frequency. When we say something is transparent to light of a certain 
frequency range, we mean that light does not cause it to jiggle at those frequencies. The reason air is 
transparent to our eyes is because the electron clouds in nitrogen and oxygen molecule are held too 
tightly to be set jiggling by the frequencies of visible light.

Air contains about 1% argon. Predict whether the electron cloud in argon atoms jiggles at 
the frequencies of visible light.

Spectra

Since electron clouds have mass, its takes energy to make them jiggle. This means that if we monitor 
how much work is done by light, we'll find that work is done when light is tugging at resonant 
frequencies, but that no work is done otherwise. A absorption pectrum is a graph of the work done 
by light as a function of the frequency of its tugging on matter.
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Spectrum showing the work done by light jiggling an electron cloud versus frequency. There labels number four resonance 
frequencies of the electron cloud.

Absorption spectra

If we shine light on a sample, when the light frequency matches a resonant frequency and so does 
work, the energy expended appears as a drop in the intensity of the light. Here is a graph of light 
intensity versus frequency.
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Absorption spectrum showing the reduction in light intensity by light jiggling an electron cloud versus frequency. There labels 
number four resonance frequencies of the electron cloud.

This way on probing the resonant frequencies of an electron cloud is called an absorption spectrum, 
because the energy expended by the light is absorbed by the atom into the jiggles of electron cloud.

Here is the absorption spectrum of hydrogen atoms in the visible wavelength range.

Absorption spectrum of gaseous hydrogen atoms at high temperature. Wavelength increases from 380 nm on the left to 740 nm 
on the right, and so frequency increases to the left.

The dark lines mark those wavelengths of the light that hydrogen atoms absorb. In the visible region 
of the spectrum there are only four such absorption lines for hydrogen atoms. Other atoms typically 
absorb light at many, many more different wavelengths. Absorption spectra are typically seen in light 
emitted from stars as it passes through interstellar clouds of atoms on its way to us. In the laboratory 
it is more typical to see emission spectra. 

Emission spectra

Light is not the only way to make jiggling electron clouds. When a beam of electron collides with 
atoms or molecules (such as happens when lightning passes through air, or a beam of electrons is 
created in a gas discharge tube), the resulting jiggles appear as light is given off. Such a spectrum is 
called an emission spectrum.
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Emission spectrum showing the reduction in light intensity by light jiggling an electron cloud versus frequency. There labels 
number four resonance frequencies of the electron cloud.

An emission spectrum looks similar to the spectrum shown above of work done by light on an 
electron cloud, since the light given off can do work on other electron clouds.

Here is a representation of the emission spectrum of hydrogen atoms in the visible wavelength range.

Emission spectrum of gaseous hydrogen atoms at high temperature. Wavelength increases from 380 nm on the left to 740 nm on 
the right, and so frequency increases to the left.

A nice display of the emission spectrum of the Sun and the atomic absorption spectra of hydrogen, 
helium, mercury and uranium is at http://quantum.bu.edu/images/atomSpectra.jpeg. 

Spectra allows us determine resonant frequencies. Everything we know about the interior structure of 
atoms and molecules traces to understanding their resonant frequencies. Our plan, then, is to first 
learn how to characterize light, and then to learn how to account for the resonant frequencies of 
electron clouds.

à Properties of waves

Light alternately tugs electric charges one way and then the opposite way. The tugging is due the 
effect of the electric field of the light on electric charges. If we plot the strength and direction of the 
electric field tugging on the electron cloud, it looks like a wave.

time

electric
field

Electric field tugging on an electron cloud. The tugs are perpendicular to the direction of the light beam. The peaks corresponds to 
greatest tug in one direction, and the troughs correspond to greatest tug in the opposite direction. The axis of the tugs is known as 
the polarization of the light.

In addition to the oscillation of the electric field, there is a matching oscillation of a 
magnetic field. Their oscillation is  perpendicular to one another and also to the direction 
of travel of the light. The magnetic field has a negligible effect on atoms compared to the 
electric field and this is why we focus our attention on the oscillations of the electrical 
component of light. 

Because of the simultaneous presence of oscillating electric and magnetic fields, light is 
also called electromagnetic radiation. Sometimes, too, the term light is used to mean just 
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the visible range of light. We will use light to mean electromagnetic radiation, 
independently of whether it is visible to our eyes.

To see how to characterize the oscillations of the electric field, we need to describe how waves are 
represented mathematically. A wave is the oscillatory variation of some property in time and in 
space. If we focus on a particular point in space, the value of the changing property—the numerical 
value (amplitude) of the wave—is seen to oscillate about some average value. If instead we focus on 
a particular part of the wave, such as one of its crests—a point of maximum amplitude—the wave is 
seen to move through space.

Examples of waves are 

Wave Type Change of … With respect to …

water height of water calm water

sound density of air ambient pressure

light electric Hand magneticL fields zero fields

chemical concentration reference concentration

Representing wave properties mathematically

Waves can be expressed mathematically in terms of sine or cosine curves. The value of the curve at a 
particular time and location represents the amplitude of the wave at that time and location. For 
example, to represent a sound wave with a sine curve, the value of the sine curve at a given time at 
each point in space corresponds to the pressure, relative to ambient pressure, at that time and location.

What does the amplitude (value) of a sine curve represent for a water wave? Answer: The 
height of the water relative to calm water.

What does a sine curve represent for the electric field part of a light (electromagnetic) 
wave? Answer: The size and direction of the electric field.

The most striking feature of waves is that they move through space (standing waves, which oscillate 
in place, are a special case). To keep things as simple as possible, let's assume we have a wave only 
along one direction, which we call x. If we look at a wave at a particular instant in time, it is a sine 
curve, say. If we look at it a moment Dt later in time, it is still a sine curve, but the whole curve has 
shifted by an amount Dx. 

It is probably not immediately obvious, but the way such a sine wave changes with position and time 
can be expressed as 

yHx, tL = a sin@2 pHx ê l - t ê tLD.

The numerical value of this expression—the value of the changing property, such as the height of the 
water in a water wave, or the electric field in light—is called the amplitude (often represented by the 
Greek letter y, pronounced "psi"). To understand this expression it is helpful to analyze separately 
how it changes as position and time change.

Let's consider first how a wave looks for one particular time; this is like studying a photograph of the 
wave. To fix time, let's set the time t equal to zero. The expression for the wave when t = 0 is

yHx, 0L = a sinH2 p x ê lL.

As we have seen, the value of a sine function repeats every time its argument (which is called its 
phase) changes by 2 p. The phase changes because x changes. Let's see how much the phase changes 
if x changes by the amount l, 
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2 p Hx + lL ê l - 2 p x ê l = 2 p.

We see that the phase changes by 2 p when the position changes by the amount l. For this reason, 
then length l is called the wavelength (represented by the Greek letter l, "lambda"). In a graph of the 
wave, the wavelength is the distance between two adjacent similar features of the wave, such as two 
successive crests.

Make a sketch, on the same set of axes, of the wave y1 = sinH2 p x ê 3L and 
y2 = sinH2 p x ê6L. Whate is the wavelength of each wave? Does your sketch make sense in 
terms of the relative wavelength of the two waves?

Now that we know how to identify the length of a wave, let's the see the effect of changing time. The 
way to understand the effect of time is to see how the wave changes at a fixed point in space. We can 
do this by setting the position x equal to zero. The expression for the wave when x = 0 is

yH0, tL = a sinH-2 p t ê tL.

Now, at x = 0, let's see how much the phase changes when time changes by the amount t, that is, 
from t to t + t,

-2 p Ht + tL ê t - H-2 p t ê tL = -2 p n t ê t - 2 p + 2 p t ê t = -2 p.

This expression shows that when time changes by t, the phase changes by -2 p. That is, one wave 
cycle moves past a fixed point in time t, the period of the wave. (We'll see below that the 
significance of the phase changing by a negative amount is that crests of the wave move toward 
positive x.) The number of cycles (of spatial length l) which pass by a fixed point per second is the 
reciprocal of the time required for one cycle to pass by. This is called the frequency,

n = 1 ê t,

of the wave (represented by the Greek letter n, "nu"—not to be confused with the Latin letter v, 
"vee"). The frequency is commonly measured in Hertz (abbreviated Hz), which are inverse seconds, 
s-1.

The speed of a wave: phase velocity

Now that we understand the separate effects of changing location and time, we can see the combined 
effect of changing both x and t. In this way we can study the movement of the wave. 

The way we follow the motion of a wave is to identify a unique point on the wave, say a particular 
crest, and then to see how far it moves in a certain time. Mathematically, choosing a point on the 
wave means choosing a particular numerical value for the phase, 

2 pHx ê l - n tL.

This is so because the value of the phase determines the value of the amplitude of the wave at a 
particular place x and time t. 

Then, the key idea is that we can analyze the motion of a wave by realizing that the phase of our 
chosen point on the wave must remain constant, for otherwise amplitude of the wave would change. 
This means that if a point on the wave at position x1 at time t1 moves to the position x2 at time t2, 
then the corresponding phases are equal 

2 pHx1 ê l - n t1L = 2 pHx2 ê l - n t2L.
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This important equality is called the stationary phase condition. We can rearrange the stationary 
phase condition into the relation 

Hx2 - x1L ê Ht2 - t1L = n l.

The left hand side of this equality is the ratio of the distance moved,

Dx = x2 - x1,

divided by the time elapsed,

Dt = t2 - t1.

This is the speed that the wave moves. This speed, 

uphase = Dx ê Dt = n l,

is called the phase velocity of the wave.

Write down an expression for a wave that travels to the left, towards smaller values of x, 
as time increases.

Here is an illustration of these ideas. The figure shows the movement of a sine wave that takes place 
in 0.025 s.
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Movement of a wave. The thin curve is the wave at an initial time, t1. The thick curve is at a later time, t2. The length of the arrow is 
the distance, „ x = x2 - x1,  the wave has moved in the elapsed time, „ t = t2 - t1= 0.025 s. The point chosen to track the movement 
of the wave is arbitrary. The value of the phase, 2 pHx1 ê l - n t1L, at the starting point is equal to the value of the phase, 
2 pHx2 ê l - n t2L, at the ending point. The equality of these phases—the stationary phase condition—determines the phase velocity 
of the wave, „ x ê „ t = Hx2 - x1L ê Ht2 - t1L = n l.

Determine from the information in the figure the values of the distance traveled, 
wavelength, phase velocity, and frequency of this wave. You may want to start by using a 
ruler to measure the distance traveled. The answers are 0.34 m, 1.2 m, 12 m/s, and 10 Hz.

Calculations with waves

Here is an example using sound waves, Oxtoby and Nachtrieb, 2e, problem 13.7: 
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The speed of sound in dry air at 20°C is 340 m/s and the frequency of the sound from the 
middle C note on a piano is 262 Hz. Calculate the wavelength of the sound and the time it 
will take to travel 30 m across a concert hall. Answer: l = 1.3 m, Dt = 0.088 s.

Phase velocity is a characteristic of each kind of wave. We are going to be concerned especially with 
light waves. The velocity of light is a universal constant of Nature and is given the special symbol c. 
For light traveling in a vacuum, its speed (phase velocity) by international agreement is exactly 
299792458 m/s. (Note that assigning a value to the speed of light, together with a defined value for 
the meter, amounts to a choice of values for the second as the unit of time.)

This means that for electromagnetic radiation of any frequency the product of its frequency and 
wavelength is always equal to vflight. So, the next time someone asks you what's "nu", tell them "c 
over lambda!"

A nice example of this relation is to calculate the wavelength, l, of the radio waves from 
the Boston University FM radio station WBUR, which transmits on a frequency of 90.9 
MHz (1 Megahertz = 106 Hz). Answer: 3.33 m = 10.9 ft.

Compare this value to red light, which has a wavelength of 700 nm = 7 μ 10-7 m—ten million times 
smaller. This means that the frequency of red light is about ten million times higher, n = 4 μ 1014 Hz.

Estimate the frequency of electromagnetic radiation with wavelength about the size of an 
atom. Answer: 3 μ 1018 Hz.

This corresponds to X-ray region of the electromagnetic spectrum, and in fact X-rays necessary to 
"see" the locations of individual atoms.

Visible wavelengths and the size of atoms

Our eyes are sensitive to the visible range of light, corresponding to wavelengths from 380 nm (deep 
violet) to 740 nm (dark red), but even the shortest of these wavelengths is much, much larger than 
atoms, which are about 1 Þ = 10-8 cm = 0.1 nm across. 

This means that at a given moment in time, an atom bathed in light experiences an essentially 
constant electric field. The strength and direction of the electric field—and so the strength and 
direction of the tugs it exerts on the electron cloud of the atom—fluctuates as time passes, but always 
such that at a given moment every part of the charge cloud experiences the same tug. 

For this reason, while it is common to focus on the wave representation of light, from the atomic 
vantage point, light is experienced as a tugging that changes with time. The experience of an atom in 
light is analogous to that of a small cork floating on the surface of a very long ocean wave. If we 
focus on the cork, it just goes up and down, just as the electron cloud in an atom is tugged first one 
way and then the other, in a rhythmic oscillation.

Angular frequency and angular wavenumber

We have seen that the motion of a wave is determined by seeing how position and time need to 
change so that the phase

phase = 2 pHx ê l - n tL

remains constant—the stationary phase condition, and that the result is that a wave with this phase 
expression moves with phase velocity uphase = n l . Another way to characterize the frequency and 
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wavelength of a wave is in terms of angular frequency w = 2 p n and angular wavenumber k = 2 p ê l. 
The reason these definitions are made is thereby the expression for the phase becomes

phase = k x - w t.

Angular wavenumber has the units radian/meter, the increase in phase as a result of a change in 
position by one meter; angular frequency has units radian/second, the increase in phase as a result of 
a change in time by one second. 

Recall that a radian is the angle whose arc length on circular path is equal to the radius of 
the circle. A complete circle corresponds to an angle of 2 p  radians (a little less than 8) 
and so the circumference of a circle of radius r is 2 p r. By comparison, the 
“circumference” of the square that just encloses a circle of radius r is 8 r, since the 
“radius” of the square is half its “diameter”, the length of one side.

The phase velocity in terms of these new quantities is uphase = w ê k. 

à Interaction of light with matter: resonant "tugs"

As we have described, the way light interacts with atoms is by exerting tugs on the positively 
charged nuclei and the negatively charged electrons. The tugs follow the rhythm of the oscillations in 
the electric field of the light. High frequency light tugs rapidly, low frequency light tugs slowly. 
Now, from the point of view of the charges in the atom, not all tugs are the same. In fact, most tugs 
have little effect on the electrons and nuclei. Rather, only if the tugs are at just the right frequency 
will the charges be able to follow them.

Here are what frequencies and wavelengths correspond to the different regions of the spectrum.

Light Region Typical n HHzL Typical l 8mL Typical l 8nmL
g-rays 1. μ 1019 3. μ 10-11 0.03

X-rays 1. μ 1017 3. μ 10-9 3.

UV 1. μ 1015 3. μ 10-7 300.

Violet 7.5 μ 1014 4. μ 10-7 400.

Blue 6.7 μ 1014 4.5 μ 10-7 450.

Green 6. μ 1014 5. μ 10-7 500.

Yellow 5. μ 1014 6. μ 10-7 600.

Red 4.3 μ 1014 7. μ 10-7 700.

IR 1. μ 1014 3. μ 10-6 3000.

Microwave 1. μ 1010 0.03 3. μ 107

FM Radio 1. μ 108 3. 3. μ 109

Short Wave 1. μ 107 30. 3. μ 1010

AM Radio 500000. 600. 6. μ 1011

Long radio waves 10000. 30000. 3. μ 1013

Frequencies and wavelengths correspond to the different regions of the electromagnetic spectrum.

Roughly speaking, the charges can follow tugs only if their frequency is near a resonant frequency,

n ~
1
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where m is the mass of the charged particle experiencing the tug and the force constant k is a 
measure of how tightly the charged particle is held in the atom. This relation is called the resonance 
condition. Essentially, heavy particles (nuclei) oscillate at lower frequencies than light particles 

26 Notes on General Chemistry, 3e

Copyright © 2008 Dan Dill (dan@bu.edu). All rights reserved



(electrons), and loosely held particles (electrons far from nuclei) oscillate at lower frequencies than 
tightly held particles (electrons close to nuclei).

One immediate insight we can draw from the harmonic frequency relation is that while electrons and 
nuclei experience comparable electrical forces, and so have similar force constants, because nuclei 
are so much heavier, their resonant frequencies are much lower than those of electrons. 

A proton is about 2000 times heavier than an electron. How much would this mass 
difference alter resonant frequencies? Answer: Frequencies due to motion of protons 
would be about 40 times lower than those of electrons.

We'll learn that nuclei are what is being tugged in microwave ovens, at frequencies on the order of 
1012 Hz, whereas electrons are what are being tugged in the photoreceptor molecules of our eyes, at 
frequencies on the order of 1014 Hz.

à Energy conservation in interaction between light and matter

A key concept in the interaction of electromagnetic radiation and matter is energy conservation: 
Energy is exchanged between the radiation and matter in such a way that the net change of energy is 
zero.

DElight + DEmatter = 0 or, equivalently, DEmatter = -DElight.

Electrons and nuclei have mass, and so if light is tugging on them, the tugging takes energy. This 
means energy in the light is reduced by the amount transferred to the matter. We call this reduction of 
energy of the light absorption. When light (energy) is absorbed by matter, the energy conservation 
expression gives

DElight < 0, DEmatter = -DElight > 0 Hlight absorptionL.

The reverse process is also possible: motion of charged particles in matter can give up their energy 
by creating oscillating electric fields. (This is analogous to the energy required to light a bulb by 
turning the crank of a hand generator.) We call this reduction (expenditure) of energy in matter light 
emission. When light (energy) is emitted by matter, the energy conservation expression gives

DElight > 0, DEmatter = -DElight < 0 Hlight emissionL.

In either case—light absorption or emission—the total energy change is zero,

à Amount of energy exchanged between light and matter

So, a key feature of light-matter interaction is the exchange of energy. A remarkable simplifying 
feature of this interaction is that, assuming the resonance condition between the frequency of light 
and matter is met, then:
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The amount of energy that can be exchanged is determined solely by the frequency of the 
light. That is, it turns out that if we know the frequency of the light—of the oscillations 
in its electric (and magnetic) field—then we can determine the amount of energy that can 
be exchanged with matter in resonance with the light at that frequency. 

Here is one way to determine this energy. Light emitting diodes (LED's) are electronic devices that 
emit light of a particular color when a precise voltage, known as the threshold voltage, is applied. 
Now, voltage is energy per unit charge, and 1 Volt = 1 Joule/Coulomb. Since the colors are due to 
electrons oscillating in the electric field of the light, it makes sense to use the electron charge to 
convert threshold voltage to an energy. We can do this by multiplying the voltage by the electron 
charge, e = 1.60218 μ 10-19 Coulomb. The resulting energy is known as an electron volt, eV.

Show that an electron volt is 1.60218 μ 10-19 Joule.

In this way we can interpret the threshold voltage as an energy.

Here are the colors of five common LED's, displayed as an emission spectrum.

Colors of five different light emitting diodes (LED's). The horizontal axis is wavelength, increasing to the right.

Slight variations in manufacturing result in the color of a particular LED differing slightly from that 
of another. Typical manufacturing tolerances are ≤15 nm. Error is also introduced in the 
measurement of the wavelengths. Finally, manufacturing differences and measurement error also 
affect the value of the threshold voltage. Let's assume a total error of 10% in the voltage 
determination.

Here is a table of representative wavelengths, l, and corresponding frequencies, n = c ê l, for the five 
LED's, together with the minimum energy (in eV) determined to cause them to emit their color, 
taking into account a 10% error in wavelength determination and a 10% error in threshold voltage 
determination.

l HnmL n HHzL voltage HeVL
665 4.51 μ 1014 1.69

635 4.37 μ 1014 1.82

590 5.36 μ 1014 2.37

560 5.69 μ 1014 2.48

480 6. μ 1014 2.4

Here is a plot of the threshold voltage versus frequency, together with a straight line fit to the data 
points.
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Threshold energy, in eV, versus frequency, in 1014 Hz, required to cause different LED's to emit light. Separate 10% errors are 
assumed in the determination of LED wavelength and in the determination of the threshold energy.
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The plot shows that threshold energy is proportional to frequency, energy ∂ n. The constant of 
proportionality is the slope of the line fitted to the measured points. It has the units energy/frequency, 
or J s. This proportionality constant is known as Planck's constant and written as h. Its value for the 
fit to the data shown is 7.81203 μ 10-34 J s.

Confirm this value as follows. First, use a ruler to measure the slope of the line in the 
figure, in units eV ê @n ê H1014 HzLD. Then, convert eV to Joule and use the fact that Hz = s-1.

The currently accepted value is h = 6 .62606876 μ 10-34 J s. We could confirm this value, for 
example, by averaging results of repeated, more careful measurement using LED's manufactured to 
higher tolerance.

Calculate the percentage difference in the measured value from the actual value of Planck's 
constant. That is, evaluate @Hhmeasured - hL ê hD×100%. Typical percentage differences are 
10%.

What we have succeeded in doing is to establish the equivalence between the frequency and energy 
change of light, namely

DElight = h n = h c ê l.

This relation is known as the Einstein energy-frequency relation, because Einstein was the first to 
propose the equivalence between the frequency of light and the amount of energy that light of that 
frequency can exchange with matter. The relation allows us to track energy flow between light and 
matter.

The energy unit h n = h c ê l is called a quantum of light energy, or, more briefly, a photon. In terms 
of the energy of the photon, we can write the light-matter energy balance expressions as

DEmatter = -DElight = Ephoton = h n Hlight absorptionL
DEmatter = -DElight = -Ephoton = -h nHlight emissionL

These expressions show that when light is absorbed by matter, a photon of light energy is removed 
from the light, reducing the energy of light by the amount DElight = -Ephoton = -h n, and that when 
light is emitted by matter, a photon of light energy is added to the light, increasing the light energy by 
the amount DElight = Ephoton = h n.

A fluorescent bulb emits light of several different wavelengths from each major region of 
the visible spectrum so that to our eyes its light appears white. Assume that a 45 watt 
fluorescent bulb emits equal amounts of red, green and blue light. Assume that the blue 
wavelength is 450 nm. How many energy units (photons) of blue light are emitted each 
second by the matter composing the fluorescent bulb. Recall that 1 watt = 1 J/s, and 
assume the bulb operates at 70% efficiency. Answer: 2 μ 1019/s.

The reason the number of quanta (photons) is so large is because a quantum of light energy—one 
photon—is a very small unit of energy.

à Quantum picture atoms: like a voice box

The quantum picture of electrons in atoms is a little like how we make musical tones from our voice 
box. The voice box consists of vocal chords. Each musical tone is the result of vocal chords vibrating 
in a particular way. Each person's vocal system is different from another, as we may realize listening 
to ourselves in the shower attempt, for example, to mimic the sound of an operatic tenor such as 
Luciano Pavarotti.
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Electron clouds are made from electron waves

The atom is like a voice box. The role of vocal chords is played by what we call quantum waves. Just 
as a vocal chord by itself does not make a musical tone, a quantum wave is not an electron. Rather, 
an electron is the result of combining quantum waves in a special way, just as the sounds we make 
are the result of our vocal chords moving in a particular way.

The electron that results from the quantum waves has the form of a cloud of charge, centered at the 
nucleus and distributed in space according to the details of the quantum waves that produce the 
cloud. This charge cloud is called the probability density. Where the cloud is dense, there is a 
concentration of electron charge, and where the cloud is sparse, there is little electron charge. Here is 
a cross section of such a charge cloud of hydrogen atom.

Cross section through the nucleus of a hydrogen atom electron cloud (the 4px probability density), in the xy plane. The nucleus is 
at the center. From left to right, the width and height are 3, 6, and 9 nm. The brightness of the display is proportional to how dense 
the electron cloud is. The more dense the cloud, the greater the fraction of the that is electron there. 

Just as each person's vocal chords are unique to them, each kind of atom (hydrogen, sodium, xenon, 
etc.) has its own set of quantum waves. As a result, just as each person is able to make their own 
characteristic sounds, electron clouds in each different kind of atom have shapes unique to the 
particular type of atom.

Remember, electron waves are not physical objects. In particular, they are not the electrons. Electron 
waves are the components from which electron clouds are built.

Where do electron waves comes from?

A very good question is “Where do the electron waves of a given atom come from?”

Electron waves are analogous to the x, y, and z axes that we use to position an object in three 
dimensions. Just as the coordinate axes are a property of three-dimensional space, the electron waves 
of an atom (in terms of which electrons clouds can be expressed) play the role of the coordinate axes 
in terms of which objects in three dimensions can be expressed. Since each atom has many different 
electron waves, we say that these waves describe a space (called a Hilbert space) with many 
dimensions—many more dimensions than the three dimensions of physical space. 

Keeping in mind the difference in number of dimensions, there is a close analogy between the 
coordinate axes of physical space and the electron waves of the space of electron clouds of atoms.

So, if you are asked, “Where do the electron waves of a given atom come from?”, you can reply 
“The same place that coordinate axes come from,", in the sense that they play analogous roles. Just as 
Nature confers properties on physical space, Nature confers analogous properties on the space in 
which electron waves live.
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Electron clouds sometimes move, sometimes do not

Electron clouds are built from electron waves. Depending on the composition of the waves, the 
electron cloud may move or not.

If the electron cloud is made from just a single electron wave, the electron cloud does not move at 
all. That is, if the electron cloud is made of only a single quantum wave, then it is like a vocal chord 
that does not vibrate and so that makes no sound at all.

If instead the electron cloud is made from two (or more) different electron waves, the electron cloud 
jiggles rhythmically. The frequency of the jiggling is equal to the difference of the frequencies of the 
waves that make up the cloud.

All electron waves change with time

The reason that electron waves can produce moving electron clouds is that the electron waves change 
with time, but at different rates. Because each wave changes at a different rate, when different waves 
combine into an electron cloud, they reinforce each other in different places at different times. The 
result is an electron cloud that is large at different places at different times. The electron cloud 
changes its shape in a regular way, another way of saying it jiggles.

Please keep in mind that because electron waves are not physical objects, their motion is in a 
mathematical sense rather than a physical sense. Motion in each electron wave is characterized by the 
electron wave frequency: An electron wave with frequency 1014 Hz returns to the same form every 
10-14 s. 

To distinguish this mathematical frequency from the physical frequency of electron clouds, we will 
use the Greek letter f (phi) for the mathematical frequency of the electron wave, and the Greek letter 
n (nu) for the physical frequency of the electron cloud.

For an electron cloud constructed from only two electron waves, f1 and f2, the physical frequency, 
ncloud, of the cloud is given by

ncloud = » f2 - f1 » .

The magnitude signs are necessary because mathematical frequencies, f, can be negative or positive, 
but physical frequencies are always positive. For example, the frequencies, f, of the first few (lowest 
energy) electron waves of hydrogen atom are

wave fwave HHzL
6 -9.133 μ 1013

5 -1.315 μ 1014

4 -2.055 μ 1014

3 -3.653 μ 1014

2 -8.22 μ 1014

1 -3.288 μ 1015

Frequency, f, of the first few (lowest energy) electron waves of hydrogen atom.

Note that these frequencies are negative, and that they become less so as energy increases. Here are 
frequencies of electron clouds made by combining pairs of these electron waves.
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combined waves ncloud HHzL
2, 1 2.466 μ 1015

3, 1 2.923 μ 1015

4, 3 1.598 μ 1014

6, 2 7.307 μ 1014

Frequency, ncloud, of electron clouds made by combining pairs of hydrogen atom electron waves

Calculate the frequency of motion of the electron clouds made by combing the second 
electron wave with the third, fourth and fifth electron wave. Answer: 4.567 μ 1014 Hz, 
6.165 μ 1014 Hz, 6.905 μ 1014 Hz.

Electron cloud frequencies are always positive, as they must be since they correspond to the physical 
motion of the electron cloud. Note that none of these frequencies is the same as any of the electron 
wave frequencies. This is because the physical frequencies are always differences of electron wave 
frequencies.

Attached and detached electron waves

Electron waves, the components of electron clouds, come in two flavors. Attached electron waves 
extend only a small distance from the nucleus; the size of electron clouds made from these waves 
determines the size of the atom. 

The frequencies of attached waves have discrete values, say f1, f2, f3, etc.; that is, only particular 
frequencies occur and intermediate frequencies, say f1 + .1 Hf2 - f1L, cannot occur. This occurrence 
of only certain frequencies is called quantization.

Here are snapshots at two different times of the electron cloud that results from mixing together two 
attached electron waves that have frequencies f1 and f2. The electron cloud oscillates back and forth 
(that is, the electron cloud remains attached to the atom), with frequency ncloud = f2 - f1; 

atom
boundary

location

probability
density

atom
boundary

location

probability
density

Snapshots of an electron cloud formed by mixing attached electron waves of different frequencies, f1 and f2. The left frame is at 
the start of the oscillation; the right frame is one-half cycle of oscillation later. The vertical axis is the probability per unit volume 
that the electron is at the location shown on the horizontal axis. The atom extends from the origin to the location marked “atom 
boundary”.

An animation of the oscillation of the electron cloud is at

http://quantum.bu.edu/notes/GeneralChemistry/LightMatterInteraction/eAttached.gif

Detached electron waves are not confined near the nucleus, but extend far beyond the region of the 
attached electron waves; electron clouds made from these waves extend far beyond the atom (in 
principle to infinity, but such waves encounter waves on other atoms long before infinity). 

The lowest possible frequency of a detached electron wave is known as the threshold frequency, 
fthreshold. Below the threshold frequency there can only be attached electron waves (with quantized 
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frequencies). At and above fthreshold, there is a detached electron wave at all frequencies; we say that 
detached electron waves are not quantized.

For example, the threshold frequency of the hydrogen atom is fthreshold = 0 Hz. Attached electron 
waves of hydrogen atom have negative frequencies, fattached < fthreshold = 0, as we have seen above, 
and detached electron waves of hydrogen atom have positive frequencies, fdetached ¥ fthreshold = 0.

Here are snapshots at two different times of the electron cloud that results from mixing together an 
attached electron wave and a detached electron wave. The electron cloud moves away from its initial 
position; that is, the electron cloud becomes detached from the atom.

atom
boundary

location

probability
density

atom
boundary

location

probability
density

Snapshots of an electron cloud formed by an attached electron wave with a detached electron wave. The left frame is at the start 
of the motion; the right frame is at a later time The vertical axis is the probability per unit volume that the electron is at the location 
shown on the horizontal axis. The atom extends from the origin to the location marked “atom boundary”. The electron cloud moves 
off to the right, corresponding to the atom being ionized.

An animation of the oscillation of the electron cloud is at

http://quantum.bu.edu/notes/GeneralChemistry/LightMatterInteraction/eDetached.gif

What would the snapshot look like at a still later time than that of the right-hand snapshot 
above? Does your answer make sense?

Calculate the frequency of motion of the electron clouds made by combing the second, 
third, and fourth attached electron wave of hydrogen with the detached electron wave of 
frequency fdetached = 2.418 μ 1014 Hz. Answer: 6.071 μ 1014 Hz, 4.473 μ 1014 Hz, 
3.733 μ 1014 Hz.

à Light causes electrons to jiggle; jiggling electrons produce light

Light can be absorbed by atoms in a process called absorption, and light can be produced by atoms 
in a process called emission.

è Light interacts with an atom by its electric field causing the electron cloud to oscillate from 
one side of the nucleus to the other. This means that for there to be an interaction, the 
electron cloud must move. Light (energy) is absorbed when some of the energy stored in its 
electric field transferred to kinetic and potential energy of the electron cloud.

è Light is emitted when an oscillating electron cloud has been created by some other means, and 
then its changing position exerts fluctuating forces on electrons in other atoms, causing 
them to oscillate. Thereby energy is transferred from the first electron cloud to the second.

Here are some details.
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Isolated atoms

Since electron clouds made from just a single electron wave do not move, the electron charge is 
exactly cancelled by the nuclear charge; the atom has no fluctuating dipole moment and so nothing 
for the electric field of the light to grab hold of. This means when an electron cloud is composed of a 
single electron wave, there is no way for the electron cloud to cause another electron cloud to jiggle. 
It is for this reason that electron clouds made from single electron waves do not absorb light energy 
and do not exert any forces on other electron clouds.

Neighboring atoms

But we know that when atoms come close together they do exert forces on one another. The weakest 
forces are the dispersion forces that account for gaseous atoms coalescing into liquids. The 
fluctuating dipole moments responsible for dispersion forces arise because each atom causes electron 
waves in the other atom to combine together, and so causes a fluctuating electron cloud in the other 
atom. If atoms come very close together, electron clouds can be made from combinations of electrons 
waves from both atoms, and the resulting electron cloud can hold the atom together in a covalent 
bond.

Light absorption

Of course, atoms also interact with light. When the oscillating electric field of light encounters an 
atom, its causes electron waves in the atom to mix together, and so it causes the formation of electron 
clouds that can jiggle. When the electric field of the light is pointing up (say), the negatively charged 
electron cloud is tugged up. A half cycle later the electric field of the light is pointing down, and so 
the negatively charged electron cloud is tugged down. 

Usually, the frequency of oscillation of the light will not match well with the possible jiggle 
frequencies (possible electron wave frequency differences). It is as if the light is a dance partner that 
wants to dance to one kind of music while the electron cloud is a dance partner that prefers a 
different kind. The light moves on, and the atom settles back down into a stationary electron cloud. 
We say the atom is transparent to light of that frequency. 

When, however, the frequency of the light electric field oscillation exactly matches the frequency of 
the electron cloud jiggling, the tugging on the electron cloud will be exactly synchronized with the 
oscillation of the light's electric field. This synchronization is called resonance. When there is 
resonance, some of the energy stored in the electric field of the light is converted into kinetic and 
potential energy of the moving electron cloud. We call this transfer of energy absorption of light.

A typical electron cloud jiggle frequency is ncloud = 6 μ 1014/s. What color light does this 
correspond to? Hint: Calculate the wavelength of light of this frequency.

A typical light intensity is 10 W = 10 J/s. Calculate the energy loss of the light of 
frequency nlight = 6 μ 1014/s, if it causes electron clouds on a trillion (1012) atoms to jiggle. 
The energy in each atom's electron cloud is h ncloud. Answer: 4 μ 10-7 J.

Compared to the energy in the light, the amount of energy transferred to the electron clouds of the 
trillion atoms is tiny. This means that the light intensity, proportional to its energy, will be reduced 
negligibly when the atoms absorb the light energy.
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Light emission by a gas discharge tube

Moving electron clouds can be made in other ways. A neat example is a gas discharge tube, in which 
a beam of fast moving electrons passes through a gas of atoms. When an electron from the beam 
passes near an atom, its electrical repulsion causes the atom electron cloud to be changed into one 
with a mixture of electron waves. In this way the electron clouds of the atoms of the gas begin 
jiggling. This jiggling, by electrical repulsion, causes the emission of light which in turn causes other 
electron clouds other electron clouds, such as the ones in the pigment molecules of our eyes, to jiggle 
in resonance. We call this transfer of energy emission of light (from the jiggling electron clouds of 
the gas atoms to other electron clouds, says, in our eyes). That is, the atoms in the gas give of light. 

à Frequency matching (resonance) and energy balance

As we have described, just as different people have different sounding vocal chords, each type of 
atom has it own set of electron waves, consisting of attached waves with quantized frequencies, f1, 
f2, etc., and detached waves with continuous frequencies starting at the threshold frequency, fthreshold.

We have described that light interacts with matter by mixing electron waves together, the resulting 
electron cloud (probability density) oscillates with frequency ncloud = » f j - fk », and this frequency 
matches the oscillation frequency of the electric field of the light, nlight = ncloud. 

Light can match the frequency of electron clouds composed of two attached electron waves. The set 
of these matching frequencies, for example,

nlight,a = ncloud = f2 - f1, nlight,b = ncloud = f3 - f1, nlight,c = ncloud = f4 - f1, etc.

are the frequencies of the lines seen in the absorption spectrum of the atom.

Light can also match the frequency of electron clouds composed of an attached electron wave and a 
detached electron wave. The difference between the lowest frequency, f1, attached electron wave 
and the electron wave threshold frequency, fthreshold, above which there are only detached electron 
waves, is known as the ionization frequency,

nionization = » fthreshold - f1 » , photoionization.

For the hydrogen atom, the threshold frequency is fthreshold = 0 Hz and the frequency of 
the lowest energy attached electron wave is -3.288 μ 1015 Hz. Calculate the ionization 
frequency of hydrogen atoms. Answer: +3.288 μ 1015 Hz.

The reason for this name is that when an attached electron wave and a detached electron wave 
combine, the resulting electron cloud escapes from the atom—the atom is ionized. The corresponding 
ionization energy is

IE = h » fthreshold - f1 », photoionization

The ionization frequency of hydrogen atoms is 3.288 μ 1015 Hz. Calculate the ionization 
energy, in Joules. Answer: 2.179 μ 10-18J.

The atom will interact with light of all frequencies higher than nionization. This is because there is a 
detached electron wave for every electron wave frequency, fdetached, above fthreshold. Since

nlight = » fdetached - f1 » = » fdetached - fthreshold » + » fthreshold - f1 » = KE ê h + IE ê h,
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we can express the kinetic energy of the ejected electron cloud as

KE = h nlight - IE.

When light ejects an electron from an atom, the process is called photoionization. 

The ionization frequency of hydrogen atoms is nionization = 3.288 μ1015 Hz. Calculate the 
kinetic energy of an electron ionized from hydrogen atom by light of frequency 
nlight = 3.500 μ1015 Hz. Answer: 1.405 μ 10-19J.

The kinetic energy of the electron, m u2 ê 2, is proportional to the square of the speed, u, of 
the electron. Calculate the speed of an electron ejected with kinetic energy 1.405 μ 10-19J. 
Answer: 555.4 km/s.

Repeat the calculation of the last problem for a proton of the same kinetic energy. Answer: 
12.96 km/s. Does it make sense that the proton moves so much more slowly than the 
electron?

When light ejects an electron from a metal surface, the process is called the photoelectric effect. 
Because electrons are shared between atoms in a metal, the ionization frequency of a metal is 
different (and lower) than that of an isolated single atom of the metal. The ionization frequency is 
called the characteristic frequency,

n0 = » fthreshold - f1 », photoelectric effect

and the corresponding ionization energy, h n0, is called the work function.

F = h n0 = h » fthreshold - f1 », photoelectric effect

Here is diagram that illustrates interaction of light with matter through matching (resonance) of the 
light frequency with the frequency the electron cloud oscillation (the difference of the frequencies of 
its component electron waves).

f1 f2 fthreshold fn

no match

nlight = »f2 - f1»

no match

nlight n0 = »fthreshold - f1»

nlight = »fn - f1»

light ≠ interaction Ø electron cloud

Light (left side) interacts with matter (right side) when the light frequency matches a matter quantum wave frequency difference.

The left side of the figure represents light; five different light waves are shown, increasing in 
frequency, nlight, going from bottom to top. 
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The right side of the figure represents matter. The vertical lines mark the increasing frequency (and 
so the increasing energy) of the electron wave. From the threshold frequency, fthreshold, upwards 
every electron wave frequency is possible (since the electron is no longer attached); for clarity, in 
addition to fthrehold, only once such frequency, marked fn, is shown.

Light can interact with matter only when the difference of the electron wave frequencies matches a 
light frequency. The combining electron wave frequencies are marked with black dots. 

Mixing two attached quantum waves happens whenever the light frequency is the same as the 
difference of the frequencies of the attached electron waves. Here are snapshots at two different 
times of the electron cloud that results from mixing together attached electron waves with difference 
frequencies. The electron cloud oscillates back and forth, in resonance with the light frequency; that 
is, the electron cloud remains attached to the atom. The energy required to make the electron cloud 
move is supplied by the light, and so this motion corresponds to absorption lines seen in the spectra 
of atoms.

We have seen that an atomic hydrogen gas discharge consists of three different colored 
lines. Create a diagram like the one here to account for these lines, and to account for there 
being only these lines. Your diagram should not include any detached matter frequencies.

The heavy horizontal lines that do not terminate in a black dot, signify that there is no corresponding 
electron wave frequency there. The corresponding light waves are drawn in a heavy line; since these 
light waves have no matching electron wave frequency difference, matter does not interact with light 
at those frequencies. We say that matter is transparent to light of this frequency.

Air is mostly molecular nitrogen and molecular oxygen. Use these ideas to propose why 
air is clear.

Mixing an attached quantum wave with a detached quantum wave happens whenever the light 
frequency is at the characteristic frequency or higher. Here are snapshots at two different times of the 
electron cloud that results from mixing together an attached electron wave and a detached electron 
wave. The electron cloud moves away from its initial position; that is, the electron cloud becomes 
detached from the atom. This accounts for an electron being ejected in the photoelectric effect.

Worked examples: H atom

The frequency range of visible spectrum is 4.0 μ 1014 Hz (the IR-visible boundary) to 7.5 μ 1014 Hz 
(the visible-UV boundary). The frequencies of the five lowest-frequency electron waves in H atom 
are f1 = -3.29 μ 1015 Hz, f2 = -8.2 μ 1014 Hz,  f3 = - 3.7 μ 1014 Hz, f4 = -2.1 μ 1014, and 
f5 = -1.3 μ 1014 Hz. 

Calculate the ionization frequency of (the minimum frequency light that can ionize) H 
atom, and state what region of the spectrum this corresponds to.

Answer: The ionization frequency is » f1 - fthreshold » = » f1 - 0 » = 3.29 μ 1015 Hz. This is in the UV 
region of the spectrum.

The figure represents the three lowest frequency lines seen in the gas discharge spectrum of H atoms.

red cyan blue
n

What two electron waves must be mixed together to account for the red line seen in the 
spectrum of the hydrogen gas discharge tube?
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Answer: Waves 2 and 3 are mixed, since then

llight = c ê nlight =
c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» f3 - f2 » =
3.0 μ 108 m ê s

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H8.2 - 3.7L μ 1014 ê s

 
109 nm
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
= 670 nm = red
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What is the frequency of light of the cyan line seen in the spectrum of  hydrogen gas 
discharge tube?

Answer: Waves 2 and 4 mix to give the cyan line, since

llight = c ê nlight =
c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» f4 - f2 » =
3.0 μ 108 m ê s

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H8.2 - 2.1L μ 1014 ê s

 
109 nm
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
= 490 nm = cyan,

and so llight = » f4 - f2 » = H8.2 - 2.1L μ 1014 Hz = 6.1 μ 1014 Hz.

The frequency of the lowest-energy electron wave in He+ ion is f1 = -13.16 μ 1015 Hz. 
Can light of frequency equal to that needed to ionize He+ ion be absorbed by H atom? 
Assume the H atom is in its lowest energy state.answer.

Answer: The ionization frequency of He+ is » f1 - fthreshold » = » f1 - 0 » = 13.16 μ 1015 Hz. This 
larger than the ionization frequency of H, 3.29 μ 1015 Hz. This means H atom can absorb the light, 
with the result that the H atom will be ionized, and that the detached electron will have kinetic energy 
hH13.16 - 3.29L μ 1015 Hz = h 9.87 μ 1015 Hz.

The electron beam in the hydrogen gas discharge tube mixes the two lowest-frequency 
waves in an H atom, and the atoms emits light as a result. Can the light given off by the H 
atom be absorbed by an He+ ion? Assume He+ is in its lowest energy state.

Answer: The light given off by H atom has frequency 
» f2 - f1 » = H-0.82 + 3.29L μ 1015 Hz = 2.47 μ 1015 Hz. This smaller that the minimum frequency that 
He+ can respond to, » f2 - f1 » = H-13.16 ê 4 + 13.16L μ 1015 Hz = 9.87 μ 1015 Hz, since the 
f2 = f1 ê 22 for He+. That is, ground state He+ cannot absorb the light given off by H.

Air is 70% N2. Based on the fact that air is clear and colorless, what is the smallest 
possible value of » f2 - f1 » for an N2 molecule? Assume that N2 does not interact with 
light at frequencies lower than 4.0 μ 1014 Hz (the IR-visible boundary).

Answer: » f2 - f1 » ¥ 7.5 μ 1014 Hz .

An H atom is ionized by light of frequency nlight = 4.0 μ 1015 Hz. Calculate the kinetic 
energy of the ionized (detached) electron. Assume H is in its lowest energy state. 

Answer: The kinetic energy

KE = h nlight - h » f1 » = hH4.0 μ 1015 - 3.29L μ 1015 Hz = h 0.7 μ 1015 Hz

evaluates to

h 0.7 μ 1015 Hz = 6.6 μ 10-34 kg m2 ê s μ 0.7 μ 1015 ê s = 5 μ 10-19 J.

Worked examples: Ionization

The ionization energy of Li2+ ion 2 μ 10-17 J. When the ion is irradiated with X-ray light, 
an electron is ejected with kinetic energy 2 μ 10-17 J. What is the wavelength, in 
nm = 10-9 m, of the X-ray light.

Answer: The energy of the light quanta (photons) must be the sum of the ionization energy of the 
Li2+ and the kinetic energy of the electron.
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llight = c ê nlight =
h c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
h nlight

=
6.6 μ 10-34 J s μ 3.0 μ 108 m ê s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

H2 + 2L μ 10-17 J
μ

109 nm
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
= 5 nm.

What is the speed of an ejected electron, in m/s, that has kinetic energy 2 μ 10-17 J?

Answer: Since KE = m u2 ê 2,

u =
è!!!!!!!!!!!!!!!!!2 KE ê m = &'''''''''''''''''''''''''''''''''''''''''''''''2 μ 2 μ 10-17 kg m2 ê s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
9.1 μ 10-31 kg

= 7 μ 106 m ê s.

What will be the effect on the speed of an ejected electron if the intensity of the light is 
increased? 

Answer: There will be no change in speed. What will change is the number of electrons ejected.
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Questions

What is true about light of frequency less than » f2 - f1 »? (a) It can only be absorbed but 
not emitted; (b) it can only be emitted but not absorbed; (c) it can be both absorbed and 
emitted; (d) matter will be transparent to light of this frequency.

What is true about light of frequency equal to » f2 - f1 »? (a) It can only be absorbed but 
not emitted; (b) it can only be emitted but not absorbed; (c) it can be both absorbed and 
emitted; (d) matter will be transparent to light of this frequency.

When light of frequency  » f2 - f1 » is absorbed, what happens to the amplitude of the light 
wave? (a) It is not affected, since all that matters is that nlight = » f2 - f1 »; (b) it goes 
down; (c) it goes up.

What is true about light of frequency greater than » f2 - f1 » but less than » fthreshold - f1 »? 
(a) It can only be absorbed but not emitted; (b) it can only be emitted but not absorbed; (c) 
it can be both absorbed and emitted; (d) matter will be transparent to light of this 
frequency.

What is true about light of frequency greater than » fthreshold - f1 »? (a) It can only be 
absorbed but not emitted; (b) it can only be emitted but not absorbed; (c) it can be both 
absorbed and emitted; (d) matter will be transparent to light of this frequency.

What is true about light of frequency equal to » fn - f1 »? (a) It can only be absorbed but 
not emitted; (b) it can only be emitted but not absorbed; (c) it can be both absorbed and 
emitted; (d) matter will be transparent to light of this frequency.

Light of frequency  » fn - f1 » is absorbed. Can an atom absorb light of frequency greater 
than » fn - f1 »? (a) Yes; (b) no; (c) further information needed.

When light of frequency  » fn - f1 » is absorbed, what happens to the amplitude of the light 
wave? (a) It is not affected, since all that matters is that nlight = » fn - f1 »; (b) it goes 
down; (c) it goes up; (d) further information needed.

Light of frequency » fn - f1 » is absorbed. If the light is made brighter, then … (a) more 
atoms can absorb energy h » fn - f1 »; (b) there will be no change, since each atom can only 
absorb energy h » fn - f1 »; (c) further information needed.

Light of frequency  » fn - f1 » is absorbed. If the light is made brighter, then … (a) more 
energy is available in the light, since its amplitude is higher; (b) there is no change, since 
all that matters is that nlight = » fn - f1 »; (c) further information needed.

Light of frequency greater than » fthreshold - f1 » is absorbed. If the light is made brighter, 
then … (a) more electrons will be ejected and each electron will have more kinetic energy; 
(b) more electrons will be ejected and each electron will have the same kinetic energy; (c) 
further information needed.
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à Photoelectric effect

In 1905 Einstein proposed the idea that light exchanges energy with matter in indivisible "chunks" of 
size h n, to explain peculiar aspects of the photoelectric effect and photoionization. We now know, as 
discussed above, that the photoelectric effect can be understood instead as a consequence of the wave 
picture of matter, and in particular it does not depend on the particle aspects of light.

If the frequency of light is high enough, its electric field can tug on an electron in an atom so strongly 
that the electron is torn lose. This phenomena when applied to the atoms of a metal surface is known 
as the photoelectric effect, and when it is applied to an isolated atom is known as photoionization. 

To appreciate what is peculiar about the photoelectric effect and photoionization, let's consider, 
based on the wave properties of light, what we might expect to be the dependence of the ejection on 
the intensity and frequency of the light.

• First, we might expect that no matter how low the frequency of the light, if it is intense (bright) 
enough, electrons will be ejected. What is observed is that if the frequency of the light is 
below a characteristic value n0, then no electrons are ejected, no matter how bright—no 
matter how intense—the light. 

• Second, no matter how high the frequency of the light, we might expect that if the light is not 
intense enough, then no electrons will be ejected. What is observed is that if the frequency 
of the light is above the characteristic value, then electrons are always ejected, no matter 
how faint the light. Making the light weaker decreases the number of electrons ejected each 
second, but there are always some electrons being ejected, no matter how weak the light.

• Finally, we might expect that, at a given frequency, the more intense the light, the faster the 
ejected electrons will be moving after they leave the metal. 

It turns out that all three of these expectations are wrong. What is observed is that the kinetic energy 
of the ejected electrons, m u2 ê 2, is proportional to the amount 

nlight - n0 = nlight - » fthreshold - f1 »

by which the frequency of the light, nlight, exceeds the characteristic frequency, n - » fthreshold - f1 ». 

It is commonly taught that to understand the photoelectric effect we need to invoke the particle 
aspect of light. In fact, the particle aspect of light effectively plays no role in the photoelectric effect. 
Rather, the key to understanding the photoelectric effect is how light interacts with electron clouds in 
matter, by causing them to jiggle at the same frequency as the light.

Einstein won the Nobel prize for his analysis of the photoelectric effect in which he assumed that 
what was essential was a particle picture of light, composed of photons of energy h nlight,

http://www.nobel.se/physics/laureates/1921/einstein-bio.html

However, what was not yet known by Einstein (or anyone else at the time) was that the role of h nlight 
is a consequence of the wave nature of matter rather than the particle nature of light. It would not be 
for several more years after Einstein received the Nobel prize that quantum nature of matter would 
finally be elucidated by Heisenberg, etc.

The shift of view, made possible by our evolving understanding of the quantum world, from the 
particle aspect of light to the wave aspect of matter is part of the unease reflected in Einstein's 
comment late in his life that, “All the fifty years of conscious brooding have brought me no closer to 
the answer to the question: What are light quanta? Of course today every rascal thinks he knows the 
answer, but he is deluding himself.” To quote Arthur Zajonc, "Light Reconsidered," Optics & 
Photonic News, October 2003, "We are today in the same state of “learned ignorance” with respect 
to light as was Einstein."
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Understanding the photoelectric effect.

Let's use these results to understand the three aspects of the photoelectric effect.

• If the light has a frequency lower than the characteristic frequency, nlight < n0, there are two 
possibilities. Either there will not be two attached electron waves whose frequency 
difference matches the frequency of the light, nlight ∫ » fattached,2 - fattached,1 », in which case 
the light will not interact with the matter; or, if the frequency difference of two attached 
electron waves does match the frequency of the light, nlight = » fattached,2 - fattached,1 », then 
light will interact with matter, but since both electron waves are attached, no detached 
electron will be present.

• If the light has a frequency lower than the characteristic frequency, nlight < n0, since either the 
light does not interact with the matter, or it interacts only with attached electron waves, 
increasing the intensity of the light cannot detach an electron.

• Finally, If the frequency of the light is at or above the characteristic frequency, nlight ¥ n0, then 
there will always be mixing of an attached electron wave with a detached electron wave, 
independently how dim the light is. Making the light brighter will just mix attached and 
detached electron waves from more atoms and so produce more detached electrons. But 
they will all have the same kinetic energy.

Calculating the photoelectric effect

Different terminology is used depending in whether the electron is detached from a metal surface 
(photoelectric effect)  or from an isolated atom (photoionization). In the photoelectric effect, the 
minimum energy, h n0, required to eject an electron is called the work function of the metal and it is 
written as the Greek letter F (capital "phi"). In photoionization, the minimum energy, h n0, required 
to eject an electron is called the ionization energy (or ionization potential) of the atom and it is 
written as IE.

The ionization energy of a hydrogen atom is 13.6 eV. Calculate the characteristic 
frequency, n0, and wavelength, l0 = c ê n0, needed to photoionize a hydrogen atom. 
Answer: 3.29 μ 1015 Hz, 91.2 nm. To what region of the electromagnetic spectrum does 
this belong? Answer: UV.

Assume a hydrogen atom is photoionized by light of frequency 1.0% greater that the 
hydrogen atom characteristic frequency, IE ê h. Calculate the speed of the ejected electron, 
in m/s. Recall that kinetic energy is m u2 ê 2, where u is the speed of the electron. Answer: 
219 km/s.

Assess whether your answer to the previous question is physically reasonable. For 
example, how long would it take an electron moving at that speed to cover the distance 
from Boston to Chicago? Answer: Using 1000 mi as the distance, the time to travel this 
distance is 7.35 s.

Electromagnetic radiation is found to eject electrons from isolated hydrogen atoms and the 
electrons are measure to have a speed of 0.1% of the speed of light. Calculate the 
wavelength of this radiation. Answer 90 nm.

Make a table of the lowest ionization energy of the hydrogen, lithium, sodium and 
potassium atoms. Compare the maximum possible speed of electrons ejected from these 
atoms by light of wavelength 205 nm. Answer: H will not be ionized; Li, 480 km/s; Na, 
565 km/s; K, 775 km/s.
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The work function of the chromium metal is FCr = 7.2 μ 10-19 Joule. What is the value of 
the work function in eV?  Answer: 4.5 eV.

What is the maximum speed an electron could be moving if it is ejected from chromium 
metal by light of wavelength 250 nm? (Oxtoby and Nachtrieb, 2e, problem 13.13.). 
Answer: 405 km/s.

Here is a question for you. Can some photoelectrons have velocity less than the maximum 
velocity? If so, what could cause them to have a correspondingly lowered kinetic energy? 

à Waves of matter

It is now known that light interacts with matter by means of exchange of photons in such a way that 
both energy and momentum are transferred in amounts determined only by the frequency of the light,

 
Ephoton = h nlight

pphoton = h ê llight

Einstein energy-frequency and momentum-wavelength relations.

(Note carefully that the wavelength and frequency are not those of the photon, but rather those of the 
light wave!) In 1924 Louis de Broglie had the idea that perhaps these relations could be turned 
around, 

 
fmatter = Ematter ê h
lmatter = h ê pmatter

de Broglie energy-frequency and momentum-wavelength relations.

and so interpreted as applying also to matter! Why on earth would someone have such an idea? The 
reason de Broglie made his proposal—at the time viewed as a bit crazy—was this:  Just as a violin 
string is able to oscillate at only certain frequencies, electrons in atoms are in some sense like waves, 
then this might account for why only certain frequencies are seen in their spectrum.

As incredible as de Broglie's hypothesis that matter in some sense has an associated wavelength 
seems, it was soon confirmed experimentally. Davisson and Thomson showed, in separate 
experiments in 1927, that electrons passing through a crystal lattice of atoms in fact do diffract likes 
waves, with wavelengths computed from their kinetic energy that agree precisely with those 
predicted by the de Broglie momentum-wavelength relation. 
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Details of the Davisson's experiment are at

http://hyperphysics.phy-astr.gsu.edu/hbase/davger.html#c1.

Davisson and Thomson shared the Nobel prize in 1936 for their work,

http://www.nobel.se/physics/laureates/1937/index.html.

An extraordinary side note is that Thomson's father, JJ Thomson had won the Nobel 
prize in 1906,

http://www.nobel.se/physics/laureates/1906/thomson-bio.html, 

for showing that electrons behave like particles!

As a result the experimental verification of his hypothesis, de Broglie was awarded the Noble prize 
in 1929 for his reinterpretation of the Einstein relations,

http://www.nobel.se/physics/laureates/1929/broglie-bio.html.

à Electron in a box

It turns out that de Broglie's hypothesis refers to electron waves. A very important example is to use 
the hypothesis to account for the resonant frequencies of an electron confined to a one-dimensional 
region, of length L. If we assume that the electron is able to move freely in that region, then its 
energy is just the kinetic energy due to its motion, 

Ematter =
1
ÅÅÅÅÅ
2

 m umatter
2 =

pmatter
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

.

If we assume further that the electron wave must vanish at each edge of the region, then this means 
an integer number of half-wavelengths (called loops) must span the width of the region, 

j
lmatterÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
= L, j = 1, 2, ….

as illustrated in the figure below for electron waves with one, two, three, and four loops.

0 L

Illustration electron waves with one, two, three and four loops.

These two relations, together with the two de Broglie relations are what we need to find those values 
of the frequency and energy corresponding to each electron wave. From the de Broglie relation, the 
momentum of the electron is restricted to those values corresponding to the possible electron wave 
wavelengths that can exactly fit in the box,

pmatter = h ê lmatter =
h j
ÅÅÅÅÅÅÅÅÅÅÅ
2 L

.
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This means that the kinetic energy that a particle can have is proportional to the square of the number 
of half-wavelengths in the matter wave,

E j =
HpmatterL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
=

h2 j2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m L2 , j = 1, 2, ….

This last expression show that the electron wave can have only the only certain frequencies. 

f j = E j ê h =
h j2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m L2 , j = 1, 2, ….

Absorption spectrum of an electron in a box

Now, the frequencies corresponding to the possible energies, do not agree with those that we would 
measure for a particle confined in a one dimensional box. Here is an example that shows this. The 
frequency of lowest energy absorption line of an electron confined to a 1.00 nm region is 2.73 μ 1014 
Hz. But as the following question shows, this frequency does not agree with any of the frequencies of 
the matter waves of the electron.

Show that the frequencies of the first three matter waves, namely those for j = 1, 2, and 3, 
matter wave of such an electron are 0.909 μ 1014 Hz, 3.64 μ 1014 Hz, and 8.18 μ 1014 Hz

You may have anticipated that the previous question is a bit of a trap: Should the frequencies of an 
electron in a box agree with the absorption frequencies? The answer is No! Here is why. Recall that 
the guiding principle of our analysis of the interaction of light with matter is that the light frequency 
must match the frequency,

ncloud = » f j - fk » =
h

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m L2

ƒƒƒƒƒƒƒƒƒ
j2 - k2

ƒƒƒƒƒƒƒƒƒ
,

of oscillation of the electron cloud resulting from the mixture of two different electron waves. It is 
crucial to understand that while de Broglie's relations allow us to associate a frequency and energy 
with an electron wave, this de Broglie frequency does not correspond to any frequency seen in the 
spectrum of the matter. The frequencies we do see in spectra are always determined by differences of 
electron wave frequencies.

Show that the frequency lowest energy absorption line of an electron confined to a 1.00 
nm one-dimensional region is indeed equal to 2.73 μ 1014 Hz.

Calculate the frequencies of the next two absorption lines of an electron confined to a 1.00 
nm one-dimensional region. Answer: 7.27 μ 1014 Hz, 1.36 μ 1015 Hz.

Calculate the de Broglie frequencies of the electron waves with three and four loops. 
Answer: 8.18 μ 1014 Hz, 1.45 μ 1015 Hz.

Use the de Broglie frequencies of the electron waves with three and four loops energies 
and the de Broglie frequency for the one-loop electron wave to calculate the frequencies of 
the next two absorption lines.  Answer: 7.27 μ 1014 Hz, 1.36 μ 1015 Hz.

Estimating the size of a molecule

Here is a worked example showing how to estimate the size of a molecule.
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The lowest three electron wave frequencies of a molecule are f1 = -5 μ 1013 Hz,  
f2 = - 4 μ 1013 Hz, and f3 = -2 μ 1013 Hz. The energy of an electron confined to a 
one-dimensional region of length L is j2 h2 ê H8 m L2L, where j is the number of loops in the 
electron wave. Use this one-dimensional model to estimate the size, L, of the molecule. 
Express you answer in Þ = 10-10 m = 0.1 nm state circle whether your result is reasonable 
as a molecular dimension.

The stated frequencies are negative and so cannot be used in the energy formula, since when the 
square root is taken L would come out imaginary. More fundamentally, the only thing we can 
measure using light are electron wave frequency differences. So, the idea is to use the model to match 
the frequency differences. Note that the model is only approximate, because the stated (observed) 
three electron wave frequencies do not obey those predicted by the model in that the model 
frequencies are positive and increase quadratically, while observed frequencies are negative and do 
not obey quadratic variations.

The light frequency that interacts with the model system by mixing the two lowest waves of the 
model system is

» f2 - f1 » = HE2 - E1L ê h =
3 h

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m L2 .

Solving for L we get

L = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3 h
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m » f2 - f1 » = &''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''3 μ 6.6 μ 10-34 kg m2 ê s

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 μ 9.1 μ 10-31 kg H5 - 4L 1013 ê s

μ
1 Þ

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
10-10 m

= 52 Þ.

This is a reasonable size for a large molecule.

The orange of carrots

Carrots appear orange because they absorb light in the cyan region of the spectrum. Model 
this cyan absorption as being due to that of an electron confined in a one-dimensional 
region of length L, and so estimate the length of the molecule in carrots that accounts for 
their color. Assume the cyan absorption is at 450 nm. The energy of an electron confined 
to a one-dimensional region of length L is j2 h2 ê H8 m L2L, where j is the number of loops 
in the electron wave. Assume that the light mixes the two lowest energy electron waves.

The light mixes the two lowest waves of the model system, and so

h c ê llight » = f2 - f1 » = HE2 - E1L ê h =
3 h

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m L2 .

Solving for L we get

L = $%%%%%%%%%%%%%%%%%%%3 h llight
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

8 m c
= &'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''3 μ 6.6 μ 10-34 kg m2 ê s μ 450 μ 10-9 m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 μ 9.1 μ 10-31 kg μ 3.0 μ 108 m ê s

μ
1 Þ

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
10-10 m

= 6.4 Þ.

Chapter 2, Quantum aspects of light and matter 47

Copyright © 2008 Dan Dill (dan@bu.edu). All rights reserved



Mathematical details (optional)

The ideas that we have presented are the essence of how light and matter interact, and your goal 
should be to become comfortable with what we have done up to this point.

The remainder of this chapter provides the details on which these ideas are based. It is meant to 
address questions about quantum aspects of light and matter that you may have wondered about. 
However, this material is not required.

à Particles of light

At about the same time that Einstein made his analysis of the photoelectric effect, he also proposed 
his special theory of relativity, based on the extraordinarily puzzling experimental finding in 1887 by 
Michelson and Morley that (strictly, in a given medium such as air or a vacuum) light always has the 
same speed, independently of the speed of the source of the light. 

This does not seem to have much to do with the quantum nature of atoms and light, but a 
consequence of special relativity is the prediction that quanta of light also have momentum, and so in 
this sense behave like particles of matter. This was the first hint of what is now known as the 
wave-particle duality. 

Michelson's paper, with Edward W. Morley, "On the Relative Motion of the Earth and 
the Luminiferous Ether," American Journal of Science (vol. 35, 1887, p. 333-45), is 
available at

http://www.aip.org/history/gap/PDF/michelson.pdf, 

and a biography and further resources are available at

http://www.aip.org/history/gap/Michelson/Michelson.html. 

Michelson was the first American scientist to win a Nobel Prize (1907),

 http://www.nobel.se/physics/laureates/1907/michelson-lecture.html

Einstein developed his theory of special relativity in order to account for how it could be that light 
always has the same speed, whether the light source is moving or not. To see how strange this 
behavior of light is, let's imagine instead that we fire a bullet from a gun just as Superman flies by at 
the speed of the bullet (being Superman, he could go faster, of course!). Since Superman has 
matched his speed to that of the bullet, to him the speeding bullet appears to be standing still. Now, if 
instead of firing a bullet, we set of a flash bulb just as Superman flies by, Superman being Superman, 
he'll naturally speed up to catch the light. The most amazing thing, however, is that no matter how 
fast Superman goes, the light recedes from him at exactly the same speed as it recedes from us. From 
Superman's point of view of the light from the flash bulb, it as if he is standing still, no matter how 
fast he is going! For some reason, light seems to disobey the rules about the speed of a projectile 
being relative to its source! 

An exceptionally introduction to these ideas is Edwin F. Taylor and John Archibald 
Wheeler, Spacetime Physics: Introduction to Special Relativity, 2nd edition (1992) W H 
Freeman & Co.; ISBN: 0716723271,

http://www.amazon.com/exec/obidos/ASIN/0716723271/dandillcom.

The extension by Einstein to reference frames accelerating with respect to one another is 
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called general relativity, and a very accessible treatment of the key consequences of 
general relativity is Edwin F. Taylor and John Archibald Wheeler, Exploring Black 
Holes: Introduction to General Relativity, 1st edition (2000), Benjamin/Cummings; 
ISBN: 020138423X,

http://www.amazon.com/exec/obidos/ASIN/020138423X/dandillcom.

The essence of Einstein's theory to account for this very strange behavior of light is the following 
remarkable prediction: time proceeds at different rates in a stationary frame of reference (us) and a 
moving frame of reference (Superman) in just the right amount so that light is always measured to 
travel the same distance in a given time. There is much more to the story (a very nice exposition is 
Space and time in the modern universe, by P. C. W. Davies), and the incredible end result is 
Einstein's famous relation, 

E = m c2,

expressing the equivalences between mass and energy. 

The first thing to appreciate about the mass-energy relation is that the mass, m, is not the ordinary 
mass of an object, which we denote as m0, but instead it is related to it as 

m = m0 ì$%%%%%%%%%%%%%%%%%%%%1 - J u
ÅÅÅÅÅ
c

N
2

 .

where u is the speed of the particle. Speeds encountered in everyday experience result in a negligible 
in increase in mass. 

Calculate the ratio, m ê m0, as a result of a 3 gram bullet moving at 600 mph. It may be 
helpful to use logarithms to evaluate the ratio. Answer: 1.0000000004. 

For particle speeds close to the speed of light, the increase in mass becomes very significant. 

Calculate the ratio, m ê m0, as a result of a 5 gram bullet moving at 95% of the speed of 
light. Answer: 3.2. 

A crucial feature of the relation is that the mass m becomes infinite as its speed v approaches the 
speed of light. 

Calculate the ratio, m ê m0, as a result of a 2 gram bullet moving at the speed of light. 
Answer: ¶!

A consequence of this mass relation is that it would require an infinite amount of energy to accelerate 
a mass to the speed of light. This is why anything with mass may only move slower than the speed of 
light. 

On the other hand, since light itself does move at speed c, we must conclude that the rest mass of 
light is 0! 

In the limit that the speed of a mass is very much smaller than the speed of light, then we can 
approximate the mass as 

m = m0 :1 +
1
ÅÅÅÅÅ
2

 J u
ÅÅÅÅÅ
c

N
2

- …>

and so approximate the energy of matter as 
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Ematter = m0 c2 +
1
ÅÅÅÅÅ
2

 m0 u2 - … .

That is, the energy is just the ordinary kinetic energy, m0 u2 ê 2, plus an additional so-called rest mass 
energy, m0 c2. All matter has such rest mass energy. (It is rest mass energy that is released in nuclear 
fusion, in which two masses combine to form a new mass smaller than their sum, with the difference 
released as energy.)

You may be surprised at how large you own rest mass energy is!  

I weigh about 170 lb = 77 kg. Show that my rest mass energy is 6.9 μ 1018 J!

This is a huge amount of energy, by everyday measures.

I am a rower and on a good day am able to achieve speeds in a one-person shell (called a 
single scull) of 5 m/s. Show that then my kinetic energy is 1000 J. Actually, the value is a 
little more when the mass of the shell (about 27 pounds) and oars are taken into account.

Typically, kinetic energy is a negligible fraction of a particles rest mass energy.

It turns out that light also has a mass, and so energy, even though light has no rest mass. To see this, 
we need to rewrite the Einstein mass-energy equation in a form that makes clear the distinction 
between particles with a rest mass, and light, which has no rest mass. We do this by using the relation 
between m  and m0, squaring both sides of Einstein's equation and then rearranging to get 

E2 :1 - J u
ÅÅÅÅÅ
c

N
2
> = m0

2 c4,

or 

E2 = m2 c2 u2 + m0
2 c4.

We can simplify this expression a little by using the symbol p for the (relativistic) momentum m u 
(not m0 u), and then taking the square root. The result is 

E =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!p2 c2 + m02 c4 .

Carry out the steps described to obtain this expression for the energy.

Now, since light has no rest mass, this expression when applies to light becomes

E = p c .

But what is this the energy of? Einstein's proposal was that this is not the total energy of light but the 
energy of just one photon of light energy. That is, Einstein said that

Ephoton = p c .

Now the extraordinary thing about this proposal by Einstein is that it amounts to saying that a photon 
of light energy also has a momentum p = Ephoton ê c! Since we have already determined that the 
energy of a photon is h n, this means that the momentum of a photon is

pphoton = h n ê c = h ê l.
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The two relations, Ephoton = h n and pphoton = h ê l, taken together imply a profound expansion of our 
conception of how light interacts with matter. While many properties of light—the way it moves 
through space, how it is dispersed into colors in a prism, how it is focus by lenses, etc.—are well 
described terms of waves of electric and magnetic fields, Einstein proposed that the interaction of 
light with matter has distinctly particle-like character of exchanging fixed amounts of energy and 
momentum with matter. That is, while exchanging fixed amounts of energy can be taken as just the 
way the oscillating fields that compose light tug on matter,  proposing that a photon also has 
momentum suggests that in some sense light must interact with matter as one billiard ball does with 
another. And that is quite peculiar.

A fluorescent bulb emits light of several different wavelengths from each major region of 
the visible spectrum so that to our eyes its light appears white. Assume that a 45 watt 
fluorescent bulb emits equal amounts of red, green and blue light. Assume that there are 
2 μ 1019 photons of energy given of each second at the blue wavelength 450 nm. Calculate 
the total momentum in the blue light emitted each second, Answer: 3 μ 10-8 kg m/s

This momentum is equivalent to 3 μ 10-6 kg cm/s = 0.003 g cm/s,. If the light were focused in a 
single direction, we could think of this being the same momentum as a stream on 3 mg objects 
travelling at 1 cm/s.

Since the momentum of light is pphoton = m c, we can interpret the mass of a quantum to be 
mphoton = h ê Hc lL. Calculate the "mass" of a quantum of red light (l = 700 nm) and of x-ray 
light (l = 0.1 nm). Answer: 3 μ 10-36kg, 2 μ 10-32kg.

What wavelength light would has a photon mass equal to the electron mass? Answer: 
0.002 nm

It is important to understand that the relation E = p c is true only for light, that is, only when the rest 
mass, m0, is zero. That is, it is not true for matter, for which the rest mass is not equal to zero, and the 
velocity is always less than c.

Measuring the momentum of light: Compton scattering

So peculiar was Einstein's proposal that quanta of light carry a fixed amount of momentum, it was 
not accepted as so until it was verified by direct measurement. The experiment was carried out in 
1923 by A. H. Compton. Compton's idea was that if light had momentum, then when it's energy is 
transferred to an electron, its momentum should also be transferred. 

What Compton measured was the momentum imparted to an electron initially at rest by the 
absorption of one photon. He found that increase in the momentum was not equal to the momentum 
of the photon, but only a fraction of the momentum. However, he also measured that following the 
absorption of the light by the electron, light of longer wavelength was emitted by the electron (due to 
its motion).

The emission of a light of longer wavelength  suggested to Compton that the amount of momentum 
transferred to the electron may be a measure of the momentum difference between a photon of the 
incident and emitted light. It turns out that if he assumed, according to Einstein's proposal, that the 
momentum of the photons of the absorbed light was h ê labsorb ed and that of the photons of the 
emitted light was h ê lemitted, then the n the increase in wavelength, lemitted - labsorbed, that he observed 
accounted precisely for the momentum gained by the electron.

The gist of Compton's analysis is (1) that momentum of the absorbed photon is partitioned between 
the emitted photon and the electron (momentum conservation)

pØ photon,absorbed = pØphoton,emitted + pØelectron,scattered
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(since the electron is initially assumed to be at rest, its momentum is zero and so not included on the 
left hand side of this equation), and (2) that the combined energy of the absorbed photon and the 
electron before the absorption (energy conservation). 

m0,e c2 + h c ê labsorbed = "##############################################m0,e2 c4 + pe,scattered2 c2 + h c ê lemitted

He then used these tow relations to show that

lemitted - labsorbed =
2 h

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m0,e c

 sin2Hq ê 2L

where q is the angle at which the emitted photon is detected relative to the direction of the absorbed 
photon's light beam. The greater the angle, the greater the transfer of momentum to the electron and 
so the greater the increase of the wavelength of the light as a result of the interaction. 

The quantity h ê Hm0,e cL is known as the Compton wavelength. Show that its value is 
0.0024263 nm.

Calculate the wavelength difference between an absorbed photon and one emitted along 
direction 10° and along direction 90°. Answer: 0.0000368611 nm, 0.00242631 nm. 

Do the relative values of these wavelength shifts make sense physically?

Details of Compton's calculation are at

http://scienceworld.wolfram.com/physics/ComptonEffect.html,

and you can explore the calculations interactively at

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/compdat.html#c1.

Compton's paper is "A quantum theory of the scattering to X-rays by light elements," 
Phys. Rev. 21, 483–502 (1923),

http://www.aip.org/history/gap/PDF/compton.pdf. 

In the paper Compton concludes that the "experimental support of the theory indicates 
very convincingly that a radiation quantum carries with it directed momentum as well as 
energy." A biography of Compton is available at

http://www.aip.org/history/gap/Compton/Compton.html.

In this way, the momentum of photon came to be accepted. And in this way Compton won his Nobel 
prize in 1927, http://www.nobel.se/physics/laureates/1927/compton-bio.html.

à What's waving in a matter wave?

The first step in answering this question is to see what the mathematical expression is for the matter 
wave. The first thing to try is to rewrite the general expression for a wave that we have discussed,

yHx, tL = a sin@2 pHx ê l - n tLD.

using the de Broglie relations. The result is

yHx, tL = a sin@2 pHx ê lmatter - fmatter tLD = a sin@Hpmatter x - Ematter tL êÑD,
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where Ñ, pronounced "h bar," is the standard abbreviation for h ê H2 pL.We can interpret this 
expression as meaning that the matter wave is moving, with phase velocity

uf = fmatter lmatter.

For example, for a particle confined to a one-dimensional region of width L, in which it moves 
freely, the phase velocity is 

uf =
h j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 m L

.

Use the expressions we have found for the energy and wavelength of such a particle to 
show that this expression for the phase velocity is true.

Calculate the phase velocity of an electron confined to a one-dimensional 1.00 nm region 
when it has the lowest possible energy. Answer: 1.82 μ 105 m/s. This illustrates that the 
phase velocity of such an electron is much less than that of light.

It turns out that this form of the matter wave is not quite right. One of the requirements of the 
quantum description of matter that has a definite energy is that the time variation of its matter wave 
be 

‰-Â Ematter têÑ Htime variation of matter wave with energy EmatterL.

In this expression, ‰ is the base of the natural logarithm and Â =
è!!!!!!!

-1  (and so Â2 = -1). The factor 
‰-Â Ematter têÑ is an example of what is known as a complex exponential. A general complex exponential 
‰Â x is a special combination of sine and cosine known as the Euler relation,

‰-Â x = cosHxL - Â sinHxL,

and so ‰-Â Ematter têÑ = cosHEmatter t êÑL - Â sinHEmatter t êÑL.

Show that ‰Â pê2 = Â, ‰Â p = -1, ‰Â 3 pê2 = -Â, and ‰Â 2 p = ‰0 = 1.

In terms of the exponential time dependence, the matter wave for a particle in a box with energy 
Ematter is

yHx, tL = a sinHpmatter xL ‰-Â Ematter têÑ.

To focus our attention on this particular form of the time dependence in matter waves, let's write a 
general matter wave (in one dimension) as

yHx, tL = yHxL ‰-Â Ematter têÑ,

with the understanding that yHxL, the spatial part of the matter wave, is different for different kind of 
systems; for example, yHxL = a sinHpmatter x êÑL. As we will now see, there are two very good reasons 
why time needs to appear in a matter wave that has a definite energy, Ematter, in terms of the complex 
exponential ‰-Â E matter têÑ.

The first reason is that then matter in its lowest energy state will be stable, in the sense that it cannot 
drop to a still lower energy state by emission of light energy.

The second reason is that then interaction of light with charged particles makes them oscillate at 
frequencies determined by differences of de Broglie frequencies (and so, particle energies).

Here is a worked example illustrating these ideas.
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The lowest three electron wave frequencies of a molecule are f1 = -7 μ 1013 Hz,  
f2 = - 6 μ 1013 Hz, and f3 = -1 μ 1013 Hz. Assume the electron is described by electron 
wave with frequency f2. Show that the molecule cannot absorb light of frequency » f2 ».

Answer: The electron cloud made from electron wave with frequency f2 does not move, since 
expH-Â 2 p f2 tL expH+Â 2 p f2 tL = expH0L = 1; that is, there is no possibility of an electron cloud 
moving at frequency » f2 ».

à Born interpretation: What's waving is probability amplitude

It was Max Born who provided the answer that we use today. Born postulated that matter waves, or 
wavefunctions as they are more commonly known today, are oscillations of probability amplitudes. 
Probability amplitudes have physical meaning according to the following recipe (or rule): 

The product of a wavefunction corresponding to time increasing (flowing forward) and 
the same wavefunction corresponding to time decreasing (flowing backward) is the 
probability density of the particle.

The formulation of Born's recipe in terms of a time-symmetric prescription is due to John 
Cramer, Transactional interpretation of quantum mechanics, Reviews of Modern 
Physics, Volume 58, 1986, pages 647–687. A very nice, qualitative discussion of this 
interpretation is given in John Gribbin, Schrodinger's Kittens and the Search for Reality 
(Little Brown & Company, 1995, ISBN 0316328383), pages 223–247.

This is a real mouthful, so let's digest it a bit at a time. 

First, about probability density: The terminology probability density is used because in three 
dimensions, the product has the dimensions probability per unit volume. To know the probability of a 
particle being within a small volume „ V  centered at a particular point in space, we need to multiply 
the probability density there by the small volume.

If we are working in just one dimension, the probability density has the dimensions probability per 
unit length. To know the probability of a particle being within a small distance „ x centered at a 
particular point in one dimension, we need to multiply the probability density there by the small 
length.

How would you use probability density to determine probability working in two 
dimensions?

It is because of this connection between the wavefunction and probability that wavefunctions are 
sometime referred to as probability amplitudes.

Second, about the direction of time: A neat device to change the direction of time in a wavefunction 
is to replace everywhere Â by -Â; this replacement is called complex conjugation, and a function 
f Hx, tL to which complex conjugation has been applied is written f Hx, tL*.  So we can write the 
probability of a particle represented by a wavefunction yHx, tL being within „ x of a particular place, 
say x£, is

yHx£, tL* yHx£, tL „ x = yHx£L* ‰Â Ematter têÑ yHx£L ‰-Â Ematter têÑ „ x = yHx£L* yHx£L „ x = » yHx£L »2 „ x.
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Here we have introduced the standard notation » f HxL »2 for the product of a function and its complex 
conjugate. The crucial feature of Born's recipe is that whenever the wavefunction has a definite 
energy, then probabilities computed from it are independent of time, since the complex exponentials 
cancel,

‰Â Ematter têÑ ‰-Â Ematter têÑ = ‰0 = 1.

For this reason, we say a particle with a well defined energy is in a stationary state, in that its 
probability density not change over time.

In three dimensions, the probability of the electron being within a volume „ r centered at a particular 
place, say r£ = Hx£, x£, x£L, is

yHr£, tL yHr£, -tL „ r = » yHr£L »2  „ r.

The probability of finding the particle within a larger region, say (for one dimension) between x = a 
and x = b, is

‡
a

b
» yHxL »2 „ x.

Since a particle must be found somewhere, the Born recipe requires that the probability of finding it 
anywhere at all must be one,

‡
-¶

¶

» yHxL »2 „ x = 1.

This relation is known as the normalization condition and wavefunctions that satisfy this condition 
are said to be normalized.

Calculating probability densities

To get familiar with calculating probabilities from wavefunctions, let's use as example a 
wavefunction of a particle confined in the region 0 § x § 1,

yHxL =
è!!!2  sinH2 p xL.

Here is the corresponding probability density,
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x
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2
»yHxL»2

Probability density of a particle confined to the region 0 § x § 1.

The essence of computing probabilities of a particle being within a region Dx of a particular place x0 
is to multiply the probability density at x0 by the width of region, » yHx0L »2  Dx. 

What is the probability of finding the particle within Dx = 0.01 of x0 = 0.25? Answer: 0.02.
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What is the probability of finding the particle within Dx = 0.01 of x0 = 0.125? Answer: 
0.01.

What is the probability of finding the particle within Dx = 0.01 of x0 = 0.50? Answer: 0.

Computing probabilities using » yHx0L »2  Dx assumes that yHxL changes negligibly over the region Dx. 
If the region is so large that this is not the case, we can still easily approximate probabilities by using 
rectangular areas. 

For example, we can estimate the probability of the particle being somewhere in the region 
0 § x § 0.25 by evaluating the area of the rectangle of width equal to Dx = 0.25 and height equal to 
the value of the probability density, » yHx = 0.125L »2 º 1, evaluated at the midpoint of the region, 
x = 0.125. This is illustrated in the following figure.
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The result is » yHx = 0.125L »2  Dx = 1 μ 0.25 = 0.25.

Use the rectangle illustrated in the following figure to estimate the probability of finding 
the particle within Dx = 0.25 of x0 = 0.25? Answer: 0.4.

0 0.25 0.5 0.75 1
x

0.5

1

1.5

2
»yHxL»2

Such estimates can be made as exact as we wish by spanning the region with increasing numbers of 
adjacent small rectangles. Of course, in the limit of infinitesimally narrow rectangles we have the 
result from calculus that the calculation reduces to an integral. For the example wavefunction here, 
the general expression for the probability of finding the particle somewhere in the region a § x § b is 

‡
a

b
yHxL2 „ x = 2 ‡

a

b
sin2H2 p xL „ x = b - a +

sinH4 p aL - sinH4 p bL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 p
.

Using this expression, we can evaluate the exact value of the previous problem to be 0.41. In 
practice, however, we can make quite reasonable estimates by careful choice of a single rectangle, or 
at most just a few.
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Use the calculus result given above to show that the probability of finding the particle 
somewhere between x = 0 and x = 1 is 1.  That is, show that the wavefunction is 
normalized.

Use the result of the previous problem, but without using the calculus result quoted above 
and without using any rectangles, to show that the probability of the particle being in the 
region 0 § x § 1 ê 2 is exactly 1/2.

Are wavefunctions real?

It is crucial to understand that the Born recipe gives only indirect physical meaning to the 
wavefunction, as a means to compute probabilities. In particular, as far as we know today, the 
wavefunction itself does not appear to be directly accessible. Indeed, so far as I am aware we do not 
have any experimental evidence of the physical reality of wavefunctions; that is, wavefunctions are 
abstract quantities rather than physical objects, and so in this sense they may simply be calculational 
tools.

à How does light make electrons jiggle?

The Born interpretation tells us how matter waves relate to physical reality. With this insight, let's 
return to the question of how interaction of light with charged particles makes them oscillate at 
frequencies determined by differences of de Broglie frequencies (and so, particle energies).

The key is to recall that light interacts with matter by causing its charged particles to oscillate in 
synchrony with the oscillation of the electric field of the light. So, we need to understand how light 
can make an electron jiggle.

Heisenberg's first paper on quantum mechanics addressed this question.

W. Heisenberg, "Quantum-theoretical re-interpretation of kinematic and mechanical 
relations," Z. Phys. 33 (1925) 879-893. A translation of this paper into English, and also 
of most of the other key works on the creation of quantum mechanics is in B. L. van der 
Waerden, "Sources of Quantum Mechanics," (Dover, 1968, ISBN 0-486-61881-1). 

The challenge (and what Heisenberg set himself to) is to identify something in matter that (1) has the 
needed frequency of oscillation, proportional to a difference of atom energies, but (2) that at the same 
time does not lead to motion of charges in matter in the absence of light. The reason for requiring no 
motion of charges in the atom in the absence of light is that such motion would cause atoms to emit 
light when no light is present (which they do not) and quickly collapse (which they do not) due to the 
loss of energy to light. That is, the question is how to account for oscillation in the atom in the 
presence of light, but to have no oscillation—and so no radiative collapse—if no light is present? 

Heisenberg won the Nobel prize for his answer. Heisenberg knew he had to associate something with 
each possible energy value of the electron that, when connected to another energy value, would result 
in a frequency proportional to the difference of the energy values. 

The essence of Heisenberg's approach amounts to the following three steps (Heisenberg did not lay 
them out separately, however). First is the idea we have already introduced, to associate with the 
spatial matter wave, yatom, jHxL, corresponding to each possible energy value, E j, of the electron, the 
complex exponential ‰-Â 2 p Eatom, j  têh = ‰-Â watom, j  t; that is, to express the matter wave of the j-th energy 
level as 

Y jHx, tL = y jHxL ‰-Â watom, j  t.
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Next, is the idea that the effect of the light on the atom was to produce a mixture of two matter waves, 
say,

y jHxL ‰-Â watom, j  t + ykHxL ‰-Â watom,k  t.

Finally, Heisenberg postulated that interaction with light results in a spatial distribution of electron 
charge given by Born recipe (which he anticipated), the product of the mixture of matter waves and 
their time reversed mixture, for the two energy levels,

» y jHxL ‰-Â watom, j  t + ykHxL ‰-Â watom,k  t »2 =

y jHxL2 + ykHxL2 + 2 y jHxL ykHxL cos@Hwatom,k - watom, jL tD.

Here, for simplicity, we assume the spatial parts of the wavefunctions are real and so that complex 
conjugation is moot for them.

Show that this expression is correct, using the consequence of the Euler relation that 
‰Â x + ‰-Â x = 2 cosHxL.

The key feature of this result is that the distribution of the electron probability density, and so the 
electron charge distribution, oscillates with the required frequency, given by the difference of the de 
Broglie frequencies.

Let's see how Heisenberg's approach works for an electron in a one-dimensional box and an electron 
in a hydrogen atom.

Example: Electron in a one-dimensional box

We know that for an electron in bound electron to interact with light, it must oscillate at the 
frequency of the light. The matter wave of an electron with energy En is

ynHx, tL =
è!!!!!!!!!2 ê L  sinHkn xL ‰-Â wn  t,

where the factor è!!!!!!!!!2 ê L  insures the wavefunction is normalized.

If you have had calculus, you can confirm that the wavefunction is normalized by 

verifying that ‡
o

L
Aè!!!!!!!!!2 ê L  sinHkn xLE2

 „ x = 1.

Such an electron with fixed energy cannot oscillate, since its probability density is independent of 
time,

ynHx, tL* ynHx, tL = Iè!!!!!!!!!2 ê L  sinHkn xL ‰-Â wn  tM*
 Iè!!!!!!!!!2 ê L  sinHkn xL ‰-Â wn  tM =

2
ÅÅÅÅÅÅ
L

 sin2Hkn xL.

For there to be oscillation at a particular frequency, the matter wave of the electron must be a mixture 
of  matter waves for different energies. The simplest such mixed matter wave is

YHx, tL =  
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2
 8y1Hx, tL + y2Hx, tL< =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!L

 8sinHk1 xL ‰-Â w1  t + sinHk2 xL ‰-Â w2  t<,

where the factor 1 ëè!!!2  insures the mixture is normalized.

Show that if y1 and y2 are normalized, then this mixture of them is normalized.

The probability density corresponding to this mixed matter wave, 
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YHx, tL* YHx, tL =
1
ÅÅÅÅÅÅ
L

 8sin2Hk1 xL + sin2Hk2 xL + 2 sinHk1 xL sinHk2 xL cos@Hw2 - w1L tD<

does oscillate, at frequency w = w2 - w1, just as required by the Einstein energy-frequency relation. 

Here is a visualization of the oscillation of the probability density.
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Probability density on an electron in a one-dimensional box of width L interacting with light of angular frequency w equal to the 
difference in angular frequency of the lowest and next lowest energy of the electron in the box. This frequency corresponds to the 
fundamental absorption line of the electron in the box.

The figure shows two frequency cycles of time. In this time the electron probability density is seen to 
shift back and forth across the box twice, matching the oscillation of the electric field of the light of 
the same frequency.

Example: Electron in hydrogen atom

Here is a visualization of the analogous probability density oscillation corresponding to the hydrogen 
atom Lyman a (n = 1 Ø n = 2) absorption.
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Probability density on the electron in hydrogen atom interacting with light of angular frequency w equal to the difference in angular 
frequency of the lowest (n = 1) and next lowest (n = 2) energy of the electron. This frequency corresponds to the Lyman al 
absorption line of atomic hydrogen. Oscillation is along the axis, z, of the electric field of the light. The hydrogen atom nucleus is at 
z = 0.

As before, the figure shows two frequency cycles of time. The electron probability density is seen to 
shift back and forth from one side of the nucleus (at z = 0) to the other twice, matching the oscillation 
of the electric field of the light of the same frequency.

à Representing a "particle" with waves: wavepackets

At this point we know a little about what a matter wave—a wavefunction—is and how the 
combination of matter waves of two different energies account for the frequency of spectral lines 
being determined by differences of matter wave de Broglie frequencies.

What you may be wondering, however, is: How can a particle, which we think of as something being 
in a particular region of space ("here, and not there"),  be represented by a wave, which is by 
definition spread throughout space (else its length—the distance from peak to peak—has no 
meaning)? That is, how can we reconcile our image of a particle as a localized object with our image 
of a wave as oscillating over an extended region?

A caution on the use of language:

We will show now one way to reconcile the wave aspect of electrons with the image of 
an electron as being a localized object—a "particle."  But at a more fundamental level, 
whether quantum objects appear as waves or particles has meaning only in terms of the 
kinds of measurements we make on them.That is, as far as anyone knows, the so-called 
wave-particle duality is an inescapable aspect of every quantum object. 

This duality can trap us in a thicket of fantasy that can be avoided only by being careful 
to not to ascribe to quantum objects a preexisting particle or wave character, but instead 
to do so only in terms of the behavior exhibited in measurements we make upon them. 
That is, if in a measurement a quantum object appears as a particle, that does not mean 
that the object behaved as a particle before we measured it. In particular, quantum 
mechanics tells us nothing about what quantum objects are before we make 
measurements on them.

For example, if you find yourself visualizing an electron, say, either as a particle or as a 
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wave, then you are indulging in fantasy as far as quantum mechanics is concerned. 
Please keep this in mind when we speak of something as behaving as a wave or as a 
particle.

In particular, we are now going to see how to represent quantum objects as being 
localized in space. This is quite different than to say (incorrectly) that we are now going 
to see how to represent localized quantum objects, for quantum objects have no such 
characteristic except in terms of measurements made on them

We might agree that perhaps an electron does behave as a wave inside an atom. But surely it behaves 
as a particle as it traces out images on the insides of the cathode rays tubes of our televisions and 
CRT computer monitors. (Remember, as noted above, such language is unjustified by quantum 
mechanics, but seems reasonable to us because objects in our everyday world can be talked about as 
either waves or particles.) 

In fact it is possible to reconcile a wave picture and a localized particle picture, by using the property 
of waves that they oscillate between positive and negative values, for this means waves can cancel 
each other out (destructive interference) or reinforce one another (constructive interference), 
depending on their relative wavelengths and phases. We can use wave interference to construct 
combinations of wavefunctions—a so-called wavepacket—that can have any degree of localization 
that we choose. Highly localized particles, in particular, are wavepackets composed of wavefunctions 
with so many different wavelengths that the wavefunctions interfere destructively everywhere except 
in a small region of space. This small region where the resulting probability amplitude is large is 
"where the particle is."

Wavepacket example

The equal mixture of y1Hx, tL and y2Hx, tL that we used to understand how light makes an electron 
jiggle is a simple example of a wavepacket—a combination of waves of different energies and so 
different wavelengths. That example illustrated two key aspects of all wavepackets. The first, which 
we have focused on earlier, is that, because they are composed of wavefunctions with different 
energies, wavepackets move. The second, which we investigate now, is that the wavepacket has a 
different shape than its parts, owing to wavefunction interference. It is this second aspect that allows 
us to tailor a wavepacket to be localized over a narrow region.

Remember, the key idea is that the more different wavelengths we combine in a wavepacket, the 
more localized is the resulting wavepacket and so probability density. We have already seen how 
mixing wavefunctions of different energies results in motion, so here we focus instead on the effect, 
for a given time, of the number of wavefunctions we add to the mixture. 

For convenience, let's set the value of time to be t = 0. Then a simple extension of the 
two-wavefunction mixture is a mixture

YHxL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!N
 8y1Hx, 0L + y2Hx, 0L + y3Hx, 0L … + yN Hx, 0L<

of N  lowest energy wavefunctions y jHx, 0L =
è!!!!!!!!!2 ê L  sinH j p x ê LL of a particle confined to the region 

0 § x § L but free to move within that region. (The factor 1 ëè!!!!!N  makes the total probability 
computed from the wave packet equal to one.) For example, here is the wavepacket consisting of 
equal amounts of the three lowest-energy wavefunctions

YHxL = $%%%%%%2
ÅÅÅÅÅ
3

 8sinHp x ê LL + sinH2 p x ê LL + sinH3 p x ê LL<.
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To illustrate the effect of increasing the number of different wavefunctions in the wavepacket, here 
are the probability densities corresponding to this wavepacket, and to the wavepackets consisting of 
equal amounts of the five and ten lowest-energy wavefunctions.
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Probability density of wavepackets consisting of equal amounts of the three (lowest leftmost peak), five, and ten (highest leftmost 
peak) lowest-energy wavefunctions of a particle confined to the one dimensional region of 0 § x § L.

We see that as the number of different wavelengths increases, the wavepacket becomes increasingly 
peaked and so localized near the left edge of the region. 

We can illustrate the effect of the number of different wavefunctions in the wavepacket on its 
localization more strikingly with a surface plot of probability density versus number of 
wavefunctions.
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Probability density of wavepackets consisting of equal amounts of the N lowest-energy wavefunctions of a particle confined to the 
one dimensional region of 0 § x § L.
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Heisenberg uncertainty principle

The surface shows that the peaks in the probability density becomes sharper and sharper as more and 
more different wavelength wavefunctions are combined. In the extreme, to represent a highly 
localized particle, very many different wavelengths need to be combined. But this in turns means, by 
the de Broglie relation, p = h ê l, that very many different momenta, p, need to be combined. That is, 
the price we pay to localize a particle to a within a small region is to lose knowledge of the 
momentum of the particle. That is, the uncertainty in where the particle is, dx, is inversely 
proportional to the uncertainty in the momentum, d p = h ê dl, of the particle. 

The precise relation, known the Heisenberg uncertainty principle, is

dx d p ¥
h

ÅÅÅÅÅÅÅÅÅÅÅ
2 p

.

It means that there is a fundamental limitation on how precisely we can localize a particle. If we are 
very precise, then there is a very large uncertainty in the momentum (and so speed and direction) of 
the particle, so that a short time later we will not know where the particle will be. Conversely, if we 
specify the momentum of a particle very precisely, then its wavepacket will contain only a few 
different wavelengths and so be very spread out, so that we will not know where the particle is.

For these reasons, it is not meaningful to ask what is the de Broglie wavelength of a localized 
particle, for such a particle is composed of many different wavelengths. Similarly, it is not 
meaningful to ask where a particle is that has a precisely defined energy and so just a single de 
Broglie wavelength.

It is in this way that we see that wave and particle viewpoints a mutually incompatible descriptions of 
reality at the quantum level. This is the profound consequence of the wave nature of matter (and so 
also of the particle nature of light).
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