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Quantum aspects of angular momentum: Space quantization

The effect of angular motion appears in the radial Schrödinger equation as the repulsive centrifugal 
potential
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In classical physics kinetic energy due to motion of a mass m on an arc of radius r is
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Comparing the classical energy expression to the repulsive centrifugal potential, evidently we can 
identify H + 1L Ñ2 as the squared angular momentum of the electron.

Evaluate the total centrifugal potential energy due to the motion of electrons in a mole of 
hydrogen atoms, assuming = 1 (p electrons) and r = 1 Þ. Answer: 735 kJ/mol.

Evaluate the total centrifugal potential energy due to the motion of electrons in a mole of 
hydrogen atoms, assuming = 3 (f electrons) and r = 1 Þ. Answer: 4411 kJ/mol.

We have learned that in addition to the quantum number , there is the quantum number m  with 
2 + 1 values - , - + 1, …, . These values of m  are interpreted as the possible values, in units of 
Ñ, of the projection of the angular momentum vector 

◊
 along an axis (conventionally chosen to be the 

z axis). 

Since the length of 
◊
 is è!!!!!!!!!!!!!!H + 1  Ñ > Ñ, but since the largest projection of 

◊
 along z is  Ñ 

(corresponding to the maximum value of m ), (1) 
◊
 can never be exactly parallel to the z axis, and (2) 

it can be oriented at only 2 + 1 possible angles to the z axis. The restriction on orientation of the 
possible orientations of 

◊
 in space is known as space quantization.

Evaluate the possible angles the 
◊
 can make with the z axis is = 1. Answer: 

135 °, 90 °, 45 °.

As the value of  increases, 
◊
 can be oriented closer to the z axis, and as  becomes very large, it can 

be nearly parallel to the z axis and can take nearly arbitrary orientation with respect to the z axis. 
Thus, for very large values of , the effect of space quantization becomes insignificant.



Evaluate the minimum angle that 
◊
 can make with the z axis is = 10, 100, and 1000. 

Answer: 17.5 ° and 5.7 °, 1.8 °.

Spin angular momentum

Electrons have an intrinsic magnetic moment that is found experimentally to be able to be aligned 
along a magnetic field with only two possible orientations. These alternative orientations are call up 
and down. Classically, a magnetic moment is equivalent to an electrical current in the plane 
perpendicular to the magnetic moment. Since electrons have electrical charge, when the intrinsic 
magnetic moment of the electron was discovered, it was first thought that it was due to the current 
generated by the electrically charged electron spinning on its own axis, and for this reason the 
magnetic moment is referred to as the spin of the electron. In fact, the electron is not spinning, but 
nonetheless has a magnetic moment and this is still referred to as the electron spin.

Since the "spin" of the electron can take just two orientation with respect to an applied magnetic 
field, it is interpreted as an angular momentum of quantum number s = 1 ê 2, since then it has only 
two possible projection quantum numbers ms = -1 ê 2, +1 ê2. Since the electron is not actually 
spinning, its alternative spin states are not represented in terms of motion in physical space. Rather 
they are denoted as a for ms = +1 ê 2 and b for ms = -1 ê 2.

Angular momentum operators

A compact way of expressing the angular momentum properties of a the state of a quantum system is 
to label the state with the numerical values of the angular momentum quantum number J  and the 
projection quantum number MJ  as » J MJ \. The symbol J  is used when we do not need to distinguish 
between orbital and spin momentum. Then we can express the angular momentum properties in 
terms of operators for the squared angular momentum and the angular momentum projection as

J2 » J , MJ \ = J HJ + 1L Ñ2 » J , MJ \,

Jz » J , MJ \ = MJ  Ñ » J , MJ \.

For example, the angular momentum properties of a d electron with m = -2 could be expressed as

J2 » J = 2 , MJ = -2\ = 2 » 2, -2\ = 2 H2 + 1L Ñ2 » 2, -2\ = 6 Ñ2 » 2, -2\,

Jz » J = 2, MJ = -2\ = z » 2, -2\ = -2 Ñ » 2, -2\

and the angular momentum properties of a spin down electron could be expressed as 

J2 » J = 1 ê 2 , MJ = -1 ê 2\ = s2 b = 1 ê 2 H1 ê2 + 1L Ñ2 b = 3 ê 4 Ñ2 b

Jz » J = 1 ê 2 , MJ = -1 ê 2\ = sz b = -1 ê 2 Ñ b

Two other operators operators are

J≤ = Jx ≤ ÂJy.

 These operators raise HJ+) or lower HJ-) the value of the z projection quantum number MJ  by one 
unit,

J≤ » J , MJ \ =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J HJ + 1L - MJ HMJ ≤ 1L  Ñ … J , MJ ≤ 1],
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and so are referred to as the raising HJ+) and lowering HJ-) operators. Since there is a maximum 
possible value of MJ , the effect of the raising operator on a state with MJ = J  is said to annihilate the 
state. For example,

s+ a =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 ê 2 H1 ê 2 + 1L - 1 ê 2 H1 ê 2 + 1L  Ñ … 1 ê 2, 3 ê 2 Hnot possible!L] = 0

Similarly, since there is a minimum possible value of MJ , the effect of the lowering operator on a 
state with MJ = -J  is to annihilate the state. For example, 

s- b =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 ê 2 H1 ê 2 + 1L + 1 ê2 H-1 ê 2 - 1L  Ñ … 1 ê 2, -3 ê 2 Hnot possible!L] = 0

Show that s+ b = Ñ a and that s- a = Ñ b.

à Composite spin angular momentum

Angular momenta can combine together. An important example are the four symmetrized spin states 
of two electrons,

state1 = aH1L aH2L

state2 = bH1L bH2L

state3 = aH1L bH2L + aH2L bH1L

state4 = aH1L bH2L - aH2L bH1L

The challenge is to determine what the are the values of the total angular momentum quantum 
number J  and the projection quantum number Mz for such a combination.

The way to determine the angular momentum properties of these combined spin states is to introduce 
the total spin momentum,

S
◊÷

= s1
◊÷÷÷ + s2

◊÷÷÷ ,

and then to determine the effect of the operators for the squared total spin momentum

S2 = Hs1
◊÷÷÷ + s2

◊÷÷÷ L ÿ Hs1
◊÷÷÷ + s2

◊÷÷÷ L = s1
2 + s2

2 + 2 s1
◊÷÷÷ ÿ s2

◊÷÷÷ ,

and z projection of the total spin momentum,

Sz = s1 z + s2 z,

on each of the symmetrized states of two spins. 

For example, it will turn out below that the effect of S2 on the two spin state state1 is 
S2 state1 = 2 Ñ2 state1. Since we know the general the eigenvalue of S2 is SHS + 1L Ñ2, we can 
conclude by setting 2 = SHS + 1L that S = 1, and so that state1 corresponds to a total spin angular 
momentum quantum number of 1.

In a similar way, we can determine value of the spin projection quantum number Mz by determining 
the effect of Sz on each of the combined spin states. In particular, it will turn out below that 
Sz state1 = Ñ state1. Since the general eigenvalue of Sz is Mz Ñ, this result means that Mz = 1 for state 
1.
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These results mean that state1 can be represented as » S, Mz\ = » 1, 1\.

Total spin momentum z projection

To evaluate the effect of the total spin momentum z projection, we need to evaluate the effect of Sz 
on each of the states.

Use the expression for Sz to show that the effect of Sz on state1 is Sz state1 = Ñ state1 and so 
that MS = 1 for state1.

Evaluate the effect of Sz on state2, state3, and state4 to show that their values of MS are -1, 
0, and 0, respectively.

Squared total spin momentum

To evaluate the effect of the total angular momentum operator

S2 = Hs1
◊÷÷÷ + s2

◊÷÷÷ L ÿ Hs1
◊÷÷÷ + s2

◊÷÷÷ L = s1
2 + s2

2 + 2 s1
◊÷÷÷ ÿ s2

◊÷÷÷ ,

on a two spin state, we need to express 2 s1
◊÷÷÷ ÿ s2

◊÷÷÷  in terms of operators whose effect on spin states we 
know. We do this using raising and lowering operators each spin.

Show that 2 Hs1 x s2 x + s1 y s2 yL = s1+ s2- + s1- s2+, and so that 
2 s1

◊÷÷÷ ÿ s2
◊÷÷÷ = 2 s1 z s2 z + s1+ s2- + s1- s2+

Using the result of the previous problem, we can express the total angular momentum operator as

S2 = Hs1
◊÷÷÷ + s2

◊÷÷÷ L ÿ Hs1
◊÷÷÷ + s2

◊÷÷÷ L = s1
2 + s2

2 + 2 s1 z s2 z + s1+ s2- + s1- s2+

Use this expression to show that the effect of S2 on state1 is S2 state1 = 2 Ñ2 state1, and 
similarly for state2 and state3.

Based on the result of the previous problem, show that S = 1 for state1, state2, and state3.

Use the expression for S2 above to show that the effect of S2 on state3 is S2 state4 = 0 and 
so that S = 0 for state4

Composite spin state labels

We have already anticipate that state1 = aH1L aH2L can be represented as » S, Mz\ = » 1, 1\.

Use the values that you have determined for S and MS  to verify that the following » S, MS\ 
labelling of the other three composite spin states.

state2 = bH1L bH2L = » 1, -1\

state3 = aH1L bH2L + aH2L bH1L = » 1, 0\

state4 = aH1L bH2L - aH2L bH1L = » 0, 0\
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