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à Classical harmonic motion

The harmonic oscillator is one of the most important model systems in quantum mechanics. An 
harmonic oscillator is a particle subject to a restoring force that is proportional to the displacement of 
the particle. In classical physics this means

F = m a = m 
„2 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ t2 = -k x

The constant k is known as the force constant; the larger the force constant, the larger the restoring 
force for a given displacement from the equilibrium position (here taken to be x = 0). A simple 
solution to this equation is that the displacement x is given by

x = sinIè!!!!!!!!!!k ê m  tM,

since

m 
„2 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ t2

= m 
„2

ÅÅÅÅÅÅÅÅÅÅÅÅ
„ t2  sinIè!!!!!!!!!!k êm  tM

= -mIè!!!!!!!!!!k ê m M2
 sinIè!!!!!!!!!!k ê m  tM

= -k sinIè!!!!!!!!!!k ê m  tM
= -k x.

The quantity è!!!!!!!!!!k êm  plays the role of an angular frequency,

w = 2 p n =
è!!!!!!!!!!k ê m .

The larger the force constant, the higher the oscillation frequency; the larger the mass, the smaller the 
oscillation frequency.

à Schrödinger equation

The study of quantum mechanical harmonic motion begins with the specification of the Schrödinger 
equation. The linear restoring forces means the classical potential energy is 

V = -‡ F „ x = -‡ H-k xL „ x =
1
ÅÅÅÅÅ
2

 k x2,



and so we can write down the Schrödinger equation as

i
k
jjj-

Ñ2
ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

 
„2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ x2 +

1
ÅÅÅÅÅ
2

 k x2y
{
zzz yHxL = E yHxL.

Next, it will be helpful to transform this equation to dimensionless units. We could use the same 
length and energy units that we have used for the particle in a box and for the one-electron atom, but 
there is a different set of units that is more natural to harmonic motion.

Since harmonic motion has a characteristic angular frequency, w =
è!!!!!!!!!!k ê m , it makes sense to 

measure energy in terms of w. It turns out that the choice Ñw ê 2 works well. (The choice Ñw would 
seem more obvious, but the factor of 1 ê2 simplifies things somewhat.). Next, we can use the energy 
unit to determine the length unit. Specifically, let's use for the unit of length the amount by which the 
oscillator must be displace from equilibrium (x = 0) in order for the potential energy to be equal to 
the energy unit.  That is, the unit of length, x0, satisfies

Ñw
ÅÅÅÅÅÅÅÅÅÅÅÅ

2
=

1
ÅÅÅÅÅ
2

 k x0
2 =

1
ÅÅÅÅÅ
2

 m w2 x0
2

and so

x0 = $%%%%%%%%%%%Ñ
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
m w

This means we can express energy as

E =
Ñw
ÅÅÅÅÅÅÅÅÅÅÅÅ

2
e

in terms of dimensionless multiples e of Ñw ê 2, and length as

x = $%%%%%%%%%%%Ñ
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
m w

 r

in terms of dimensionless multiples r of è!!!!!!!!!!!!!!
Ñ êm w . In these dimensionless units, the Schrödinger 

equation becomes

„2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ r2  yHrL = -tHrL yHrL,

in terms of the dimensionless kinetic energy

tHrL = e - r2.

Verify that the Schrödinger equation has this form in the dimensionless units of energy 
and length that we have chosen.

Show that the length unit, x0 =
è!!!!!!!!!!!!!!
Ñ ê m w , can be written alternatively as è!!!!!!!!!!!!!

Ñw ê k  and 
"###################Ñ ëè!!!!!!!!k m .

Here is a plot of the dimensionless potential energy.
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Harmonic potential energy, in units Ñw ê2. Length r is in units è!!!!!!!!!!!!!!!
Ñ êm w .

à Energies and wavefunctions

It turns out that the quantal energies in the harmonic potential are

e j = 2 j - 1,

where j is the number of loops in the wavefunction. Here is the lowest energy wavefunction—the 
wavefunction with one loop. (This and the following example wavefunctions in this part are 
determined by Numerov integration of the Schrödinger equation.)
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Lowest energy harmonic oscillator wavefunction. The energy is 2 μ 1 - 1 = 1, in units Ñw ê2. Displacement r from equilibrium is in 
units è!!!!!!!!!!!!!!!

Ñ êm w . The vertical lines mark the classical turning points.

The vertical lines mark the classical turning points, that is, the displacements for which the harmonic 
potential equals the energy.

turn@j_D := ρ ê. Solve@ρ2 == 2 j − 1, ρD êê Evaluate;
turn@jD

9−è!!!!!!!!!!!!!!!!!!−1 + 2 j , è!!!!!!!!!!!!!!!!!!
−1 + 2 j =

Here is the sixth lowest energy wavefunction,
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Sixth lowest energy harmonic oscillator wavefunction. The energy is 2 μ 6 - 1 = 11, in units Ñw ê2. Displacement r from equilibrium 
is in units è!!!!!!!!!!!!!!!

Ñ êm w . The vertical lines mark the classical turning points.

and here is the 20th lowest energy wavefunction,
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20th lowest energy harmonic oscillator wavefunction. The energy is 2 μ 6 - 1 = 11, in units Ñw ê2. Displacement r from equilibrium 
is in units è!!!!!!!!!!!!!!!

Ñ êm w . The vertical lines mark the classical turning points.

This wavefunction shows clearly the general feature of harmonic oscillator wavefunctions, that the 
oscillations in wavefunction have the smallest amplitude and  loop length near r = 0, where the 
kinetic energy is largest, and the largest amplitude and loop length near the classical turning points, 
where the kinetic energy is near zero.

Finally, here are the seven lowest energy wavefunctions.
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Seven lowest energy harmonic oscillator wavefunctions. The energies are 2 μ j - 1 = 1, 3, …, 13, in units Ñw ê2. Displacement r 
from equilibrium is in units è!!!!!!!!!!!!!!!

Ñ êm w . The vertical lines mark the classical turning points.

à Absolute units

We have expressed energy as

E =
Ñw
ÅÅÅÅÅÅÅÅÅÅÅÅ

2
e,

in terms of dimensionless multiples e of Ñw ê 2, and length as

x = $%%%%%%%%%%%Ñ
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
m w

 r,

in terms of dimensionless multiples r of è!!!!!!!!!!!!!!
Ñ êm w . To get a feeling for these units, let's see how they 

translate into actual energies and length for particular molecules.

The atoms in hydrogen halide molecules, HF, HCl, etc., vibrate approximately harmonically about 
their equilibrium separation. The mass undergoing the harmonic motion is the reduced mass of the 
molecule,

m =
ma mbÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

ma + mb

(I remember that the product of the masses goes in the numerator since the ratio must have units of 
mass.) To calculate the reduced mass we need to determine the mass of each atom, and to do this, we 
need to know which isotope of each atom is present in the molecule. 

Recall that isotope masses are given in units of atomic mass, u. The atomic mass unit is defined such 
that the mass of exactly one gram of carbon 12 is Avogadro's number times u. This means that the 
atomic mass unit is

u =
1 Gramê Mole

cccccccccccccccccccccccccccccccccccccccccccccccc
AvogadroConstant

ê. Gram → 10−3 Kilogram

1.66054×10−27 Kilogram

Let's calculate the reduced mass for HCl. If we use the most stable isotope of each atom, 1 H and 
35Cl, the result is
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μ1H35Cl = i
k
jj

mH mCl
cccccccccccccccccccc
mH + mCl

y
{
zz í AvogadroConstant êê. 8

mH → 1.0078 Gramê Mole,
mCl → 34.9688 Gramê Mole,
Gram → 10−3 Kilogram
<

1.62661×10−27 Kilogram

Here are the reduced masses for other combinations of isotopes, together with that for 1 H 35Cl.

1H35Cl 1.62661×10−27 Kilogram
1H37Cl 1.62908×10−27 Kilogram
2H35Cl 3.1622×10−27 Kilogram
2H37Cl 3.17153×10−27 Kilogram

Confirm that these results are correct.

The effect a change in the lighter isotope is larger than the effect of a change in the heavier isotope.

Show why this is so.

The next step is to determine the harmonic angular frequency, w = 2 p n. This is done by measuring 
the frequency of light that causes the molecule to change its vibrational wavefunction by one loop, 
since 

D Ematter = Ñw = h n.

For 1 H 35Cl the measured value is nè = 2990 cm-1. The unit nè is the reciprocal wavelength, 
corresponding to the frequency,

nè =
1
ÅÅÅÅÅ
l

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
c ê n

=
n
ÅÅÅÅÅ
c

.

This means that angular frequency is related to wavenumber as

w = 2 p n = 2 p 
c
ÅÅÅÅÅ
l

= 2 p c nè.

Hence, the angular frequency of harmonic motion in 1 H 35Cl is

5.63212×1014
ccccccccccccccccccccccccccccccccccccc

Second

Verify this result.

Note that this value properly corresponds to the IR spectral region.

Having determined the oscillator mass and angular frequency, we can evaluate its length unit, 
x0 =

è!!!!!!!!!!!!!!
Ñ ê m w .

0.10729 fi

To interpret this result, recall that we have defined the unit of length so that the when the oscillator is 
displaced this distance from its equilibrium point, the potential energy equals the zero-point energy. 
That is, x0 is the classical turning point of the oscillation when the oscillator wavefunction has 1 
loop. This means that when 1 H 35Cl is in its ground state its classically allowed region is 
2 x0 = 0.21458 Þ wide. The equilibrium internuclear distance of HCl is 1.27 Þ, and so ground state 
harmonic motion expands and compresses the bond by a bit less than 10%.

6 Harmonic oscillator
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Evaluate x0 for 1 H 81Br (nè = 2650 cm-1) and 1 H 127 I (nè = 2310 cm-1), and analyze your 
results in comparison to the value for 1 H 35Cl.

Here are the answers I get.

μ ω x0
1H35Cl 1.62661×10−27 5.63212×1014 0.10729 fi
1H81Br 1.6529×10−27 4.99168×1014 0.113055 fi
1H127I 1.66031×10−27 4.35124×1014 0.12082 fi

Comparison of HCl, HBr and HI

Plot, on the same set of axes, the harmonic potential for HCl, HBr, and HI, Measure length 
in Þ. Indicate the first four energy levels of each potential curve. Do this using horizontal 
lines spanning the allowed region at each energy on each curve. Measure energy in units 
of the zero-point energy of HCl. In a separate table give energies (in units of the zero-point 
energy of HCl) and the right side (x > 0) classical turning point (in Þ) for the first four 
energy levels of each molecule.

Here are the expressions I get for the potential curve, with distance, x,  in Þ and energy in units of the 
zero-point energy of HCl.

1H35Cl 86.872 x2

1H81Br 69.3414 x2

1H127I 52.9255 x2

Verify that, for HCl, when the displacement is its distance unit, x0 = 0.10729 Þ, the 
potential energy is 1, since we are using as energy unit the zero-point energy of HCl. Hint: 
Evaluate k ê 2 in J m-2, divide it by the zero point energy, Ñw ê 2 in J, and then convert the 
result from m-2 to Þ-2.

These potential energy expressions show that the force constant, k, decreases going form 
HCl to HI. Evaluate the force constant for each molecules, in J m-2 = kg s-2. Answer: 
516.0, 411.9, 314.4.

Here is the plot of the results I get.
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Harmonic potential energy curves and lowest four harmonic energy levels (horizontal lines)  for 1  H 35Cl (nè = 2990 cm-1), 1  H 81Br 
(nè = 2650 cm-1) and 1  H 127 I (nè = 2310 cm-1). Energy is in units of the zero-point energy of 1  H 35Cl, 2.969μ 10-20 J.

Here is the tabulation of energies and right side turning points for the lowest four levels of each 
molecule.

loops HjL EjêH—ωHClê2L xtpêfi

1H35Cl

1
2
3
4

1.
3.
5.
7.

0.10729
0.185832
0.239908
0.283863

1H81Br

1
2
3
4

0.886288
2.65886
4.43144
6.20401

0.113055
0.195818
0.252799
0.299116

1H127I

1
2
3
4

0.772575
2.31773
3.86288
5.40803

0.12082
0.209266
0.270161
0.319659

Lowest four harmonic energy levels and right side classical turning points for 1  H 35Cl (nè = 2990 cm-1), 1  H 81Br (nè = 2650 cm-1) and 
1  H 127 I (nè = 2310 cm-1). Energy is in units of the zero-point energy of 1  H 35Cl, 2.969μ 10-20 J.

The results reflect the effects of the decreasing harmonic frequency going from HCl to HI: The force 
constant decreases, and so the harmonic potential energy curve rises less steeply on either side of its 
minimum, with the result that turning points are farther apart and so a wider allowed region at a 
given total energy. The effect is an increase in loop length and so a lowering of energy for a given 
number of loops, analogous to the energy lowering in an infinite well when the well width is 
increased.

Now, here are two final questions to consider.

Show that the decrease in harmonic frequency, w, and so in the force constant, k, going 
from HCl to HI cannot be due to the increasing reduced mass alone. Hint: Compare the 
change in harmonic frequency expected due to mass alone to the actual change in 
harmonic frequency. Answer: Relative frequency expected due to reduced mass: 1, 0.9920, 
0.9898; actual relative frequency: 1, 0.8863, 0.7726.

What do you suppose the decrease in force constant is due to?

à Analytic wavefunctions

It turns out that the harmonic oscillator Schrödinger equation can be solved analytically. The wave 
functions have the general form
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y jHrL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################################2 j-1 H j - 1L! 
è!!!!

p
 H j-1HrL ‰-r2ê2

in terms of Hermite polynomials, H j-1HrL. Here are the first few Hermite polynomials.

loops Hermite polynomial
1 1
2 2 ρ

3 −2 + 4 ρ2

4 −12 ρ + 8 ρ3

5 12 − 48 ρ2 + 16 ρ4

6 120 ρ − 160 ρ3 + 32 ρ5

7 −120 + 720 ρ2 − 480 ρ4 + 64 ρ6

First several Hermite polynomials Hj-1HrL.  When the polynomials are multiplied by the factor ‰-r2ë2 the resulting function has the 
number of loops given in the first column. Polynomial corresponding to even numbers of loops are even about r = 0; polynomials 
corresponding to odd numbers of loops are odd about r = 0.

Mathematica knows about Hermite polynomials, and so it is easy to construct a function for 
harmonic oscillator wavefunctions. Here is the Mathematica function for the wavefunction with j 
loops.

ψ@j_, ρ_D :=
1

cccccccccccccccccccccccccccccccccccccccccccccccccc
"######################################

2j−1 Hj − 1L! 
è!!!!

π

 HermiteH@j − 1, ρD Æ−ρ2ê2

These wavefunctions are normalized to 1; for example,

‡
−∞

∞

ψ@6, ρD2 Åρ

1

They are also orthogonal, as must be so since they are eigenfunctions of the harmonic oscillator 
Hamiltonian operaotr which is hermitian; for example

‡
−∞

∞

ψ@6, ρD ψ@3, ρD Åρ

0

Here is a plot of y6HrL.
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Analytic harmonic oscillator wavefunction y6HrL. The function is normalized to 1. Displacement r from equilibrium is in units è!!!!!!!!!!!!!!!
Ñ êm w
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This is the same as the function that we obtained earlier using Numerov integration, to within the 
accuracy of the numerical implementation.

à Quantal harmonic motion

To treat harmonic motion quantum mechanically, we need to construct wavepackets. A general 
expression for a wavepacket is

YHrL = N  ‚
j

 g j y jHrL,

in terms of relative weights g j and the normalization constant

N = 1ì$%%%%%%%%%%%%⁄
j

g j2 .

For example, a packet composed of waves with 1, 2 and 3 loops, with relative weights 25%, 50% and 
25% is

YHrL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"########################################0.252 + 0.52 + 0.252
 80.25 y1HrL + 0.5 y2HrL + 0.25 y3HrL

Use of the orthonormality of the component waves, that is, that Ÿ y jHrL ykHrL „ r = d j k, to 
confirm that this wavepacket is normalized, that is, that Ÿ » YHrL »2 „ r = 1.

Let's use Mathematica to construct and plot harmonic oscillator wavepacket probability densities. 
First, we can define the list of weights g j. For the example above, this is

g = 80.25, 0.50, 0.25<;

Next, we can construct a list of wavefunctions. For the example above, this is

f = ψ@#, ρD & ê@ 81, 2, 3<

9 Æ−
ρ2
ccccccc2

ccccccccccccc
π1ê4 ,

è!!!!2 Æ−
ρ2
ccccccc2 ρ

ccccccccccccccccccccccccccc
π1ê4 ,

Æ−
ρ2
ccccccc2 H−2 + 4 ρ2L

ccccccccccccccccccccccccccccccccccccccccc
2 è!!!!2 π1ê4

=

The normalization factor,

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"########################################0.252 + 0.52 + 0.252

,

 evaluates to

norm =
1

ccccccccccccccccè!!!!!!!!!
g.g

1.63299

The sum of the products of the functions times their weights,

g1 y1HrL + g2 y2HrL + g3 y3HrL,

 is

10 Harmonic oscillator
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g.f

0.187781 Æ−
ρ2
ccccccc2 + 0.531126 Æ−

ρ2
ccccccc2 ρ + 0.0663907 Æ−

ρ2
ccccccc2 H−2 + 4 ρ2L

Putting everything together, the normalized wavepacket is

packet = norm g.f

1.63299 J0.187781 Æ−
ρ2
ccccccc2 + 0.531126 Æ−

ρ2
ccccccc2 ρ + 0.0663907 Æ−

ρ2
ccccccc2 H−2 + 4 ρ2LN

We can check that this packet is normalized, as

‡
−∞

∞

packet2 Åρ

1.

Here is what the probability density (the square of the wavepacket) looks like.
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Probability density » YHrL »2 of a three component harmonic oscillator wavepacket YHrL. The probability density is normalized to 1. 
Displacement r from equilibrium is in units è!!!!!!!!!!!!!!!

Ñ êm w

The packet is localized near the right classical turning point. If we were to add more waves to the 
packet, the width of the localized region would become smaller, in accordance with the Heisenberg 
indeterminacy relation.

The next thing we need to do is to make the wavepacket move. To do this we need only to insert the 
time dependent phase factors,

‰-Â E j têÑ = ‰-Â ÑwÅÅÅÅÅÅÅÅÅ2  H2 j-1L têÑ = ‰-Â wH j- 1ÅÅÅÅ2 L t,

to the components of the packet. For our example packet, the list of these phase factors is

phase = Æ−Ç ω I#− 1cccc2 M t & ê@ 81, 2, 3<

9Æ− 1cccc2 Ç t ω, Æ−
3cccc2 Ç t ω, Æ−

5cccc2 Ç t ω=

The list of functions times their phase factors is

f phase

9 Æ−
ρ2
ccccccc2 − Ç t ωcccccccccccc2

cccccccccccccccccccccccc
π1ê4 ,

è!!!!2 Æ−
ρ2
ccccccc2 − 3 Ç t ωcccccccccccccccc2 ρ

ccccccccccccccccccccccccccccccccccccccccc
π1ê4 ,

Æ−
ρ2
ccccccc2 − 5 Ç t ωcccccccccccccccc2 H−2 + 4 ρ2L

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 è!!!!2 π1ê4

=
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The sum of the products of the functions times their phase factors and their weights, and multiplied 
by the normalization factor,

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##############⁄ j g j2

 Ig1 y1HrL ‰-Â wH1- 1ÅÅÅÅ2 L t + g2 y2HrL ‰-Â wH2- 1ÅÅÅÅ2 L t + g3 y3HrL ‰-Â wH3- 1ÅÅÅÅ2 L tM,

 is

packetWithTime = norm g.Hf phaseL

1.63299 J0.187781 Æ−
ρ2
ccccccc2 − Ç t ωcccccccccccc2 + 0.531126 Æ−

ρ2
ccccccc2 − 3 Ç t ωcccccccccccccccc2 ρ + 0.0663907 Æ−

ρ2
ccccccc2 − 5 Ç t ωcccccccccccccccc2 H−2 + 4 ρ2LN

Show that this wavepacket is normalized to 1, for every value of time, t.

At t = 0 the time-dependent wavepacket, YHr, 0L, is identical to the time independent wavepacket, 
YHrL, and so gives the same probability density.

Verify that this statement is correct.

Here is what the probability density (the square of the wavepacket) looks like at time t = 0.25 ê n, one 
quarter of the way through one oscillation period.
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Probability density » YHr, tL »2 of a three component harmonic oscillator wavepacket YHr, tL at time t = 0.25 ê n. The probability 
density is normalized to 1. Displacement r from equilibrium is in units è!!!!!!!!!!!!!!!

Ñ êm w

Here is what the probability density looks like at time t = 0.5 ê n, half way through one oscillation 
period.

12 Harmonic oscillator
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Probability density » YHr, tL »2 of a three component harmonic oscillator wavepacket YHr, tL at time t = 0.5 ê n. The probability density 
is normalized to 1. Displacement r from equilibrium is in units è!!!!!!!!!!!!!!!

Ñ êm w

Finally, here is what the probability density looks like at time t = 2 p ê w = 1 ê n, after one oscillation 
period.

-4 -2 2 4
r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

»Y»2

Probability density » YHr, tL »2 of a three component harmonic oscillator wavepacket YHr.tL at time t = 1 ê n. The probability density is 
normalized to 1. Displacement r from equilibrium is in units è!!!!!!!!!!!!!!!

Ñ êm w

The packet has returned to its original form and location at t = 1 ê n.

à Energy of wavepackets: expectation values

The energy of a wave packet is defined to be

XH\ = ‡
-¶

¶

Y*Hr, tL H YHr, tL „ r.

The notation X…\ denotes "average" or "expectation" and such an expression is known as the average 
value of the expectation value of the physical quantity corresponding to the operator that appears 
between the brackets. For example, the expectation value of position would be

Xr\ = ‡
-¶

¶

Y*Hr, tL r YHr, tL „ r.

Since the operator for position is just "multiply by position," we can rearrange this expression as

Harmonic oscillator 13
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Xr\ = ‡
-¶

¶

r À YHr, tL À2 „ r.

In this form the average value of the position is seen to be just the average of all possible positions, 
weighted by the probability that the particle is at each position. It is this interpretation that led of the 
name average value or expectation value. If the operator is more complicated than "multiply by", 
then we cannot rearrange things in this way, but we still interpret the expression in the same way.

Show that the expression for the expectation value of the squared momentum, in 
dimensionless units, is Xp2\ = -Ÿ Y*Hr, tL ∑2 ê ∑ r2 YHr, tL „ r.

Taking account of the orthonormality of the harmonic oscillator wavefunctions,

‡
-¶

¶

y jHrL ykHrL „ r = d j k ,

it is not too difficult to show that

XH\ =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄ j g j2
 ‚

k

gk
2 Ek,

an average of the component energies, each weighted by its relative contribution to the probability 
density.

Show that this expression is correct for any wavepacket composed of orthonormal 
components ykHrL.

Why do you suppose this expression is independent of time?

Here is a Mathematica function that takes as input a list of component wavefunctions (in terms of the 
number of loops of each component) and a list of the corresponding weights, and computes the 
dimensionless energy expectation value of the packet.

εAvg@j_List, g_ListD :=
1

cccccccccc
g.g

 g2.HH2 # − 1L & ê@ jL

For example, the average energy of a wavepacket consisting of an equal mixture of the one-loop and 
two-loop wavefunctions is

εAvg@81, 2<, 81, 1<D

2

This is what we expect, since y1 has energy e1 = 1 and y2 has energy e2 = 3. A packet composed of 
10% y1 and 90% y2 has instead the average energy

2.97561

This is very close to e2, as we would expect, since the packet is most y2.

à Wavepacket machine

Collecting everything together, a general time-dependent harmonic oscillator wavepacket is

14 Harmonic oscillator
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YHr, tL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##############⁄k gk2
 ‚

j
 g j y jHrL ‰-Â wH j- 1ÅÅÅÅ2 L t.

Show that this expression is normalized to 1 for all values of t.

Show that » YHr, tL »2 oscillates with period 1 ê n.

Here is a Mathematica function that makes a wavepacket, for a specified choice of component 
wavefunctions, y j, and weights, g j.

HOPacket@j_List, g_ListD :=
1

ccccccccccccccccè!!!!!!!!!
g.g

 g.Jψ@#, ρD Æ−Ç I#− 1cccc2 M 2 π t & ê@ jN

In this function, time is measured in dimensionless units of the oscillation period, 2 p ê w = 1 ê n; this 
means that t = 1 corresponds to elapsed time 1 ê n = 2 p 

è!!!!!!!!!!m ê k . As example of this function, here is 
the two-component wavepacket composed of equal contributions of one-loop and two-loop 
components.

Æ−3 Ç π t− ρ2
ccccccc2 HÆ2 Ç π t +è!!!!2 ρL

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!2 π1ê4

Verify that this expression is correct, by constructing the wavepacket by hand.

Now that we have a tool to construct harmonic oscillator wavepackets, let's explore the properties of 
different packets.

à Gaussian wavepacket

We can construct wavepackets of essentially arbitrary shape by appropriate choice of weights g j. 
Experimentally, this amounts to appropriate excitation of the oscillator into a coherent superposition 
of wavefunctions y jHrL. (Coherent means there is a definite phase relation between the components 
of the packet.) One common superposition results in a Gaussian distribution of weights. The 
Gaussian distribution centered at m and with mean squared deviation )variance) s is

gauss@σ_, x_, μ_D :=
1

cccccccccccccccccccè!!!!!!!!
2 π  σ

Æ−Hx−μL2êH2 σ2L

The Gaussian distribution is normalized to 1; for example

‡
−∞

∞

gauss@1, x, 0D Åx

1

Here is the Gaussian distribution centered about 0 with mean squared deviation 1 (the so-called 
normal density function).

Harmonic oscillator 15
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Gaussian probability distribution with mean 0 and variance 1. The filled circles marked values of the distribution at 7 equally 
spaced values of x centered on the mean.

We can select weights g j that approximate this Gaussian distribution by evaluating the distribution at 
a range of points centered about the mean. For example, here is a set of  thirteen such weights chosen 
to span the distribution. 

g = gauss@1, #, 0D & ê@ Range@−3, 3, 1D êê N êê sf2

80.0044, 0.054, 0.24, 0.4, 0.24, 0.054, 0.0044<

These weights are indicated as the filled circled on the plot of the Gaussian distribution above.

Here is a plot of a Gaussian wavepacket consisting of the first 13 harmonic oscillator wavefunctions 
y jHrL, throughout one cycle of oscillation.
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Harmonic oscillator Gaussian wavepacket probability density throughout one cycle of oscillation. The packet is composed of the 
first 13 wavefunctions y j HrL.
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Show that the dimensionless energy expectation value of this wavepacket is XH\=13. 
Could you have predicted this result without doing a detailed calculation?

Here is a plot of a Gaussian wavepacket consisting of 13 harmonic oscillator wavefunctions y jHrL 
centered about j = 27, throughout one cycle of oscillation.
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Harmonic oscillator Gaussian wavepacket probability density throughout one cycle of oscillation. The packet is composed of  13  
wavefunctions y j HrL centered at j = 27.

Show that the dimensionless energy expectation value of this wavepacket is XH\=53.

Here is a plot of a Gaussian wavepacket consisting of 13 harmonic oscillator wavefunctions y jHrL 
centered about j = 47, throughout one cycle of oscillation.
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Harmonic oscillator Gaussian wavepacket probability density throughout one cycle of oscillation. The packet is composed of  13  
wavefunctions y j HrL centered at j = 47.
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Show that the dimensionless energy expectation value of this wavepacket is XH\=93.

These three Gaussian harmonic oscillator wavepackets all have the same number of 
adjacent components, but the center component is successively higher. Use the surface 
plots of the probability densities to see what difference this corresponds to physically.

à Localization of harmonic motion

We have seen that adding more components to a wavepacket localizes the probability density to a 
smaller region of space. We can illustrate this by constructing Gaussian packets centered at the same 
y j, but with differing numbers of adjacent components. Here are the packets consisting of 5, 13 and 
21 components, for times corresponding to the first quarter of the period, 1 ê n.

Harmonic oscillator Gaussian wavepacket probability densities throughout one quarter cycle of oscillation. The packets are each 
centered about j = 30; the left column is the 5-component packet, the middle column is the 13-component packet, and the right 
column is the 21-component packet.

The 5-component packet is poorly localized, the 13-component packet is fairly localized, and the 
21-component packet is highly localized.
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