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In all applications of quantum mechanics in chemistry we ultimately want to understand things that 
we measure in the lab. The result of any measurement is always a real number. This means that we 
need to be sure that the procedures we develop for quantum calculations always give us 
correspondingly real answers. 

In the Schrödinger approach to quantum mechanics, classical quantities are replaced by operators 
chosen to be consistent with the position-momentum commutation relation, @x, pD = Â h. There is an 
additional property that quantum mechanical operators satisfy, namely that they are hermitian. This 
requirement has several important, useful consequences described below. The most important of 
these is that thereby the eigenvalues are always real numbers. 

à Hermiticity

By definition, an hermitian operator q satisfies

‡ f HxL* qHxL gHxL „ x = ‡ 8qHxL f HxL<* gHxL „ x

To see how this definition works, let's show that the momentum operator, p = -Â Ñ „ ê „ x, is 
hermitian. 

The first thing to do is to rearrange the integral as

‡ f HxL* J-Â Ñ
„

ÅÅÅÅÅÅÅÅÅÅ
„ x

N gHxL „ x

= -Â Ñ ‡ f HxL* 
„

ÅÅÅÅÅÅÅÅÅÅ
„ x

 gHxL „ x

= -Â Ñ ‡ f HxL* „ gHxL.

Next, we integrate by parts,

= -Â Ñ : f HxL* gHxL -¶
¶ - ‡ gHxL „ f HxL* >

= -Â Ñ :0 - ‡ gHxL „
ÅÅÅÅÅÅÅÅÅÅ
„ x

 f HxL* „ x>.

The first term vanishes if we assume the functions f  and g are for bound states and so that they 
vanish at the limits. We can then rearrange the remaining integral as

= ‡ gHxL J-Â Ñ 
„

ÅÅÅÅÅÅÅÅÅÅ
„ x

 f HxLN
*

 „ x



and so show that the momentum operator satisfies

‡ f HxL* J-Â Ñ
„

ÅÅÅÅÅÅÅÅÅÅ
„ x

N gHxL „ x = ‡ J-Â Ñ 
„

ÅÅÅÅÅÅÅÅÅÅ
„ x

 f HxLN
*

 gHxL „ x

which is the definition of hermiticity.

There are three important consequences of an operator being hermitian: Its eigenvalues are real; its 
eigenfunctions corresponding to different eigenvalues are orthogonal to on another; and the set of all 
its eigenfunctions is complete. 

Examples

Shoe that the operator +i Ñ „ ê „ x is hermitian

Show that the operator „ ê „ x is not hermitian

Use the fact that the momentum operator is hermitian to show that the kinetic energy 
operator is hermitian. Hint: Show that is an operator, o, is hermitian, then the operator 
o2 = o o is hermitian.

Use the fact that the operator for position is just "multiply by position" to show that the 
potential energy operator is hermitian. Hint: Potential energy is a function of position.

Use the results of the previous two questions to show that the hamiltonian, H , is hermitian.

à Real eigenvalues

Let's use the notation that an eigenfunction relation is

qHxL f jHxL = c j f jHxL,

where q is an operator, f j is its j-th eigenfunction, and the number c j is its j-th eigenvalue. If q is 
hermitian, then the eigenvalues c j are real numbers.

To see this, we begin by expressing the j-th eigenvalue in terms of the integral

‡ f jHxL* qHxL f jHxL „ x = c j

where in this step we assume that the eigenfunctions are normalized to 1. Next, we can use the 
hermiticity property to rearrange the integral on the left hand side as

‡ f jHxL* qHxL f jHxL „ x

= ‡ HqHxL f jHxLL* f jHxL „ x

= ‡ Hc j f jHxLL* f jHxL „ x

= c j
* ‡ f jHxL* f jHxL „ x

= c j
*
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But the integral is also equal to c j and so we have that

c j
* = c j

This can only be true if c j is a real number.

Show that the total energy of particle in a two dimensional potential must be a real number.

à Orthogonal functions

If f j and fk are eigenfunctions of the same hermitian operator but correspond to different 
eigenvalues, c j ∫ ck , then they are orthogonal to one another, in the sense that

‡ f jHxL* fkHxL „ x = 0.

To see this, we begin with the integral relation

‡ f jHxL* qHxL fkHxL „ x = ck  ‡ f jHxL* fkHxL „ x.

Next, we can use the hermiticity property to rearrange the integral on the left hand side as

‡ f jHxL* qHxL fkHxL „ x

= ‡ HqHxL f jHxLL* fkHxL „ x

= ‡ Hc j f jHxLL* fkHxL „ x

= c j ‡ f jHxL* fkHxL „ x,

where in the last line we use the fact that the eigenvalues are real. Subtracting these two alternative 
expressions for the integral, we get

0 = Hc j - ckL ‡ f jHxL* fkHxL „ x.

If the eigenvalues are different, then c j - ck ∫ 0, and so the only way the equation can be true is if the 
integral vanishes,

‡ f jHxL* fkHxL „ x = 0.

that is, the eigenfunctions corresponding to different eigenvalues are orthogonal.

We can express the orthogonality of different eigenfunctions and the normalization of each 
eigenfunction in a single orthonormality relation,

‡ f jHxL* fkHxL „ x = d j k,

in terms of the Kronecker delta symbol d j k . The value of d j k  is 0 if j ∫ k and is 1 of j = k.
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What is the value of ⁄ j=1
5 d j 6?

What is the value of ⁄ j=1
11 d j 6?

What is the value of ⁄ j=1
11 d j 6 f j?

Examples

The normalized wavefunctions for a particle in an infinite well of width L are

y jHxL =
è!!!!!!!!!2 ê L  sinH j p x ê LL.

Make a plot of the product y2HxL y3HxL for L = 1 and use it to assess whether the sum, 
Ÿ0

1
y2HxL* y3HxL „ x, is zero.

Which of the following integrals must be zero? Hint: The infinite well hamiltonian is 
hermitian.

Ÿ0
1

y2HxL* y2HxL „ x,

Ÿ0
1

y2HxL* y3HxL „ x,

Ÿ0
1

y2HxL* y4HxL „ x,

Ÿ0
1

y1HxL* y5HxL „ x.

Here are the hydrogen atom 1s, 3s, 3d, and 5d radial wavefunctions.

1s 2 −r r

3s 2 −rê3 r H27−18 r+2 r2L
81 è!!!!3

3d 2
81

"########2
15

−rê3 r3

5d 2 "#########2
35

−rê5 r3 H525−70 r+2 r2L
46875

Make a plot of the product f1 sHrL f3 sHrL and use it to assess whether the sum, 
Ÿ0

¶ f1 sHrL* f3 sHrL „ r, is zero.

Which of the following integrals must be zero? Hint: The one-electron-atom hamiltonian 
for radial motion is hermitian.

Ÿ0
¶ f1 sHrL* f3 sHrL „ r,

Ÿ0
¶ f1 sHrL* f3 dHrL „ r,

Ÿ0
¶ f3 sHrL* f3 dHrL „ r,

Ÿ0
¶ f3 dHrL* f5 dHrL „ r.

à Completeness prelude: Dirac delta function

The third property of solutions y j to a Schrödinger equation is that they form a complete set. The 
term complete is used in the sense that the any function, Y, satisfying the same general conditions 
may be expressed as a linear combination of the functions that form the complete set,
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YHxL = ‚
j

y jHxL c j = y1HxL c1 + y2HxL c2 + y3HxL c3 + …,

where the sum is over all of the members of the complete set. 

In order to use completeness in mathematical manipulations, Dirac, one of the developers of quantum 
mechanics, found it necessary to introduce a new kind of mathematical function, known as the delta 
function, dHx ' - xL. Dirac defined the function to have the following peculiar properties. The delta 
function is 

è is zero everywhere except when its argument is zero, that is except when  x ' = x, 

è at x = x ' it is ¶, 

è but its total area, including the infinitely high peak, is equal to one!

Because the delta function is infinite when its argument is zero, it is zero elsewhere, but it integrates 
to 1, it is not a function in the usual sense. The problem is that its numerical value does not vary 
smoothly from x ' - x ∫ 0 (where it is 0) to x ' - x = 0, (where it is infinite}. For this reason, the delta 
function is always used only as a factor in an integrand, and its effect there is to select out that part of 
the other factors in the integrand for which x ' = x.

A good way to see all of these aspects together is to consider the integral of the product of a "normal" 
function, f Hx 'L, and the delta function. The product has the value 0 everywhere except where x ' = x 
(that is, where the function f  has the value f HxL). The key point is that integrating the product over 
all values of x gives just f HxL,

‡ f Hx 'L dHx ' - xL „ x ' = f HxL.

Show that a special case of this result is that

‡
-¶

¶

dHx ' - xL „ x ' = 1.

Evaluate the following integral.

‡
-¶

¶

‰x'2  sinH4 p x 'L dHx ' - xL „ x '.

The answer to this problem may convince you that working with the delta function is quite 
easy.

A way to think about the delta function is that it acts a filter through which only the value of f  at 
x ' = x is able to pass. We can illustrate this filtering property of a Dirac delta function by graphing an 
approximation to it. (We cannot graph the delta function itself, since its single non-zero value is 
infinite.) . Here are three "rectangle" functions grectHx - x 'L, each of area 1 and centered at x ' = 2.5 but 
successively narrower widths w.
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2

Rectangle functions grect of area 1 and function f HxL. The average value of f HxL for the successively smaller rectangles is 1.602, 
1.610, and 1.614. In the limit of zero width, the average value is f H2.5L = 1.615.

Now, consider the integral

‡
-¶

¶

f  HxL grect Hx - 2.5L „ x.

The integrand vanishes expect where grect is not zero, and so is equal to

‡
x'-wê2

x'+wê2
f  HxL grect Hx - 2.5L „ x.

If w is small enough so that f HxL does not change much in the region x - w ê 2 § x § x + w ê 2, then 
the integral is approximately equal to

‡
x'-wê2

x'+wê2
f  HxL grect Hx - 2.5L „ x º X f  HxL\w ‡

x'-wê2

x'+wê2
grect Hx - 2.5L „ x

where X f HxL\w is the average value of f HxL in the region,

X f  HxL\w =
1

ÅÅÅÅÅÅÅ
w

 ‡
x'-wê2

x'+wê2
f  HxL „ x.

The average value of f HxL for the successively smaller rectangles shown in the figure is 1.602, 1.610, 
and 1.614. In the limit of zero width, the average value is X f HxL\wØ0 = f H2.5L = 1.615. As w shrinks 
toward zero, X f HxL\ is closer an closer to the value of f  at the center of the region, f H2.5L. In the limit 
w Ø 0, gH2.5L Ø ¶ while the area under grect remains 1, and so

lim
wØ0 ‡

x'-wê2

x'+wê2
f  HxL grect Hx - 2.5L „ x º f  H2.5L = 1.615.

In this way we see can understand first, what is meant by the Delta function being a function that is 
zero everywhere except x = x ' where it is infinite height and that has unit area unit area, and second, 
that such a function used as a factor in an integrand act as a filter to select out the value of the rest of 
the integrand at x = x '.

Rectangle functions are one of many examples of approximations to a delta function. Another 
example of an approximation to the delta function is
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se HxL =
1
ÅÅÅÅÅÅ
p

 
sin Hx ê eL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x
,

which behaves more and more as a delta function the smaller the value of e. To see this, here is a plot 
of this function for e = 1 (low, broad peak) and e = 0.1 (narrow, high peak).

-10 -5 5 10
x

1

2

3

seHxL

The key feature of the function seHxL is that its integral is close to one, the more so the smaller the 
value of e. This behavior is illustrated in the following plot of the value of the integral Ÿ-10

10 seHxL „ x 
for values of e from 0.1 to 0.2.

0.12 0.14 0.16 0.18 0.2
e

0.99

0.995

1.005

1.01

‡
-10

10
seHxL„x

From this behavior we extrapolate that in the limit e Ø 0, seHxL is zero everywhere except at x = 0, 
where it is infinite, and that its integral over all space is one. That is, we conclude that

lim
eØ0

se HxL = lim
eØ0

1
ÅÅÅÅÅÅ
p

 
sin Hx ê eL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x
= d HxL.

There are many other approximations to the delta function. They share the feature that they become 
exact only in a limit. We'll learn about a particular class of these approximations when we discuss 
some of the formal aspects of quantum theory. We'll also see how the delta function makes it 
possible for use to normalize unbound wave functions, even though they oscillate about zero out to 
infinite distance.
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à Completeness

A way to understand the idea of completeness is to consider the analogous problem of expressing a 
vector in terms of its components. (These components are the vector analogues of the coefficients 
c j.) In three dimensions we can express an arbitrary vector, r◊, as

r◊ = i
`

rx + j
`

ry + k
`

rz,

in terms if the components, rx = i
`

ÿ r◊, etc., along the three orthogonal axes and the unit vectors along 
those axes. Now, we can rearrange this expansion as follows:

r◊ = i
`

rx + j
`

ry + k
`

rz = i
`

i
`

ÿ r◊ + j
`

j
`

ÿ r◊ + k
`
 k
`

ÿ r◊ = Ii` i
`

+ j
`

j
`

+ k
`

 k
`M ÿ r◊.

Comparing the first and last expressions, it is evidently so that 

1 = i
`

i
`

+ j
`

j
`

+ k
`
 k
`

in the sense of an operator identity. This identity is known as the completeness relation for the unit 
vectors of the three dimensional space. The quantities i

`
i
`
, etc., are known a dyadics, and the implied 

operation is the dot product. Dyadics are special in that they behave like two samurai warriors 
standing back to back, at the ready to fend of as a pair attackers that may come from any direction,

r◊ ÿ i
`

i
`

= rx i
`
,

i
`

i
`

ÿ r◊ = i
`

rx.

The unit vector completeness relation is a compact statement of the fact that any vector in three 
dimensional space may be expressed in terms of its components along the units vectors of the space.

Express the vector of length 4.21 directed along q = 45.3 °, f = 113 ° in terms of the unit 
vectors i

`
, j

`
and k

`
. Answer: r◊ = -i

`
2.75 + j

`
1.17 + k

`
 2.96. 

8−1.16925, 2.75458, 2.96129<

The generalization of the unit vector completeness relation to a set of functions is

dHx ' - xL = ‚
j

y jHxL y j
*Hx 'L,

where the sum is over all of the eigenfunctions of the complete set. 

Because delta functions take on infinite values, but integrate to 1, they are not functions in the usual 
sense; that is, their numerical value does not vary smoothly from x ∫ x ' to x = x '. For this reason, 
Dirac delta functions are always used only as elements of an integrand, and their effect there, as we 
have seen, is to select out that part of the integrand for which x ' = x,

‡ f Hx 'L dHx ' - xL „ x ' = f HxL.

Earlier we illustrated the  filtering property of a Dirac delta function by graphing successively better 
approximations to it.

We can explore delta functions expressed as sums of products of eigenfunctions in the same way. To 
do this, however, we need to take account of a practical complication: Since typically the number of 
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eigenfunctions of an operator is infinite, the definition of the Dirac delta function has an infinite 
number of terms. Since we can only work with a finite number of terms in any numerical evaluation 
of the sum, the best we can do is to approximate the sum in terms of a finite number, n, of products if 
functions from a particular basis,

dHx ' - xL º ‚
j=1

n

y j
*Hx 'L y jHxL.

 The more terms we include in the sum, the better the approximation.

Square-well approximation to the delta function

Here are successively better approximations to a Dirac delta function centered at x = 0.7, using an 
square-well basis for a well extending form x = 0  to x = 1.

0

0.2

0.4

0.6

0.8

1

x
10

20

30

40

50

n

0

20

40

dHx-0.7L

0

0.2

0.4

0.6

0.8
x

Approximations to Dirac delta function dHx - 0.7L using a finite (and so incomplete) square well basis. The approximations 
correspond to the including the first n  square well functions, from just one to 50 basis functions, in the Dirac delta function sum. 
The central peak becomes narrower and higher as more basis functions are included. In the limit of an infinite number of basis 
functions, the central peak would have zero width, infinite height, and area 1.

The more terms included in the sum, the better the approximation. The approximation becomes exact 
in the limit of including the infinite number of square-well wavefunctions in the sum.

Harmonic oscillator approximation to the delta function

Here are successively better approximations to a Dirac delta function centered at x = 1, using an 
harmonic oscillator basis.
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-4 -2 2 4
x

-1

1

2

3

4

dHx-1L

Approximations to Dirac delta function dHr - 1L using a finite (and so incomplete) harmonic oscillator basis. The five approximations 
correspond to the including the first 5 (lowest central peak), 10, 20, 50, and 100 (highest central peak) harmonic oscillator basis 
functions in the Dirac delta function sum. The central peak becomes narrower and higher as more basis functions are included. In 
the limit of an infinite number of basis functions, the central peak would have zero width, infinite height, and area 1.

The more terms included in the sum, the better the approximation. The approximation becomes exact 
in the limit of including the infinite number of harmonic oscillator wavefunctions in the sum.

à Comparison of vector and function completeness relations

Once we have extended the idea of completeness to functions, we can proceed by analogy with basis 
vectors in three dimensional space to express a function, YHxL, in terms of a basis of functions, y jHxL.

Completeness relation:

1 = i
`

i
`

+ j
`

j
`

+ k
`
 k
`
, unit vectors in three dimensional space

dHx ' - xL = ‚
j

y j
*Hx 'L y jHxL, basis functions in infinite dimensional HHilbertL space

Orthonormality:

i
`

ÿ j
`

= di j

‡ yiHxL* y jHxL „ x = di j

Expansion in basis:

r◊ = Ii` i
`

+ j
`

j
`

+ k
`

 k
`M ÿ r◊

= i
`

rx + j
`

ry + k
`

rz, vector expanded in basis of unit vectors
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YHxL = ‡ YHx 'L ‚
j

y j
*Hx 'L y jHxL „ x '

= ‚
j

y jHxL ‡ YHx 'L y j
*Hx 'L „ x '

= ‚
j

y jHxL c j

= y1HxL c1 + y2HxL c2 + y3HxL c3 + …, function expanded in basis of functions

Expansion coefficients:

rx = i
`

ÿ r◊, etc., projection of vector along unit vector

c1 = ‡ y1HxL* YHxL „ x, etc., " projection " of function " along " basis function

There are two ways this expansion scheme is used. First, by expressing a known function in terms of 
basis functions, expectation values can be expressed in terms of those of the basis functions. 

Assume an electron in a square well is prepared in the superposition of square well states  
Y =

è!!!!!!!0.2  y1 +
è!!!!!!!0.5  y2 +

è!!!!!!!0.3  y3. Show that è!!!!!!!0.2 = Ÿ y1HxL* YHxL „ x.

Show that Y is normalized to 1. Hint: Evaluate Ÿ YHxL* YHxL „ x. 

Derive an expression for the energy of the electron described by Y. Hint: Evaluate the 
expectation value of the square well hamiltonian, XH\ = Ÿ YHxL* H YHxL „ x. Answer: 
0.6125 h2 ê Hm L2L.

Second, by expressing an unknown function in terms of basis functions, the expansion coefficients 
can be treated as unknown parameters, and then the Schrödinger equation used to generate a linear 
system whose solution is the values of the expansion coefficients. This latter technique is used in 
most numerical solutions of the Schrödinger equation for many-electron atoms and molecules We 
will discuss it further when we take up various methods of approximations used in quantum chemical 
calculations.

à Effect of interactions on wavefunctions

Since the Hamiltonian is hermitian, its eigenfunctions form a complete set. We can use this 
completeness to analyze the effect of an interaction on a system that is in an energy eigenstate. In this 
way, for example, we can understand how the interaction of an oscillating electric field (light) mixes 
different states. Because of the universality of completeness, the analysis we now is the basis of the 
general framework for treating interactions in quantum system.

Let represent the interaction by the operator op. The effect of op is to alter any eigenstate of the 
system. Formally, this means that

op yiHxL = fiHxL ∫ constant μ yiHxL.

that is, fiHxL is generally different from yiHxL. Whatever fiHxL is, we can always use the completeness 
of the energy eigenstates to see that fiHxL is a mixture of energy eigenstates.

fiHxL = ‡ fiHx 'L dHx ' - xL „ x ' = ‡ fiHx 'L ‚
j

y j
*Hx 'L y jHxL „ x ' = ‚

j

y jHxL c j,i,

Hermiticity and its consequences 11
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where

c j,i = ‡ y j
*Hx 'L fiHx 'L „ x ' = ‡ y j

*Hx 'L op yiHx 'L „ x '.

Because c j,i is characterized by two indices, it is called the j, i-th matrix element of the operator op.

Now, we can treat fiHxL as a probability amplitude and then use the Born recipe to calculate the 
corresponding probability density,

» fiHxL »2 =
i
k
jjjjj‚

k

ykHxL ck
y
{
zzzzz

*

 ‚
j

y jHxL c j.

The total probability is

‡ » fiHxL »2 „ x =

‡
i
k
jjjjj‚

k

ykHxL ck,i
y
{
zzzzz

*

 ‚
j

y jHxL c j,i „ x = ‚
j

À c j,i À2 ‡ » y jHxL »2 „ x = ‚
j

» c j,i »2,

where in the second to last equality we use the fact that the eigenfunctions for different energies are 
orthogonal, and in the last equality we assume that the eigenfunctions are normalized. This means 
that 

» c j,i »2 = À ‡ y j
*Hx 'L op yiHx 'L „ x ' À2

is the relative probability that the effect of the interaction (represented by the operator op) is to 
change the system from state yi to state y j. This is a general result: The probability of a transition is 
always proportional to the squared modulus of the corresponding matrix element.

Here is an example. The effect of the oscillating electric field of light polarized along the x axis is to 
create an oscillating electric dipole, proportional to its displacement x along the electric field 
direction. This means that the operator for the interaction with light is proportional to x, and so the 
probability of a transition from state yi to state y j is proportional to

» c j,i »2 = À ‡ y j
*Hx 'L x ' yiHx 'L „ x ' À2

For a particle confined to the region 0 § x § 1, the wavefunctions are

psi@j_, x_D :=
è!!!!

2  Sin@j π xD

and the squared matrix elements for the first ten energy levels are

vals = Integrate@psi@#, xD Hx − 1ê2L psi@1, xD, 8x, 0, 1<D2 & ê@ Range@10D êê N

80., 0.0324456, 0., 0.000207652, 0.,
0.000015762, 0., 2.66931×10−6, 0., 6.83974×10−7<

Here the interaction operator is op = x - 1 ê 2, since the induced dipole is with respect to the center of 
the region. The total of the squared matrix elements is

valsTotal = Plus @@ vals

0.0326723
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and so the normalized probabilities are

valsêvalsTotal

80., 0.993059, 0., 0.00635558, 0.,
0.000482426, 0., 0.0000816992, 0., 0.0000209343<

Here is how to interpret these numbers. Since the initial state has an odd number of loops (one loop), 
all of the transitions to states with odd numbers of loops (1 Ø 3, 1 Ø 5, etc.) have zero probability, 
since by symmetry their matrix elements vanish; we say such transitions are forbidden. All of the 
transitions to states with even numbers of loops (1 Ø 2, 1 Ø 4, etc.) have non zero probability; we 
say such transitions are allowed. The most probable allowed transition is 1 Ø 2, with relative 
probability 0.993. The next most probable transition is 1 Ø 4, with probability 0.006. The total 
probability for all of the remaining allowed transitions is 1 - H0.993 + 0.006L = 0.001.

Repeat this analysis for transitions from the state y2 =
è!!!2  sinH2 p xL, to show that the 

normalized probabilities to the lowest ten energy levels are the following.

80.459, 0., 0.536, 0., 0.00478, 0., 0.000444, 0., 0.0000857, 0.<

Construct the spectrum that represents the effect of light on a particle confined to the 
region 0 § x § 1 and initially in the second energy level. Do this by drawing vertical lines 
of heights proportional to the corresponding transition probability and spacing 
corresponding to the transition energy. Express energy in units such that the energy of the 
lowest energy level is E1 = 1.
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