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In numerical applications of quantum mechanics in chemistry, a powerful method of solving the 
Schrödinger equation,

H Ya = Ea Ya

 is to express the unknown wavefunction, Ya , in terms of known basis functions, y j , as

Ya = ‚
j

y j c j a.

The result is a linear system of equations for the expansion coefficients, c ja . 

Here is what the linear system looks like for an expansion in terms of three basis functions.
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where

H j k = ‡ y j HxL* H yk  HxL „ x.

For this example, we have three equations in four unknowns: the three expansion coefficients, c j a , 
and the energy, Ea .

The way to proceed is to first determine the values of the energy by requiring that the matrix
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does not have an inverse, for if it did have an inverse, then the solution would be
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that is, all of the expansion coefficients would be equal to 0 and so the wavefunction, Ya , would 
vanish!



Now, the inverse of a matrix is proportional to the reciprocal of its determinant, and so we can ensure 
that a matrix does not have an inverse by arranging for its determinant to be equal to 0. We do this by 
finding those values of Ea  at which the determinant vanishes. For an n µ n  matrix, the determinant is 
an n-th order polynomial in EÇa  and so there will be as many values of the energy at which the 
determinant vanishes as there are basis functions.

Once the values of the energy, Ea , have been determined, we are left with a homogeneous system of 
equations for the unknown expansion coefficients, c j a . The way to solve this system of equations is 
to set one of the expansion coefficients equal to 1, set aside the corresponding equation of the linear 
system, and then solve the remaining set of equations. For the 3 µ 3 example, setting c1 a = 1, the 
remaining equations to solve are
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We can solve this to for the remaining coefficients, c2 a  and c3 a .

The result is 

Ya = N  Hy1 + y2 c2 a + y3 a c3 aL

where the normalization constant, N , corrects for the fact that we have set c1 a = 1. The last step is to 
determine the value of N  using

‡ » Ya »2 „ x = N2 ‡ À y1 + y2 c2 a + y3 a c3 a À2 „ x = N2 H1 + c2 a
2 + c3 a

2L,

where in the second equality we have assumed the orthonormality of the basis functions, y j . The 
final result is that

Ya =
1
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2
 Hy1 + y2 c2 a + y3 a c3 aL

is the normalized wavefunction corresponding to the energy Ea .

à Particle on a bumpy ring

To see how this method of solving the Schrödinger equation works, let's consider a particle moving 
on a bumpy ring.

A particle on a smooth ring has only kinetic energy, since the potential energy is zero on the ring. We 
can make the ring "bumpy" by adding the potential energy

V  HfL =
Ñ2

ÅÅÅÅÅÅÅÅÅÅ
2 I

 sin2 HfL.

Here is a plot of this potential energy, in units Ñ2 ê H2 IL .
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Potential energy, in units Ñ2 ê H2 IL , of a bumpy ring.

The potential energy has minima along the ≤ x  directions and maxima along the ≤ y  directions. To 
construct the linear system of the Schrödinger equation for a particle moving on a ring in this 
potential energy, we need the integrals

Vm m' = ‡
0

2 p

Fm HfL* 
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 sin2 HfLy
{
zzz Fm' HfL „ x.

The value of such integrals, in units  Ñ2 ê H2 IL , is 1/2 for m = m ' , -1 ê 4 for m = m ' ≤ 2, and 0 
otherwise. This means that the integrals of the hamiltonian,

Hm m' =
Ñ2
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of a particle on this bumpy ring for basis functions with m = 0, 1 and 2, are, in units  Ñ2 ê H2 IL ,
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9
2 0

m = 1 0 0 3
2

Use the values of the integrals Vm m'  to show these values are correct.

If we express the wavefunction of the particle on the bumpy ring as the expansion

Ya HfL = F0 HfL c0 a + F1 HfL c1 a + F2 HfL c2 a,

then the normalized wavefunctions, YaHfL , and corresponding energies, Ea , in units Ñ2 ê H2 IL , are

α Ψα Eα
1 0.398942 1. φ 1.5
2 0.398171 + 0.0247893 2. φ 0.484436
3 −0.0247893+ 0.398171 2. φ 4.51556

Normalized wavefunctions, YaHfL , and corresponding energies, Ea , in units Ñ2 ê H2 IL , for a particle in a ring in a potential energy 
Ñ2 ê H2 IL sin2HfL2 , using a expansion in ring basis functions, FmHfL , for m = 0 , 1 and 2.
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Show that these results are correct.

Here is the composition of each wavefunction, YaHfL , in terms of the percentage contribution of the 
three ring basis functions, F0HfL , F1HfL  and F2HfL .

Φ0 Φ2 Φ1

Ψ1 0. 0. 100.
Ψ2 99.6 0.386 0.
Ψ3 0.386 99.6 0.

Percentage composition of each bumpy ring wavefunction, YaHfL , in terms of the five ring basis states, FmHfL , for m = 0 , 1 and 2.

Show that these results are correct.

Finally, here are the probability densities corresponding to the three wavefunctions, Y1HfL , Y2HfL  and 
Y3HfL .
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Probability densities corresponding to the three wavefunctions Y1HfL  (horizontal line), Y2HfL  (oscillating thin grey line) and Y3HfL  
(oscillating thick grey line).

Show that these results are correct.

The horizontal line is for energy E1 = 1.5 Ñ2 ê H2 IL ; this energy is just the sum of the kinetic energy 
and the potential energy expectation values for m = 1.

The oscillating thin grey line is for energy E2 = 0.484 Ñ2 ê H2 IL . This energy is slightly less than the 
sum of the kinetic energy and the potential energy expectation values for m = 0. The decrease is due 
to the probability density being slightly larger in the potential valleys (along ≤ x ) and slightly smaller 
at the potential peaks (along ≤ y ).

The oscillating thick grey line is for energy E2 = 4.516 Ñ2 ê H2 IL ; this energy is slightly more than the 
sum of the kinetic energy and the potential energy expectation values for m = 2. The increase is due 
to the probability density being slightly larger at the potential peaks (along ≤ y) and slightly smaller 
in the potential valleys (along ≤ x).

à Improving the energies and eigenvalues

In this method of solving the Schrödinger equation, as additional basis functions are added, the more 
accurate the energies and wavefunctions become. To illustrate this, we can resolve the particle on a 
bumpy ring using a five-member basis consisting of the ring functions FmHfL  with m = 0, 1, 2, 3 and 
4.
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The integrals of the hamiltonian,

Hm m' =
Ñ2
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of a particle on this bumpy ring for basis functions with m = 0, 1, 2, 3 and 4, are, in units  Ñ2 ê H2 IL ,
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The normalized wavefunctions, YaHfL , and corresponding energies, Ea , in units Ñ2 ê H2 IL , are

α Ψα Eα
1 0.398748 1. φ + 0.0124487 3. φ 1.4922
2 −0.0124487 1. φ + 0.398748 3. φ 9.5078
3 0.00012978− 0.00830859 2. φ + 0.398856 4. φ 16.5052
4 −0.0248159+ 0.398083 2. φ + 0.00830057 4. φ 4.51037
5 0.39817 + 0.0248132 2. φ + 0.000387329 4. φ 0.48442

Normalized wavefunctions, YaHfL , and corresponding energies, Ea , in units Ñ2 ê H2 IL , for a particle in a ring in a potential energy 
Ñ2 ê H2 IL sin2HfL2 , using a expansion in ring basis functions, FmHfL , for m = 0 , 1, 2, 3 and 4.

Here is the composition of each wavefunction, YaHfL , in terms of the percentage contribution of the 
five ring basis functions.

Φ0 Φ2 Φ4 Φ1 Φ3

Ψ1 0 0 0 99.9 0.09737
Ψ2 0 0 0 0.09737 99.9
Ψ3 0.00001058 0.04337 99.96 0 0
Ψ4 0.3869 99.57 0.04329 0 0
Ψ5 99.61 0.3869 0.00009426 0 0

Percentage composition of each bumpy ring wavefunction, YaHfL , in terms of the five ring basis states, FmHfL , for m = 0 , 1, 2, 3 
and 4.

Finally, here are the probability densities corresponding to the five wavefunctions, YaHfL .
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Probability densities corresponding to the five wavefunctions YaHfL . At f = p ê2 , the ordering of the curves and predominant ring 
basis function contribution, from bottom to top, are Ha, mL = H5, 0L  (black curve), Ha, mL = H1, 1L  (red curve), Ha, mL = H3, 4L  (green 
curve), Ha, mL = H2, 3L  (yellow curve), and Ha, mL = H4, 2L  (blue curve).
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The first thing to note is that, as in the three-member basis, the densities (a = 1 and 5) that are 
reduced at the potential bumps and enhanced at the potential valleys correspond to lower energies 
than the sum of the kinetic energy and the potential energy expectation values for dominate value of 
m  for the given Ya , and the densities (a = 2, 3 and 4) that are enhanced at the potential bumps and 
reduced at the potential valleys correspond to higher energies than the sum of the kinetic energy and 
the potential energy expectation values for dominate value of m  for the given Ya .

The second thing to note is that whereas in the three-member basis the density of the level with 
m = 1 remained constant and its energy did not change from the sum of the kinetic energy and the 
potential energy expectation values for m = 1, now the density is shifted away from the bumps into 
the valleys, and the energy is correspondingly lowered. This is balanced by a shift of the 
predominantly m = 3 density away from the valleys and onto the bumps, and it corresponding 
increased energy, relative to the sum of the kinetic energy and the potential energy expectation 
values for m = 3.

à Comparing the three- and five-member basis results

It is very instructive to compare the energy changes that result using the three-member basis with 
those that result using the five member basis. 

Here is a tabulation of the three-member basis results,

m Em Em+Vm Eα Eα−HEm−VmL
0 0 0.5 0.484 −0.0156
2 4 4.5 4.52 0.0156
4 16 — — —
1 1 1.5 1.5 0.
3 9 — — —

Ring function kinetic energies, Em , ring function kinetic energies plus potential bump potential energies, Vm , energies Ea , and the 
change in energy, Ea - HEm - VmL , for a particle on a ring in a potential energy sin2HfL2 , using a expansion in ring basis functions, 
FmHfL , for m = 0 , 1 and 2. All energies are in units Ñ2 ê H2 IL .

and here is a tabulation of the five-member basis results,

m Em Em+Vm Eα Eα−HEm−VmL
0 0 0.5 0.484 −0.0156
2 4 4.5 4.51 0.0104
4 16 16.5 16.5 0.00521
1 1 1.5 1.49 −0.0078
3 9 9.5 9.51 0.0078

Ring function kinetic energies, Em , ring function kinetic energies plus potential bump potential energies, Vm , energies Ea , and the 
change in energy, Ea - HEm - VmL , for a particle on a ring in a potential energy sin2HfL2 , using a expansion in ring basis functions, 
FmHfL , for m = 0 , 1, 2, 3 and 4. All energies are in units Ñ2 ê H2 IL .

The key thing to note in these results and their comparison is that the energies, Ea , for the 
five-member basis are lower than those for the three member basis. This is an example of a general 
result known as the separation theorem. The theorem has two parts: First, unless we use all of the 
basis functions of a complete set, the resulting energies, Ea , will be higher than the exact energies; 
second, the more basis functions we include, the closer will be the energies, Ea , to the exact 
energies, that is, enlarging a linear system always lowers energies, Ea .

This property of linear systems of the Schrödinger equation means that we can get good 
approximations to exact energies of at least the lowest several levels without having to using a huge 
number of basis functions. The reason is that adding more and more basis functions results in smaller 
and smaller improvement to the energies of the lowest levels. It is for this reason that this method of 
working with the Schrödinger equation is so powerful and so widespread in applications of quantum 
mechanics to chemical systems.
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