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We have seen how the adiabatic approximation and the Born-Oppenheimer approximation allow us
to get separate Schrddinger equations for the electronic and the nuclear coordinates.

The nuclear Schrodinger equation describes both the motion of the molecule as a whole through
space and relative motion—vibrations and rotations—of the atoms that make up the molecule. The
way to separate the motions through space from the internal motion is to reexpress the coordinates of
each atom with respect to the laboratory in terms of (1) the three coordinates of the center of mass of
the molecule and (2) the coordinates of each atom with respect to the center of mass.

This change of coordinates is illustrated most simply for the example of a diatomic molecule. The
result is that the nuclear wave function factors into the product of (1) the wave function of the
molecule moving freely through space, as a point mass centered at the center of mass of the molecule
and with mass equal to the mass of the molecule, and (2) the wave function of the relative motion of
the atoms with respect to the center of mass.

The Schrddinger equation for the relative motion of the atoms with respect to the center of mass
depends on the details of the structure of the molecule. The simplest example, which we will explore
here, is a diatomic molecule AB.

m Transformation to center of mass and internal coordinates

In this case of a diatomic molecule AB the center of mass is at the point

R MA RA + MB RB

cm — M
between the atoms, where M = M, + Mg is the total mass of the molecule, and the relative motion is
described by the R = Ry — Rg. That is, the six coordinates, consisting of the three coordinates,
Ra = (Xa, Ya, Za), of atom A and the three coordinates, Rg = (Xg, Yg, Zg), of atom B, are replaced
by the three coordinates, Rem = (Xem, Yems Zem), Of the center of mass, and the three coordinates,
Rrel = (X, Y, 2), of the relative motion with respect to the center of mass.

If we assume for simplicity that the molecule is confined in a cubical volume L3, then the
Schrodinger equation for the center of mass is just the free particle Schrodinger equation. This means
that the wave function for the motion of the molecule through space just the free particle wave
function
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and its contribution to the total energy is just
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h2

Ecm = m (nxz + nyz + nzz).

The Schrddinger equation for the relative motion about the center of mass is

W 3 92 92
where Ejn; = & — E¢ in the contribution of the internal motion to the total energy &, and

_ MaMg
H= MA + MB
is the reduced mass of the molecule. We can actually simplify this Schrédinger equation somewhat
by realizing that for a diatomic molecule the electronic eigenvalue, E;j, changes only when the

separation between the two atoms changes. This means that E; depends only on the internuclear
distance,

Ei(X,Y,Z2)=ER),

and not at all on the oritentation 6, ¢ of the axis in space. Note that now we (re-)use the symbol R to
be

R=vVX2+Y24+2Z2,
This simplification in turn means that we can separate the motion along the internuclear axis—the
stretching and shrinking of R—from the rotation of the molecule about the center of mass by
transforming to spherical polar internal coordinates,

(X,Y,Z2)—(R, 6, ¢).

From our study of rotational motion and the one-electron atom we know that this means we can write
the nuclear wave function as

$i(X, Y, 2)=Si(R) Yam(b, ¢),

in terms of spherical harmonics and a wave function Sy;(R) determined by the vibrational
Schrédinger equation

w1 d? 7 JAJ +1)

"3 R AR + 2R + Ei(R)| Ski(R) = Ejnt Ski(R).

The quantum number k indexes the number of loops in the wave function Sy j(R) and the index i
indicates the parametric dependence of wave function Sy j(R) on the electronic potential curve, E;(R).

In a way analogous to what we did in the one-electron atom, we can define a related vibrational wave
function

Xxki(R) = RSi(R)
to transform the vibrational Schrédinger equation into pure curvature form

o d? HIA+1)
- +
2u dR? 2 uR2

+ Ei(R) | xki(R) = Eint x«i(R).
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m The rigid rotor and harmonic oscillator approximations

A simple picture of a nuclear motion in a diatomic molecule is two masses connected by a spring.
The masses can vibrate, stretching and compressing the spring with respect to the equilibrium spring
length (the bond length), The masses can also rotate about the fixed point at the center of mass. The
question arises whether the rotation can affect the vibration, say by stretching the spring. To answer
this question, we can compare the expected frequencies of vibrational motion and rotational motion.

Now, we know that since molecules in an eigenstate do not move, we need to discuss motion in
terms of wave packets. For vibrations, wave packets oscillate with at the harmonic (angular)
frequency wyin = Vk/u . For rotations, the wave packets rotate with (angular) frequency roughly
corresponding to the frequency

angular momentum AivIQA +1) h
N ~

w = - . = .
™ “momentof inertia URe? uR:?

As example, for N, ground state, @yip = 2358.5685 cm1, Re = 1.0976968 A, and for N-14 the
reduced mass is 7.00153720 amu. These values give wyip = 7.07081 x 10** Hz and
Wrot = 7.52781 x 10! Hz.

Verify these values for wyj, and wyqt.

The ratio of these values, wyin / Wrot = 93.9291, means that the nitrogen molecule undergoes about
100 vibrations for each full rotation. This means that on average the molecule rotates at the midpoint
of its vibrational excrusion, namely at the internuclear distance Re.

For this reason, it is a very good approximation is to assume that the rotational kinetic energy can be
replaced by its value at the equilibrium internuclear distance, Re.

7 JJ +1) 7 JJ +1)
_ ,
2uR? 2 uRe?

This is known as the rigid rotor approximation. In this approximation the vibrational Schrédinger
equation becomes

2 g2 hZJ(J +1)
“spare Ei(R)| x«i(R) = | Eint — T2uRE Xki(R).

The equilibrium internuclear distance is determined by the balance of attractive electron-nuclear
forces, repulsive nuclear-nuclear forces, and repulsive electron-electron forces. We can simplify
things further by expanding the electronic potential energy in a Taylor series with respect to the
equilibrium separation,

dE;(R) ) 1 (aﬁ Ei(R)
=R

ER) = EiRy) +(~—==)  (R-Ro+ 5 |~

) (R=Re)?+ ...
R=Re

Since, by definition, Ej(R) is a minimum at R = R, the second term in the series vanishes since the
slope of E;(R) is zero at the minimum. If we also ignore the cubic and higher terms in the expansion,
then we can write the electronic potential energy as

d?E;i(R)
dR2

Ei(R) = Ei(Re) + % [ ) (R - Re)%.
R=R,
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This is known as the harmonic oscillator approximation. In this approximation the vibrational
Schrédinger equation simplifies further to

[ n 2 1(d2Ei(R)

~paw Tz ar )H R- Ref} Xki(R)
7 JJ +1)
=|Eint — Ei(Re) — W Xki(R).

This ‘simplified” equation looks a little untidy. We can neaten it up in two ways.

First, the internal energy is the sum of contributions from electronic motion, vibrational motion, and
electronic motion,

Eint = Eelec + Evib + Erot.

If we make the identifications

Eelec = Ei(Re)
#JA +1)
Erot =T 52 ¢
2uRe

this means that the eigenvalue of the simplified vibrational Schrddinger equation is just E,;,, since

7 JJ+1)
Eint — | Ei(Re) + W = (Eetec + Evib + Erot) — (Eelec + Erot) = Evib.
HRe

Second, harmonic potential energy is expressed most naturally as k £2 /2, in terms of a force constant
k (Greek letter kappa) and displacement from equilibrium & (Greek letter xi). We can transform from
the coordinate R to the displacement ¢ = R — R using dR = d (¢ + Re) = d . The result is the
vibrational Schrodinger equation

w4 1
(—2—#‘ ae 5 123 )in(g) = Evib x«i(©),

where the force constant is

( d?E;(R) )
K= .
dR?  Jag,

m Grand summary of diatomic molecule molecular structure

Using the adiabatic and Born-Oppenheimer approximations, we express the molecular wave function
and total energy as

Ye(R, 1) =~ ¢i(R, 1) $i(R) = ¢i(R, ) Yem(Xem, Yems Zem) ¢i(X, Y, Z).
& = Eem + Eint = Ecm + Eetec + Evib + Erot
The electronic wave function and energy are determined from

Ho ¥i(R, 1) = Ei(R) ¥i(R, 1),
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using the infinite nuclear mass hamiltonian
"2 2
Ho=—-— E Ves+V(R, 1).
2m 2 e (R, 1

The hamiltonian assumes the molecular center of mass is infinitely heavy.

The electronic energy, E;(R), contributes to the potential energy experienced by the nuclear motion,
as described below.

The motion of the molecule through space, assumed to be bounded by a cubical volume L2, has
wave function and energy

3
_ 2 e Xemy . ((NyAYem\ . Nz Zem
Yem(Xem, Yems Zem) = [,/ T ] sm( 3 )sm( C )sm( 3 )

h2

T BM L2

Ecm (nxz + ny2 + nzz), nx, ny, nz = 1, 2, 3, ee

Using the rigid rotor and harmonic oscillator approximations, we express the wave function of
internal nuclear motion (with respect to the center of mass) as

(X, Y, 2)=

a4 ké‘f‘f) Yam(@, ),

where the harmonic oscillator wave function is determined from the Schrédinger equation

o4 1
(_Z az 3 K& )in(f) = Evib xki(©).

The internal energy,
Eint = Eetec + Evib + Erot,

is the sum of the electronic, vibrational and rotational contributions,

1 K 1 clei(R))
EVlb—hE; ;(k_—z—),K_[W— RzRe, k—l, 2,3...,

Eelec = Ei(Re):
#JA +1)
Erot = — J=0,1,2 ...
2uRe

These equations are a complete, approximate description of the quantum aspects of diatomic
molecules. To test their correctness, the next step is to see how to use them to account for the
structure and spectra of diatomic molecules.
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