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The prototype system for the quantum description of atoms is the so-called one-electron atom, 
consisting of a single electron, with charge -e, and an atomic nucleus, with charge +Z e. Examples 
are the hydrogen atom, the helium atom with one of its electrons removed, the lithium atom with two 
of its electrons removed, and so on. 

There are two features of the one-electron atom that allow us to simplify our analysis. First, because 
the nucleus is so much heavier than the electron, to e very good approximation we can treat the 
nucleus as fixed in space, with the electron moving around it. Second, because there are no other 
electrons present, the potential energy, -Z e2 ê H4 p e0 rL, due to the Coulomb attraction of the electron 
and the nucleus, depends only on the distance, r, of the electron from the nucleus.

This means that the Hamiltonian of the one-electron atoms is simply the Coulomb potential energy 
added to the sum of the kinetic energy operators for motion of the electron in each dimension,
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Now, we have seen how to simplify the Schrödinger equation in more than one dimension by 
expressing the wave function is the product of the wave functions in each dimension. For this 
procedure to work, however,  the kinetic energy along each dimension must not be affected by the 
position in the other dimensions. That is, the curvature at a particular position in a given coordinate 
must be the same for all positions in the other coordinates. Because the one-electron atom potential 
energy depends on r =

è!!!!!!!!!!!!!!!!!!!!!!!!x2 + y2 + z2 , this is not the case here.

To illustrate this, let's set the origin of the coordinates at the nucleus and then plot how the kinetic 
energy changes in the hydrogen atom (Z = 1) in the x y plane for two different values of the third 
coordinate, z = 2 a0 and z = 0.2 a0, for total energy equal to twice the first ionization energy.
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Kinetic energy, in units of the ionization energy of hydrogen, of the electron in the hydrogen atom (Z = 1) in the xy plane for two 
different values of the third coordinate, z = 0.5 (left) and z = 0.2 (right). The total energy is two units of the ionization energy of 
hydrogen. Lengths are in Bohr, a0 = 0.529 Þ.

The plots show three things. First, the closer the electron to the nucleus, the larger its kinetic energy, 
since the more negative the potential energy. Second, the closer the position in the third dimension is 
to the nucleus, the more pronounced the kinetic energy change, since the electron is able to come 



closer to the nucleus. Third, and most important, the kinetic energy in one dimension is not 
independent of the position in the other dimensions.

What this analysis teaches is that in order to separate the Schrödinger equation of the one-electron 
atom, we need to transform the kinetic energy part of the equation to spherical polar coordinates, r, q 
and f.

We can use a similar approach to express the wave functions and energies of an electron in a 
one-electron atom. The key difference is that we need to analyze the curvature and so the kinetic 
energy in spherical polar coordinates, r, q and f, rather than Cartesian coordinates, x, y and z, since 
the Schrödinger equation is separable in spherical polar coordinates, but not in Cartesian coordinates.

à Transformation to spherical polar coordinates

The details of transforming the kinetic energy operator from cartesian coordinates to spherical polar 
coordinates are a little complicated, but the result is the Schrödinger equation
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where the angular part of the kinetic energy is expressed through the operator
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This operator, known as the Legendrian, determines the contribution to the kinetic energy of motion 
at constant distance from the nucleus. The Schrödinger equation in spherical polar coordinates is then
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Because in this form of the Schrödinger equation the potential energy affects motion in only one 
coordinate, the wave function can be written as a product

y Hr, q, fL = R (r)  Y  (q, f)

of two probability amplitudes. The amplitude R (r)  is called the radial wave function, and it depends 
only on the distance from the nucleus; the amplitude Y  (q, f)  is called the angular wave function, or 
spherical harmonic, and it depends only on the coordinates q and f.

Since one quantum number indexes the wave function in each coordinate, two quantum numbers are 
needed to specify the spherical harmonic. The quantum number for motion in q is called ; it can 
have the values 0, 1, 2, …. The quantum number for motion in f is called m; it can have the values 
- , - + 1, …, - 1, . Spherical harmonics are thus usually written as Y  (q, f) . 

List the possible values of m when = 3.

List the possible values of m when = 2.

How many values of  can have m = 4?

Show that for a given value of , there are 2 + 1 possible values of m.

The effect of the operator L2 on spherical harmonics is very simple,
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L2 Y  (q, f) = -  H + 1L Y  (q, f) .

Using this relation, we can rewrite the Schrödinger equation as
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In this equation the spherical harmonic appears as a common factor on both sides and so we can 
cancel it out The result is the Schrödinger equation in the single coordinate r,
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in terms of an effective potential energy function
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This potential energy expression contains, in addition to the contribution from Coulomb attraction, a 
repulsive term due to the angular motion of the electron. We have indexed the radial wave function 
by its number of loops, j, and also by the Z and . This means that the energy values also depend on 
j, Z and .

Keep in mind that while j plays the role of the radial quantum numbers, Z and  play the role of 
parameters in the radial Schrödinger equation. 

à Natural units of length and energy

We can simplify things by working in terms of units of length and energy that are typical for atoms. 
A convenient units of length is the Bohr radius, 
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in terms of the mass of the electron, which we write here simply as m. A convenient unit of energy is 
the magnitude of the Coulomb potential energy between two units of charge separated by the unit of 
distance,
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This unit of energy is called the hartree, and we write it as Eh.

In terms of length expressed as dimensionless multiples of the Bohr radius, r = r ê a0, and energy 
expressed as dimensionless multiples of the hartree, e = E ê Eh, the kinetic energy part of the 
Schrödinger equation becomes
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Substituting these expressions into the Schrödinger equation, we get
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At this point we can simplify things a bit more by defining a new unit of energy known as the 
rydberg, Er = Eh ê 2, defined as one half of the hartree. Dividing both sides of the Schrödinger 
equation by the rydberg, we get 
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in terms of the effective potential energy
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and the total energy e = E ê HEh ê 2L = E ê Er, both in rydbergs.

à Shell amplitudes

The Schrödinger equation
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is very similar to the curvature form of the Schrödinger equation. It turns out that we can transform it 
into curvature form by introducing a new radial function defined as PHrL = r RHrL. We call the 
function PHrL the shell amplitude because, as we will see shortly, its squared modulus is the 
probability per unit length that the electron will be found anywhere on the shell of radius r centered 
at the nucleus.

Multiplying both sides of the Schrödinger equation from the right by r ê r,
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and then rewriting the equation using the definition of the shell amplitude, we get
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The essential point is that the factor r to the right of the second derivative has divided out, and that 
now each term contains the common multiplicative factor 1 ê r. Multiplying both sides from the left 
by r we obtain finally
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Carry out the steps that result in this equation.

This is precisely the curvature form of the Schrödinger equation for the radial shell amplitudes. It is 
the fundamental Schrödinger equation of one-electron atoms. Remember that length r is the 
dimensionless multiple of the Bohr radius, a0 = 4 p e0 Ñ2 ê Hm e2L = 0.5292 Þ and energy e is the 
dimensionless multiple of the rydberg, Er = Eh ê 2 = Ñ2 ê H2 m a0

2L = e2 ê H8 p e0 a0L = 13.61 eV.

We have seen that the three-dimensional wave function for a one-electron atom can be expressed as 

y j m Hr, q, fL = R j Z  HrL Y  (q, f) =
1
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r

 P j Z  HrL Y  (q, f) ,

where the radial variation of the wave function is given by radial wave functions, R j Z , or 
alternatively by the shell amplitude P j Z , and the angular variation of the amplitude is given by the 
so-called spherical harmonics, Y m. 

The fraction of the electron within a small volume r2 „ r sinq „ q „ f of the point r, q, f is

» y j m Hr, q, fL »2 r2 „ r sinq „ q „ f = » P j Z  HrL Y  (q, f)  »2  „ r sinq „ q „ f

The fraction of the electron anywhere within „ r of the surface of a sphere of radius r is
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For this reason, » P j Z  HrL »2 is called the shell density of the electron, and this is why we call P j Z  
the shell amplitude.

The fraction of the electron anywhere at all is
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That is, the total probability of finding the electron somewhere is unity.

à Effective potential energy

The effective potential energy 
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reflects the competition between the attractive (Coulomb) and repulsive (centrifugal) contributions. 
Because of their differing dependence on distance, the attractive term dominates at large distance, 
while the repulsive terms dominates at small distance. 

The net potential energy changes from repulsive at small r to attractive at large r where the two 
contributions cancel.

Show that two contributions cancel at r0 = H + 1L ê H2 ZL.

Show that Veff ,Z Hr0L = 0.

The result is that there is a minimum in the effective potential energy at intermediate distances, 
except for = 0, which has no repulsive component.

The distance at which this minimum occurs is where the slope of the potential energy curve vanishes. 

Show the minimum occurs at rmin = H + 1L ê Z.

The effect of nuclear charge, Z, is to shift all of the minima inward. This is consistent with the Bohr 
model expression for the distance (in bohrs), r = n2 ê Z. 

Show that the potential energy at the minima is given by -Z2 ê H H + 1LL, in rydbergs.

The effect of nuclear charge, Z, is to shift all of the minima downward. Again, this is consistent with 
the Bohr model expression for energy (in rydbergs), 2 e = -Z2 ê n2.

The positions and energies at the minima for Z = 1 and orbital momentum quantum numbers 
= 1, 2, 3 and 4 are

ρmin εmin

1 2 − 1cccc2
2 6 − 1cccc6
3 12 − 1cccccc12

4 20 − 1cccccc20

Distance (in bohrs) and energy (in rydbergs) at the minima for Z = 1 and orbital momentum quantum numbers = 1, 2, 3, and 4.

Here are plots of the effective potential for hydrogen (Z = 1) for values of the orbital momentum 
quantum number = 0 HblackL, 1 HredL, 2 HgreenL, and 3 HblueL.
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Effective potential energy curves for one electron bound to a nucleus of charge Z. Distance is measured in units of the Bohr 
radius, a0, and energy is measured in units of the rydberg, Er = 2 Eh. The horizontal lines are the energies for n = 1 (lowest) to 
n = 4. The vertical lines mark the minimum, at rmin  Z = H + 1L, of the corresponding potential curve. The zero crossing of each 
curve is at r0 = rmin ê2.

The vertical lines show the depth of the minimum of each potential curve, except for the curve for 
= 0 for which the minimum is -¶ at r = 0. Also shown are horizontal lines at the energies 

expected based on the Rydberg formula, for values of quantum number n = 0, 1, 2, and 3, and 
vertical lines marking the kinetic energy at the minimum of each potential energy curve.

à Eigenvalues of the one-electron atom Schrödinger equation

We have obtained the Schrödinger equation 
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for the shell amplitudes P j Z . We can express this in the curvature form as
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depends only the distance from the nucleus, and not on q and f, but also since the effect of angular 
motion is already contained in the potential energy expression, the energy of the electron in the atom 
for a given number of loops will be different for different values of . Of course, since the potential 
energy also depends on the atomic number, Z, the energy for a given number of loops will also be 
different for different values of Z.

For a given  and Z we can use

curvature of P j Z at r = -tZ HrL µ P j Z HrL  

to determine those energies for which the shell amplitudes converge to zero in the exterior, forbidden 
region of the atom. To do this, however, we need to know the form of the shell amplitude as r 
approaches zero. 

The eigenvalues of the one-electron Schrödinger equation turn out to be

e j Z = -
Z2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H j + L2 = en Z = -

Z2
ÅÅÅÅÅÅÅÅÅ
n2 ,

where j = 1, 2, …, is the number of loops in the shell amplitude P j Z  and = 0, 1, …, is the orbital 
momentum quantum number. These energies are shown by the horizontal lines in the potential 
energy diagram above. The reason that the energy depends on the orbital angular momentum 
quantum number is that the lowest energy must be above the minimum of the potential energy

veff ,Z HrminL = -
Z2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH + 1L ,

for otherwise there would be no allowed region, etc.

For historical reasons, the first four values of  are usually expressed as a letter, as follows: s ( = 0), 
p ( = 1), d ( = 2), and f ( = 3). Again for historical reasons, j +  is taken to define a new quantum 
number n, called the principal quantum number.  The eigenvalues are exactly the energies that Bohr 
determined to be required to account for the Rydberg formula for one-electron spectra.

Because of the relation n = j + , the shell amplitude P j Z  and radial wave function R j Z  are usually 
written instead in terms of the principal quantum number, as Pn  and Rn , with the additional 
understanding that the atomic number Z is not written explicitly.

Since the lowest energy solution the radial Schrödinger equation must have one loop, this means that 
the lowest possible value for the Bohr quantum number n for a given  is

nmin = 1 + .

Thus, for = 0 the lowest value of the Bohr quantum number is n = 1, for = 1 the lowest value is 
n = 2, for = 2 the lowest value is n = 2, etc.

To illustrate the role and relationship of these different quantum numbers, here is a table of 
eigenvalues and number of loops for different values of the orbital momentum quantum number.
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n = j − ε s loops p loops d loops f loops
6 −Z2ê36 6 5 4 3
5 −Z2ê25 5 4 3 2
4 −Z2ê16 4 3 2 1
3 −Z2ê9 3 2 1
2 −Z2ê4 2 1
1 −Z2ê1 1

Eigenvalues, e, and number of loops, j, for different values of the orbital momentum quantum number, . The unit of energy is 
rydbergs and Z is the atomic number of the one-electron atom.

The table shows that, as we have learned from the study of the curvature form of the Schrödinger 
equation, the lowest energy solution for each orbital momentum always has one loop, the next lowest 
has two loops, etc. It also shows, however, that the energy of the lowest solution is different for 
different orbital momenta. In particular the lowest energy state with orbital momentum quantum 
number  has energy quantum number n = + 1 and so energy -Z2 ê H + 1L2.

à Qualitative form of one electron shell amplitudes Pj Z HrL

To carry out the stepwise solution of

curvature of P j Z at r = -tZ HrL µ P j Z HrL  

to find the energies for which the shell amplitudes converge to zero in the exterior, forbidden region 
of the atom, we need to know the form of the shell amplitude as r approaches zero. The key to 
finding out is that kinetic energy

t Z HrL = e - veff , Z  HrL = e -
 H + 1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 +

2 Z
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r
  

approaches infinite magnitude as the electron approaches the nucleus. All else being equal, this 
would mean the curvature of the shell amplitude grows to extreme values, with the result that the 
shell amplitude would oscillate wildly near the nucleus. But such wild oscillations would rule out 
there being a lowest energy solution to the Schrödinger equation, since the lowest energy solution 
has only a single loop.

The way out of the difficulty that infinite kinetic energy presents is to offset its effect by requiring, as 
the electron approaches the nucleus, that the shell amplitude go to zero faster than the kinetic energy 
goes to infinity. Then the product tZ HrL µ P j Z HrL approaches zero as the electron approaches the 
nucleus, and so wild oscillations in the shell amplitude are prevented.

As example, here is the lowest energy s ( = 0) shell amplitude for the hydrogen.
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Lowest energy s ( = 0) shell amplitude for hydrogen atom.

Since there is no interior forbidden region when = 0, there is not interior inflection point in the 
wavefunction.

As another example, here is the lowest energy p ( = 1) shell amplitude for the hydrogen.
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Lowest energy p ( = 1) shell amplitude for hydrogen atom.

Since for > 0 there is both an interior and an exterior forbidden region, there are now both interior 
and exterior inflection points in the wavefunction.
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