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ABSTRACT

A single integral equation formulation for electromagnetic scattering from three-dimensional dielectric objects &
is discussed. The new formulation converges significantly faster than the traditional, coupled integral equatiop §
formulation. The new formulation is extended to incorporate the exact boundary conditions for isolated mask !
features by using dyadic Green’s functions for the stratified medium background. Results of three-dimensions] B
phase-shifting mask simulation are presented.
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1. INTRODUCTION

Computer simulation of photolithography has become a cost-effective way to assess the effects of scattering 3
from wafer topography and transmission through mask apertures. With the scaling of devices to smaller dimen-
sions, greater demands are placed on the accuracy of the physical models used in the simulators and the efficiency ¥
of their numerical implementation.

The most common technique for rigorous mask transmission simulation is the finite-difference time-domain
(FDTD) method. The efficiency of FDTD on massively parallel supercomputers has been documented in the recent
literature!. However, FDTD is much less efficient when implemented on personal computers and workstations
due to the lack of massive parallelism on these platforms. Indeed, on such platforms, certain recently developed
frequency-domain techniques may rival FDTD in speed. Furthermore, frequency-domain techniques are capable
of yielding greater accuracy than FDTD in mask transmission problems, which often involve highly dispersive
materials such as chrome. This is because highly dispersive materials are treated exactly by frequency-domain
techniques without using approximate permittivity models.

In this paper, we present a new frequency-domain technique for rigorous mask transmission simulation based
on the surface integral equation approach to electromagnetic scattering. In this technique, a single surface current
unknown replaces the pair of electric and magnetic surface current unknowns used in the traditional, coupled
integral equation formulation for dielectric scatterers. Our approach is based on an idea developed by D. Maystre
in the late seventies for two-dimensional dielectric grating problems?. Our single integral equation formulation,
which is discussed in Section 2, represents the first successful extension of Maystre’s idea to three-dimensional
problems. Numerical results for the canonical problem of a dielectric sphere, for which the exact solution is
known, are presented to demonstrate the accuracy and speed of our new formulation.

In mask transmission simulation, as in nonplanar photoresist exposure simulation, one has to take into account
the presence of a substrate background extending essentially to infinity horizontally. To reduce the substrate region 3
to a manageable size, the usual approach is to truncate the computational domain by enforcing periodic boundary Lj;
conditions in the horizontal plane. When the mask feature under study is an isolated feature, however, periodic §
boundary conditions cannot, strictly speaking, be employed. We have developed a new technique to simulate ;
isolated mask features rigorously without employing periodic boundary conditions. This technique, which is §
discussed in Section 3, is based on dyadic Green’s functions for stratified dielectric media. The computation of 3




e far-zone pattern of the light transmitted through the mask using dyadic Green’s functions is discussed in
& tion 4 and numerical results for a phase-shifting mask example are presented in Section 5.

2. THE SINGLE INTEGRAL EQUATION METHOD

The geometry of a typical mask transmission problem is illustrated in Fig. 1, which shows a 180°-phase region
5f an alternating phase-shifting mask structure. This region consists of a hole etched through a thin chrome layer
\d into a thick quartz substrate. Light is incident from the quartz side of the structure and the transmitted
ht on the air side is to be computed.

Examination of the structure shown in Fig. 1 reveals that it is made up of a small number of surfaces
f separating different homogeneous dielectric regions. The surface integral equation method is ideal for solving
electromagnetic scattering problems involving this kind of structure. The basic idea of this method is to represent

scattered fields in each homogeneous region in terms of suitable unknown currents flowing on the surface
enclosing that region. In the traditional, coupled integral equation formulation, these unknown currents are the
equivalent electric and magnetic currents J. and I which are related to the magnetic and electric fields H and
on the surface by

Je = nxH, 1)
Jn -nxE, (2)

tshere n is the unit normal to the surface pointing into the region under consideration. A pair of coupled integral
f equations for the unknown currents J. and J,, on each surface can be derived by imposing the boundary conditions
E of continuity of the tangential fields across that surface. The details of this method are well known®

o

= For problems of interest to us, the number of unknown current coefficients is in the range of tens of thousands.
E The only practical way to solve a dense matrix problem of this size is to use an iterative technique, such as the
generalized minimum residual (GMRES) algorithm. However, when the traditional coupled integral equation was
solved using the latter algorithm, it was found that the convergence rate of the iterative solution was very slow®S.
“This limited the practical accuracy attainable with the coupled integral equation method to about one percent
without excessively long computation times. To overcome this problem, we have developed a new, single integral
quation: formulation which requires half as many unknowns as the traditional formulation.

* Our single integral equation (SIE) formulation is best explained by considering the simpler example of electro-

magnetic scattering from a finite homogeneous dielectric object embedded in an infinite homogeneous dielectric
medium. Let S denote the surface of the object separating the interior region of permittivity e; from the exterior
region of permittivity €, as illustrated in Fig. 2. Whereas in the traditional formulation the fields E® and H®
in the interior region are expressed in terms of two surface currents flowing on S, in our SIE formulation these
fields are expressed in terms of a single effective surface current Jog flowing on S by

E?D@r) = jwA®(r)-ved(r), (3)
HO@) = ~vxA®@), : @)
2]
where
ADE) = / Galr —r')Ieg(c ) dS' , (5)
S
6@@) = —— [Gax—r)V'-Jea(s")dS', (6)
Jwes Js )

§ and Gy(r —r') is the scalar Green’s function for the interior region,

ejkﬁlr"rll

Ga(r —r') N

drjr—r'| ’
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By letting the field point r in Eqgs. (3) and (4) approach S from the interior region, we obtain the tangentjy) 1
fields nx E(® and nxH® on S, where n is the unit normal to S pointing out of the ob ject. By the electromagneﬁc
equivalence principle, these tangential fields are related to the equivalent electric and magnetic currents J. ang .
Jm for the exterior region by

J(r) = nxHO), ‘ ® 7
Jn(r) = -nxE®@(r) . o 3

The total magnetic field in the exterior region is then given by

. HO() = Hpo(r)+ I}EV x AD() + jwAD (1) - val)(r) | (10
where

ADG) = o [(Gile-x3e N as' TS

A(r) = ¢ /S Gi(r =) Jn(r')dS' , (12) »

1

@g)(r) = jwpo,/;Gl(r_rl)VI'Jm(rI) dS', (13)

and Gi(r —r') is the scalar Green’s function for the exterior region, which is given by an expression similar to b,ﬁ 3
Eq. (7) with the subscript 2 replaced by 1. '

Notice that the equivalent currents J, and J,, appearing in Eqs. (11) to (13), which are given by Eqs. (8) #8
and (9), are themselves functions of the unknown effective current Jeg through Egs. (3) to (6). A single integral
e equation for the effective current Jeg can be derived from Eq. (10). By letting the field point r in this equation §
’ approach S from the interior region, the result must be zero. Hence, our single integral equation is

0 = Hin(r)+ #lv x AD(r) 4+ jwAD (r) - VEL)(r) . (14) |

Eq. (14) can be solved for Jeg by using the method of moments®.

Like the coupled integral equation method, SIE is a rigorous method since it employs the exact boundary
conditions on the surface S of the object and at infinity. The accuracy of the SIE method is illustrated in Fig.
3, which shows good agreement between the results of the SIE method and the exact solution for the canonical -
problem of a dielectric sphere illuminated by an incident plane wave. The convergence rate of the iterative §
solution of the SIE matrix system is also very good. This is illustrated in Fig. 4, which shows that the SIE
method converged almost two orders of magnitudes faster than the coupled integral equation method for another |
dielectric sphere example.

3. SCATTERING IN A LAYERED MEDIUM

In the previous section, we have discussed the simple case of a single closed surface S separating two homo-
geneous dielectric regions, as shown in Fig. 2. In the mask transmission problem of Fig. 1, however, there are_
several surfaces separating several homogeneous dielectric regions, as illustrated in Fig 5. If one were to apply the
integral equation formulation of the previous section straightforwardly to the structure of Fig. 5, one would have,
to introduce an unknown effective current flowing on the surface enclosing each dielectric region. Furthermore,
some of the surfaces shown in Fig. 5, namely, S; to Ss, actually extend to infinity horizontally. On such inﬁnit.e;
surfaces, it would in principle be necessary to introduce an infinite number of unknown current coefficients, unless S8
e the simulation domain were artificially truncated by enforcing periodic boundary conditions. In any case, the 8 '
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,tal number of unknown current coefficients in the geometry of Fig. 5 would be very large, even though we are
y interested in a small portion of the structure, namely, the etched hole in the mask.

To reduce the required number of unknown current coefficients, we have developed a new approach to the
mask transmission problem. In this approach, the etched hole in the mask is viewed as a bubble of air buried
in an otherwise uniformly stratified medium consisting of three regions: a quartz half-space above, a thin layer
of chrome and an air half-space below. Powerful mathematical techniques”™® exist for treating the problem of
electromagnetic-wave propagation in a stratified medium. These techniques are based on dyadic, or tensor, Green’s
functions for the stratified medium, which automatically take into account the multiple reflections occurring at
the various material interfaces and the exact outgoing wave boundary conditions at infinity in all directions. With
the exact boundary conditions in the stratified-medium background being taken care of by these dyadic Green’s
functions, we can focus our attention on the buried air bubble and introduce unknown current coefficients only
.on the surface S of the bubble, as illustrated in Fig. 6.

In the geometry shown in Fig. 6, the closed surface S separates the interior of the bubble, which is air, from
the exterior, which is a stratified medium. Since the interior region is homogeneous, the discussion of Section 2
SWE applies to this region. In particular, the fields in the interior region are still given by Egs. (3) to (7) and the

B equivalent currents for the exterior region are still given by Egs. (8) and (9). The total magnetic field in the
xterior region can still be written in the form of Eq. (10). However, Egs. (11) to (13) for the vector and scalar
tentials in the exterior region must be modified, since the exterior region is now a stratified medium. The
tnodified expressions for the vector and scalar potentials in the exterior region are

AD@E) = /s Gr (cle") - To(x") dS" (15)

AD@) = < /S [g} (r|r')-Jm(r')+ch(r|r')Jm,(r')] ds' | (16)

oW () = —— [ Ku(rle!)V' - In(r)dS' . (17)
Jwho Js

where QHE and Q‘Z,f are the dyadic Green’s functions for the stratified-medium background, K is a scalar-potential
reen’s function and Cy is a correction term associated with the vertical component of the equivalent magnetic
‘current. The form of the dyadic Green’s functions depends on the choice of gauge. In Sommerfeld’s gauge®, the
' dyadic Green’s functions have the form

e (rlr’) = (xx+yy)GE (rlr') + 2xGL(rir ) + 2yGE (rlr') + 22GZ, (x]r ") (18)
Q‘X/f (rlr") = (xx+ yy)GM (r|r ') + zxGM(x|r') + zyG%(rIr N4+ 22GM(x|r’) . (19)

The components of the dyadic Green’s functions are expressed in the form of Sommerfeld integrals,

GEwr) = 7 [ " 1) V(L 2,2)MA | (20)
GEl) = 2 [T ROA UL -EO 5T 1
G5l = mp [T BOn U ) = EOSIT (22)
GE(rlr!) = EEJE(T) /OcoJo(,\p)Ij(A,z,z'))\d/\, (23)
GM(rle") = 2ﬂi : /0 % 7o) IE(, 2, 2)AdA (24)
o) = 22 % i s ) - VR (29)
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ez) 0 7 dX

M _ A 1
Gzy(rlr l) - an o JU(AP) [V;‘()\,z, Z,) - Vv ()‘7 Z,ZI)]T ) (26) f
j o0 E
GMle) = JwE(z) / Jo(Ap) V(A 2, 2)Ad) . () 1
2rkg Jo E
Similarly, the scalar-potential Green’s function and correction term are given by
j bt dX
Ku@r') = L2 / Jo(Ap) [Ie(A2,2') = I 2, 2)] - (28)
271' 0 A
ez) [* " d\
Outele’) = 522 [ 00 H:0u52) - 12T (2)

In the above equations, V}*, V¢, I¢ and I are solutions of the following telegraphist’s equations with impulse
sources,

oV 2 2117k ; '
872 + [w poE(Z) - A ]‘/1 = JWio (5(2 -z ) ’ (30)
PV ., e [wPnoe(z) = N ,
TV b thoce) - N = [ ] 5z—2) (31
32[3 2 217e : ! )
2 4 WPhoca) - N = jwel2) 8z =) (3)
oIt A [w?poe(z) — A2
';9;';— + [wWipoe(z) = NI = j [T] 6z —-2'), (33)
and V¢, VB, I* and If are given in terms of these solutions by
1 9
VE(Nz,2) = e) 5;15()\,2,7.') , (39)
h N [ -~ jwito ] _g_ h ' 5
‘/u (A,Z,Z ) - _wzpoe(z) - Ag- aqu (A,Z,Z) ) (3 )
I{‘(A,z,z') = EZzl;To a%v,."(,\, 2,2, (36)
) € 1 _ [ _jwe(z) ] i e ’ 37
If(\2,2') = | ee(s) 2] BzV' (A\z,2) . (37)

It should be pointed out that, although the discussion in this paper is restricted to the case of a homogeneous
chrome layer, it can easily be generalized to the case where the chrome layer has a spatially varying permittivity
function €;(z) in the z-direction, as may happen when the chrome layer is extremely thin. In that case, the
telegraphist’s equations Egs. (30) to (33) will have to be solved numerically.

When Egs. (15) to (17) are substituted into Eq. (14) and the field point r is made to approach the surface
S of the air bubble from the interior, we obtain a modified single integral equation for the mask transmission
problem. This modified single integral equation can again be solved for the unknown effective current Jes bY
using the method of moments.

4. THE FAR ZONE PATTERN

After obtaining the effective current Jeg by solving the single integral equation Eq. (14), the total magnetic
field at an arbitrary point r in the exterior region can be computed using Eq. (10), where the vector and scalar ;

potentials are given by Egs. (15) to (17). We are mainly interested in the fields incident on the entrance pupil of -
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e projection optical system, which is assume to be many wavelengths away from the mask. In this far zone, the
i omponents of the dyadic Green's functions can be evaluated in closed form using the technique of asymptotic
e valuation of integrals. The resulting asymptotic expressions for the geometry of Fig. 1 are

jkor . .
GE(clr') = %Fe—]ko sin §(z’ cos ¢ + y' sin ¢) cosd WM, 2') (38)
jko‘f‘ . s .
G;,Ez(rh' I) — 647”_ e—]ko Sln0(:L" cos o + y/ sin d)) csccos ¢ [W?E(G,Z’) —cos? @ W;I‘M(e, 2')] , (39)
Jkor Sy .
GE(rlr") = %;r—e-ﬂ“o sinf(z’ cos § +y'sin @) cscgsin g [WIE(6,2) — cos8 WM(6,27)] ,  (40)
jkor . .
E n = ¢ —jkosin@(z' cosp +y'sing) _€0_ TE(p
Gzz(rlr ) 471,,,, € E(ZI) W‘U (072) ) (41)
e(2'
ey = “EleE ) (42)
jkoT . . .
GM(xir") = -——-———241‘_7. e—Jkosinf(z' cos ¢+ sin ) ¢ot 9 cos ¢ [WIM6,2") — WIE@®,2)] , (43)
jkor . . .
GH(xlr") = —-—847”_ e—Jdkosinf(z’' cos ¢ +y'sin @) ot psin WM, 2) - WrE@©,2)] , (44)
GM(lr) = Golrr), (45)
) : ot
WM, ) = ko (1 - RGM) enZ ¢ RMPh ~F) o< <d
P " (1 + REIMRTZI"Ie%'Yldl) (1+ RTM) (2 —di) + mdi] d>d
.y . _
WIB@9, ) = vieo (1 + R3E) eJNz — Rffejﬁ(zdl z') , 0<z <d; )
' boes (1+ ERPRIFANG) | (1 - REP) /@ —d)+mdil,ar>q, ’
b . ; o
.. WIE@B,7) = 1+ R{E ‘ eI M2 +Rr{z?e]71(2d1 2') , 0<z <d; (48)
v U 1 +Rg‘lgR¥362]71d1 (1 + RTE) il (2’ —dp) +mdi] , 2> dy )
e i (2dy —
WM, ) = L- Bl I RO, o< < (49)
o 1+ RENRB“eZ"Yldl (1 - RIM) edlre(z' —di) + Y1d1] , 2 >d

In Eqgs. (46) to (49), RZF and RTM are the TE and TM reflection coefficients at the interface between layers ¢
and j for a ray incident from the air half-space at an angle of incidence 8, and 7; is the z-component of the ray’s
wavevector in layer i. It should be pointed out that, in computing the diffraction pattern of an isolated mask
feature using Egs. (15) to (17), one has to integrate only over a finite surface S enclosing the corresponding air
bubble. On the other hand, to compute the diffraction pattern of an isolated feature using the amended Kirchhoff-
Huygens principle, namely, Eqs. (11) to (13) with the index 1 replaced by 0, one would, strictly speaking, have
to integrate over an infinite horizontal surface situated just below the chrome layer in the geometry of Fig. 1.
This is because the transmitted fields in principle extend to infinity on such a surface. ’

5. NUMERICAL RESULTS

We tested the above formulation on the example of a phase-shifting mask structure consisting of a square
E. contact hole with nominal width W = 2A on the mask. The structure was assumed to have been formed by a
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two-step etch process: a chrome etch followed by a quartz etch. The anisotropy ratio and amount of overetch for
each etching step can be varied. An analytical model was used to compute the final etched profile of the structure, *
The surface of the etched opening was triangulated, as shown in Fig. 7, and the resulting triangular-patch mode| -
of the surface was used as input to the SIE solver. :

Fig. 8 shows the far-zone diffraction pattern of the phase-shifting mask structure for a particular set of etel
parameters. Notice that the diffraction pattern is a continuous function of the spatial frequency %, rather
than a discrete set of impulse functions representing various diffraction orders. This is because our formulatiop
based on dyadic Green’s functions does not employ any periodic boundary conditions. Hence, the spectrum of §
the light transmitted through the isolated contact hole should be a continuous function of the spatial frequency,
The diffraction pattern shown in Fig. 8 has a form resembling the 3(1 + cos6) sinc (%2 sin §) function given by %
the scalar diffraction theory for an isolated contact hole.

gl

6. CONCLUSIONS

We have presented a single integral equation formulation for electromagnetic scattering from three-dimensional #§
dielectric objects in which a single unknown surface current appears. We have also discussed how the exact
boundary conditions for isolated mask features can be incorporated into the formulation by using dyadic Green’s
functions. As a result, we have been able to simulate the fields transmitted through an isolate mask feature
rigorously without the use of periodic boundary conditions. Our exact boundary conditions for isolated features &
will also be useful for simulating the effects of isolated or random defects on the bottom and sidewalls of a mask &
aperture, since periodic boundary conditions are not strictly valid for this kind of defects. B
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Fig. 1. Phase-shifting mask structure for mask transmission simulation. The refractive indices of
quartz and chrome at A = 0.248 um were taken to be 1.508+0j and 0.85+2.01j, respectively.

(Einc ’ Hinc) n

(El ’ Hl)

S

Fig. 2. Homogeneous dielectric object €; in a homogeneous medium €. J. and J, are the
equivalent currents for the exterior region. Jg is an effective current for the interior region.
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0.9

00 100 ' 0 180 100 ' 0
0 0

" Fig. 3. Equivalent currents J and J,, induced on a dielectric sphere with &, = 4.0 and radius
= 0.16A. Solid lines are the exact results. Dashed lines are the results of the SIE method.
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Fig. 4. Convergence rates of the single and coupled integral equation formulations for a
dielectric sphere with €, = 4.0 and radius = 0.08A.

Fig. 5. Surfaces separating various dielectric regions. In integral equation formulations employ-
ing scalar Green’s functions, one unknown effective current is needed for each of these surfaces.

Buried air

+ bubble

Air bubble

S

Fig. 6. The mask transmission problem viewed as an air bubble buried in a stratified medium
background. By employing dyadic Green’s functions for the stratified medium background,
only the surface S of the bubble carries an unknown effective current.
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Etch parameters:

« Chrome overetch
. Chrome etch anisotropy | — -
« Quartz etch depth '
« Quartz etch anisotropy

I

@Tched profile modeli@

( Surface triangulatign)—— T |
Incident wave, A = 0.248 pm

Fig. 7. Steps used in the generation of an accurate surface representation of a 180°-phase contact
hole in a 4X alternating phase-shifting mask. The etched hole, viewed as an air bubble, is shown
- chrome-side up, with the uppermost part of its enclosing surface S removed for clarity. The

thickness of the chrome was d; = 0.1 pm. The phase of the incident wave was taken to be zero at

 the quartz-chrome interface.
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Fig. 8. Far-zone pattern of the light transmitted through the isolated contact hole shown in Fig. 7.
The first minimum occurs at 8 = 29° because the final etched dimension of the mask aperture was

W=2.08\.
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