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ABSTRACT

Electromagnetic diffraction theory is applied to obtain a rigorous and

- comprehensive description of the imaging and exposure process in a projection optical
system imaging a one-dimensional, periodic object in a planar layer of photoresist.
The method is applicable to high numerical aperture and thick-photoresist systems,
and accounts for the exposure dependent absorption characteristics of positive
photoresists. It is used with the development simulator in SAMPLE to simulate the
physical profile of the developed image. Theoretical and experimental results are
given, which show asymmetrical variation of the developed image with focus. This
asymmetry is found to depend on photoresist thickness, and the dependence is shown to
be incompatible with the usual approximation of normal ray propagation in the
photoresist. ‘

1. INTRODUCTION

Most studies of the imaging process in optical lithography have been based on the
scalar diffraction theory. Although such methods are belisved to be adequate for
systems of low numerical aperture (0.3 or less), it is not clear whether they are
adequate for high numerical aperture systems. One reason is that the scalar theory
does not properly take into account the effects of oblique directions of propagation
of light in the latter systems. More rigorous methods, based on electromagnetic
diffraction theory, would be necessary for an adequate description of such systems.

Also, most investigations of the intensity distribution within the photoresist,
including a previous one by the author,’' have employed thin-film optics methods. Such
methods ignore the diffraction of light from the inhomogeneities in refractive index
-produced in the photoresist as a result of the photochemical reaction. A rigorous
treatment of this problem would again require the use of electromagnetic theory.

In this paper, electromagnetic theory is applied to obtain a rigorous description
of the combined imaging and exposure process in optical lithography for planar
photoresist and thin-film layers.

In Section 2, equations for the fields incident on the entrance pupil of the
optical system are given using electromagnetic diffraction theory. From these,
explicit expressions for the fields arriving at the exit pupil are derived in Section
3, for an axial object. These expressions are then used in a representation of the
fields incident on the photoresist surface in terms of a superposition of plane
waves.,

Section 4 gives a summary of a differential method for calculating the fields
within the index-modulated photoresist. The discussions are restricted to one-
dimensional, periodic objects. The fields so obtained are then used in Section 5 in a
photoresist exposure model to describe the exposure process.

To allow comparison with experiment, the calculations are carried out through the
photoresist development process, using the development simulator in SAMPLE. In
Section 6, numerical results for the developed image are given. These are compared
with experimental data and with the corresponding results obtained from the scalar

SPIE Vol. 922 Optical/Laser Microlithography (1988) / 149




e

model of normal ray propagation in the photoresist.

2. FIELDS IN THE OBJECT SPACE

The objects dealt with in optical lithography are in the form of planar masks
consisting of areas of constant transmissivity separated by essentially opague
regions. In a typical projection system for lithography, the condenser optics
produces an image of an extended, incoherent source on the entrance pupil of the
Projection lens. Consider the imaging of a point (x0,y0) and its neighborhood on the
object plane, due to a particular point T' on the source (Fig. 1). Light from T'
emerges from the condenser optics as spherical waves converging toward some point T
on the entrance pupil, a distance L from the object plane. Let (xt,yt) be the
coordinates of T on the entrance pupil. Then the distance Rt of an arbitrary point
(x1,¥1) on the object plane from T is:

2 2 2 - =2 - =2 2
Rt = \,(Xl‘xt) +(y1-yt) +L° = J(Xl‘xt) +(y1-yt) +L (1)
where
}_(]_ = X1-X0, ;t = Xt-X0,
Y1 = Y1-¥0, ¥t = yt-yo (2)
The fields ﬁt and ﬁt incident on the object plane at (x],y]) may be written as?:

2 2 -+ 3 - e_ijt

Et = Et(x1,y1) = (txEeo)xf & _ (3a)

Rt

-+ = | eQ EQ 2 = e_ijt |

e = He(x1,y1) = |2 ExBy = |20 EyBg &~ (3b)
' 1) HO Rt

where k = 2n/\, A being the mean wavelength in*the ambient, assumed to be air, and ¢g
and pp are its permittivity ‘and permeability; t is the unit vector pointing from
(x1,y1) to T and Etp is some as yet undetermined constant vector. The above is a

~valid representation of a spherical wave converging toward T and obeying Maxwell's

equations, provided that the distance Rt is much greater than a wavelength.® This is
the case in optical lithography, where L may be many centimeters and A\ < 1 micron.

The propagation of the fields through the object. is assumed to obey the laws of
geometrical optics. Thus, the object may be characterized by a function Uo(x1,y1)
such that the fields emerging from the object are given by the products of the
incident fields, Eq.(3), with this function. Furthermore, Ug(x},y]1) is assumed to be
2ero over the opague regions and pPiecewise-constant elsewhere.*

The above assumptions are good only if the linear dimensions of the geometric
patterns comprising the object are large compared with a wavelength. In modern
optical lithography, the image patterns may have linear dimensions in the micron
range, and thus are not much larger than a wavelength, which may be of the order of
0.436 um. Thus, the above assumptions may not be valid for a 1:1 Projection system. .
On the other hand, they are valid for a reduction system having a reduction ratio of
5:1 or greater, for then an object pattern corresponding to a | um image would be a
factor of ten or more larger than a wavelength. Accordingly, the projection system
considered here is assumed to have a reduction ratio of 5:1 or greater.?®

The fields in the object space can now be found by applying the vector form of

the Kirchoff-Huygens principle.® However, a straightforward application of this
principle would lead to fields which do not satisfy Maxwell's equations. This is

150 / SPIE Vol. 922 Optical/Laser Microlithography (1988}




because the discontinuities in the assumed boundary conditions on the object plane
are themselves incompatible with Maxwell's equations. This difficulty can, however,
be avoided by introducing fictituous line distributions of charges and currents at
the boundaries of the opague regions on the object where the discontinuities occur.’
The amended expression for the electric field E3(P2) at any point P2 in the object
space then becomes: ‘

Baceg) = I [f [P @oafte)y + (2usfie) - F(Hy) - jueo(zxEe)xTy]
4dniwe -e

x Up(x1,y1) dxidy1 (&)

~-where ¥ = exp(jkR)/R, R being the distance between the integration point (x1,y]) and
the field point P, and ez is the unit normal to the object plane.® '

The above expression is not restricted to small obliquity from the normal
direction. However, the field point P2 must not be too close to the object plane.
When R is much greater than a wavelength, the terms involving the operator V, which
acts on the coordinates of the integration point, can be simplified as follows:

L kR | KR JJKR
v( ) = -(jk - 2) r =~ -jk (5a)
R R R R
and similarly,
+ >ra eij 2r,@+ = - eij -
(ezale) - V[V(C_)] ~ -k*[(2,sfl)-7 ] r (5b)
R R

where r is the unit vector pointing from the integration point (x],y]1) to the field
point Pj.

Eq.(4) then becomes, using Eq.(3b):
jkR

° dx1dy) (6)

. @ N
Ba(pg) = 1¥ ff ra(8zske - ;-(3zﬁt)]3z + (;z‘;)(g5ﬁt)} Uo(x1,y1)
4t -

Suppose the point Py lies on the entrance pupil, with coordinates (x2,y2) on this
plane. Then,

2 2 .2 - =2 = = .2 2
R = J(xl—xz) +(y1-y2)"+L° = J(xl—xz) +(y1-y2) " +L (7)
where
X] = X]-x0, X2 = X2-x0,
Yl = yi-yo, ¥2 = y2-y0 I (8)

Taking into account the factor exp(-jkRt) in Eq.(3), the afgument of the phase factor
exp(~jkRt+jkR) in the integrand of Eq.(6) can be expanded as:

ST ST =z == =2 =2
KR-KRt = k(Lp-Ly) - kX2XL1*Y2Y1 |\ XeXi+yeyr ,  xI+yl 1 _ 1

-2
L2 Lt 2 L2 Lt
2252 == = — 2 =2 =2 == == 2
_ {k(x1+y1—2x2x1—2y2Y1) - k(XIHYI-2%eX1-2y¢y1) " | .,_} (9)
8L3 BLE

SPIE Vol. 922 Optical/Laser Microlithography (1988) / 151




where

Ly = JL2+;%+;%» Lt = JL2+;%+;% ' (10)

The terms in braces in Eq.(9) may be neglected by applying the principle of
stationary phase.’ By this principle, the main contributions to the integral 'in
Eq.(6) arise only from points (x1,y1) within a small neighborhood of (x0,y0), where
the rate of change of phase is minimum. For such points in the neighborhood of the
point of stationary phase, the terms in braces in Eq.(9) are negligible compared to
2n. This condition can be formulated as follows:

4nxT %3 %2
1 (_3 + _E) <K 27 (11)
Moo oLd

We note that ;z/Lz and ;t/Lt are each of the order of the numerical aperture on
the object side, which may be = 0.1 for a 5:1 system. Then, for N = 0.436 um and Ly =
400 millimeters (for a 5:1 system), Eq.(ll) gives:

x) < O.BJkLz/(O.Z) *~ 0.6 millimeter

The remaining terms in Eq.(9) may be simplified by noting that, with the help of
Eq.(10):

2 Ly Lt 4\L 2 2

e R Xyt [ (R GEh
k (L_-_.) = 2n - +
L L

This is of the same order as the terms in braces in Eq.(9), and thus may be
neglected. Eq.(9) then becomes:

kR-kRy = k(La-Lt) - Ef[ xpX2 - *ty 4oy 02 ZE)] (12)
A Lo Lt Lo Lt

Next, insofar as only those points (x],y1) on the object plane satisfying Eq.(%l)
contribute significantly to the image fields under consideration, the unit vector r
in Eq.(6) may be_replaced by a unit vector ;o pointing from (xQ,y0) to P2. Likewise,
the unit vector t in Egs.(6) and (3) may be replaced by a unit vector tg pointing
from (x0,y0) to T. The components of ?o and EO are given by:

rgx = fE, IOy = ZE, roz = Jl—r%x-rgy (13a)

L2 La

x y ‘ 2 2 ' |
tox = __t, tOy = ZE, tOZ = l-tOX-tOy (l3b)

Lt Lt

In terms of these components, Eq.(12) may be rewritten as:

2 — —_—
kR-kRt = k(L2-Lt) - ZI[ Xj(rox-tox) + y1(roy-toy)] (14)
N

For the same reason as in the replacement of r and t above, the factor 1/Rt in
Eq.(3) and the factor 1/R in Eq.(6) may be replaced by l/Lt and 1/Lp, respectively.
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So far, the polarization vector EtO in Eq. (3) has remained arbltrary We now
require it to be normal to the unit vector to Then, the factor (thto)xt in Eq.(3a),
with the replacement of £ by to, becomes EtO

With the above simplfications, Eq.(6) becomes, using Egs.(3) and (14):

2 1 -jkL -t _
E2(x2,y2) = e It Eo0(rox, roy) F{vo; TOX 0%, F0y~TOy}

ALt A A
.2
j—[xo(rox-tox)+yo(roy-toy)] KLy
< e n e (15)
L2
where
r -21j fx+y1f
3{U0; fx»fy} = ff Uo(x1,y1) e i (x1£x+y1£y) dx]dy} (16)
and
1
E20(rox,roy) = - - Fox{2zxBro - [fo-(T0sEr0)]3z + (3z-20)(PoxEeo)} (17)
2 .

The magnetic field ﬁz(xz,yz) is obtained from Maxwell's equations, using the fact
that L2 is much greater than a wavelength:

Ho(x2,y2) = JEE roxE2(x2,y2) (18)
1O

Egs.(15) to (18) completely specify the fields incident on the entrance pupil.
They are in the form of a spherical wave, exp(jkL2)/L2, which diverges from the point
(x0,y0) on the object plane. The polarization along the ray from (xqg,yp) travelling
in direction ro is parallel to the vector ﬁzo(rox,roy) given by Eq.(17), and the
.amplitude along this ray is proportional to the Fourier transform, Eq.(l16), of the
object function Ug(x],y]), evaluated at the spatial frequencies:

£y = (r0x't0x>’ £y = (roy-toy) | (19)
A A

3. FIELDS IN THE IMAGE SPACE

The propagation of the fields from the entrance to the exit pupil is again
assumed to obey the laws of geometrical optics. From the results of the last section,
through each point (x2,y2) on the entrance pupil passes a ray originating from the
point (x0,y0) on the object plane, with amplitude and polarization given by Egs.(l5)
to (18). In principle, this ray could be traced through the system, taking proper
account of the changes in polarization at the various surfaces in the system, to find
the amplitude and polarization of the fields at the corresponding point on the exit
pupil. However, this would require detailed knowledge about the specific design of
the system.

For the purpose of this paper, it is sufficient to consider the simple situation
where the point (xQ,yQ) lies on the optical axis. In this case, each ray from this
point, in the approximation of small ray aberrations, traces out a path lying
entirely in one plane, the meridional plane of the ray, for a rotationally
symmetrical optical system. Furthermore, provided that the angles of incidence at the
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various surfaces in the system are small, the polarization vector will, to a good
approximation, maintain a constant angle with the meridional plane along the entire
path of the ray.!° These approximations allow us to obtain explicit expressions for
the amplitude and polarization of the fields on the exit pupil.

. 4Let gn ge a gnig vector normal to the meridional plane, in the direction of
roxez, and ep = epnxrg. Then ep is a unig vector lying in the meridional plane. In
terms of the components rox and roy of ro,

’ 2 2
r0x+riy

gp = ___:i___ [jl-r%x-r%y (rOng + rOng) - (r%x+rgy)gz] (20b)
, 2 2
r0x+r0y

-+ -+ L d .
where ey, ey and ez are the Cartesian unit vectors.

-
en =

[roy;x - roxzy] (20a)

The polarization vector, ﬁzo(rox,roy), of the field at the point (x2,y2) on the
entrance pupil depends on that of the field incident on the object, Etg, according to
Eq.(17). It is convenient to consider two orthogonal cases of incidence polarization
separately:

Case I. TE polarization: ﬁtocgy = 0.
. - -+
Case II. TM polarization: (tozﬁto)-ey =0,

In the former case, the electric field of the waves incident on the object is
transverse to the y-axis, while in the latter case, it is the magnetic field which is
transverse. The general case of incidence polarization can be resolved into the above
two orthogonal components, say, with amplitudes cosy and siny, respectively. Because
the propagation equations are linear, the field on the image plane will be of the
form [ﬁ(I) cosy + ﬁ(II) siny], where ﬁ(I) and ﬁ(II) are the solutions for the image
field corresponding to the two orthogonal cases of incidence polarization,
respectively. If the source is unpolarized, the angle y will be uniformly distributed
over the range from 0 to 2w radians. Then, the intensity distribution on the image
plane, obtained by integrating the squared modulus of [%(I) cosy + ﬁ(II) siny] over ¥
from 0 to 2m, is clearly seen to be equal to the average of the intensity
distributions corresponding to the two separate cases of polarization.

Using the fact that ﬁtO'gO = 0, from the discussions following Eq.(14), and
assuming that Etp be real and of modulus Ry, so that the field incident on the object.
is of unit amplitude, t0 can be written as:

Case I: ﬁto = Rt [tOz;x - t0x;z] : (21&)
-3,

Case II: ﬁto = __EE__ [—toxtoygx + (l-t%y);y - toytozzz] (21b)
13,

Substituting these expressions into Eq.(17) and using Eq.(20), we obtain, after
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some calculations, the following expressions for the polarization vector along the
ray incident at (x2,y2) on the entrance pupil:

Case I polarization:
ﬁZO(rOx,rOy) = Rt[EZp(rOX»rOy)gp + E2n(rOerOy)gn] ‘ (22a)

Case II polarization:

ﬁzo(rox,roy) = Rt[‘EZn(rOx,rOy)gp + Ezp(rox,roy)gn] (22b)
where,
-1 (2 2 )
E2p(rox,roy) = {{1-rfx-rby [roytoxtoy + rox(1-tdy)] + roxtoz)
21(r3x+r%y)(l—t%y) (23a)
-1 ) (.22
E2n(rox,roy) = [roxtoxtoy - roy(1-tGy) - 1-rfx-rfy roytos]
2J(r8x+r5y)(1-t%y) | (23b)

Let P'y be the point of intersection of the ray under consideration with the exit
pupil, and © and 6' be the angles that this ray makes with the optical axis in the
object and image space, respectively. For an aplanatic optical system, 6 and 6' are
related by the Abbe sine condition:

sin® = M sino! : (24)

where M is the magnification of the system. We assume that departure from aplanatism
is small, so that Eq.(24) is obeyed to a good approximation. Then, since the ray in

the image space lies, ig the approximation of small ray aberrations, in a meridional
plane, the unit vector s along it can be written as:

S = -sing! cos$ ex - sing! sin¢ 3y + cos6' &, (25)
where ¢ is the angle that this meridional plane makes with the x-axis.

Using Eq.(24) and the following expressions for the components of ;o in spherical
polar coordinates,

rox = siné cos¢, rgy = sin® sin¢, rgz = cosé (26)

the components of 8 in Eq. (25) can be rewritten as:

- rOx’ sy = - I'Oy, Sy = Jl-si—s% (27)

Sx=

M M

The electric field at P'9 must be perpendicular to s and, according to the above
discussions, makes the same angle with the meridional plane as ﬁzo(rgx,roy). Let
'2o(sx,sy) be a vector at P'y in the direction of the electric field and having the
same magnitude as ﬁzo(rox,roy). Then the components of these two vectors normal or
parallel to the meridional plane must be of equalamagnitude. The perpendicular
component of ﬁ'zo still lies in the direction of en, given by Eq.(ZOa)s but ghe*
parallel component of ﬁ'zo now lies in the direction of a unit vector e'p = epxs:
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1 ‘ 2 2 2 2
g'p = [ l-Sx—Sy (Sx;x + Sy;y) - (Sx+Sy);z] (28)
l 2 2
Sx+Sy

Thus, the polarization vector along the ray in the image space through P's is:
Case I polarization:

ﬁ'ZO(Sx»Sy) = Rt[EZp(rOX,YOy)g'p + E2n(r0x,r0y)3n] (29a)
Case II polarization:

E'ZO(Sx,Sy) = Rt['EZn(rOX:rOy)g'p + EZp(rOx,rOy)gn] (29b)

where Ezn(rox,roy) and Ezp(rox,roy) are still given by Eq.(23).

Using the fact that the field incident on the entrance pupil, given by Eq.(l5),
is in the form of a spherical wave diverging from the point (x0,yQ) on the object
plane, the field on the exit pupil is, in the approximation of geometrical-optics
propagation through the projection lens, also in the form of a spherical wave. The
latter converges toward the Gaussian image point P*3j and has the following
representation!!;

B jk[®(sx,s )-r']
Brerg) = A(sx,sy) E'20(sx,sy) e xSy o
Rt r'

where r' is the distance of the point P'2 on the exit pupil from the Gaussian image
point, Q(sx,sy) the aberration function regarded as a function of the direction
cosines sx and sy of the ray through P's, and A(sx,sy) a complex amplitude factor
still to be determined.
N

The amplitude factor A(Sx,Sy) can be found by using the intensity law of
geometrical optics. For .this purpose, it is again sufficient to ignore ray
aberrations and regard the ray through P'y as being directed exactly toward the
Gaussian image point and obeying the Abbe sine condition.

Consider the cone of rays in the object space originating from the axial point
(x0,y0) = (0,0) on the object plane and lying within an element of solid angle sin®
déd¢. In the image space, these rays converge toward the axial image point P*(p and
lie within the element of solid angle sin®' d6'd¢, where 6' is related to 8 by
Eq.(24). Applying the intensity law to these two cones of rays, using Eqs.(15) and
(30) for the fields on the entrance and exit pupils, respectively, and ignoring
energy losses within the system, we obtain:

2
1]
IA(Sx,Sy)I2 1 20(sx,sy)| sin®' de'd¢ = __i___lﬁzo(rox,roy)l2
2 2
Rt (ALt)
x lﬁ-I{Uo;ro"-to",roy"toy}l2 sin® dedé

Since Rt is practically equal to Ly, according to the discussions following Eq.(14),
and [E'20] = |E20!, the above equation gives for A(sx,5y):

156 / SPIE Vol. 922 Optical/Laser Microlithography (1988)




M 8! - -
Asx,sy) = 1 12959 g{ug; F0x~t0x, T0y~T0y) (31)
N Vcos8 1N A

where we have omitted an unimportant phase factor and used the fact that cos6 d9 = M
cos6' de'.

Let the actual image plane be displaced with respect to the Gaussian image plane,
in the negative z-direction, by an amount A.12 Then the electric field ﬁi(x,y) at a
point (x,y) on the image plane is given by'?®:

. ik[B(sx,sy)-szA+sxx+syy]
ﬁi(x,y) = 1_ J\J‘ A(Sx»sy) E ZO(SX)Sy) e dedSy (32)
in Ve

————————

Rt Sz

where the integral is taken over the solid angle Q subtended by the exit pupil at the
Gaussian image point.

Without loss of generality, the image plane can be chosen to be the outer surface
of the resist. Then Eq.(32) has the simple physical interpretation that the field
incident on the resist surface, Ej(x,y), consists of a superposition of infinite
plane waves, exp[jk(sxx+syy)], propagating in directions s. The electric field
amplitude of the plane wave with direction cosines sx and sy is ﬁ(sx,sy), where:

21 20(sx,sy) oIK[3(S0y)-5zk]

ﬁ(Sx,Sy) = l__ A(Sx,Sy) dedSY (33)

ir Re Sz

The corresponding amplitude of the magnetic field is J(so/po) gzﬁ(sx,sy).

The propagation of each such plane wave through the resist and underlying thin
films can be considered separately. The total field within the resist, due to the

‘particular source point T' in one of the two modes of polarization given by Eq.(29),

is then obtained by superposing the individual fields due to these plane waves.

4, FIELDS IN THE RESIST

The photochemical reaction occurring in the resist during exposure causes the
resist absorption coefficient to decrease, an effect commonly referred to as
bleaching. For simplicity, we limit our treatment of this effect to one-dimensional,
periodic objects. Thus, the object function Ug(x]) is independent of y| and periodic
in X}, with a period D. Also, the substrate is assumed to be composed of planar,
homogeneous layers and the resist to be uniform in thickness and initially
homogeneous. Then, due to bleaching, a one-dimensional periodic modulation in the -
dielectric constant of the resist is produced, causing the resist to act like a
diffraction grating. The resist dielectric constant can then be represented by a
function e(x,z), independent of y and periodic in x with period d = MD. Here, the
coordinate z is measured inwards from the outer surface of the resist, where z = 0.

The propagation of an incident plane wave, ﬁ(sx,sy) exp[jk(sxx+syy)], through
such a resist layer can be rigorously described using the electromagnetic theory of
diffraction gratings.!* Because the direction cosines sx and sy may take on arbitrary

values satisfying:

Js§+s§ < NA (34)
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where NA is the numerical aperture of the system, the incident wave vector s is, in
general, not perpendicular to the grating 'grooves' along the y-direction. Hence, it
is necessary to employ a formalism applicable to diffraction gratings in this general
configuration, referred to as the conical diffraction mounting.

The formalism which is simplest to implement numerically is the differential
method.!® In this method, the Cartesian field components at a point (x,y,z) within
the resist are expanded in terms of elementary, pseudo-periodic functions
exp(jksxnx):

Ex(x,y,2) = el *597 § E () oI¥Sxnx (35)
n
where
n\
Sxn = Sy + __ . (36)
d

Similar expansions are. introduced for Ey(x,y,z), Ez(x,y,2), Hx(x,y,2), Hy(x,y,z) and
Hz(x,y,z). These expansions are possible because, by the periodicity of the
dielectric constant in X, together with the spatial dependence, exp[jk(sxx+syy)], of
the incident wave, each component of the electric or magnetic field must satisfy the
pseudo-periodicity condition:

Jksxd _jksyS

Ex(x+d,y+6,z) = e Ex(x,y,2) (37)

where § is an arbitrary displacement in the y-direction. Similar conditions hold for
the other field components.

Substituting the above expansions for the field components in Maxwell's
equations, the following system of differential equations can be derived!®:

dExn(Z) = ijanzn(Z) + jwuoHyn(Z) (383)
dz >
dEyn(2) | JjksyEzn(2) - jwpgHxn(z) (38b)
dz
dHxn(2) jksxnHzn(z) - jeeg ) en-m(z)Eyp(z) (38c)
dz m '
dHyn(Z) - ijszn(Z) + jwco Z En_m(Z)Exm(Z) ‘ (38d)
dz m
where
Egn(z) = 5T [l] (2) [syxn(2) - symbyn(z)] -~ (39a)
weg m ‘elpop
and
Hzn(2) = 2% [syExn(z) - SxnEyn(2)] (39b)
WHQ .

In the above equations, ep-p(z) is the (n-m)th Fourier coefficient in the Fourier-
series expansion of the dielectric constant e(x,z) for fixed z, and (1/e)pn-m(z) that
for [1/e(x,2z)].
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In practice, the infinite sums in Eqs.(35), (38) and (39a) are truncated to a
finite number, N, of terms. Then, by substituting Eq.(39) into Eq.(38), a system of
coupled differential equations in the 4N unknown functions Exp(z), Eyn(z), Hxn(z) and
Hyn(z) is obtained. To set up the necessary boundary conditions for this problem, we
introduce Rayleigh expansions for the fields in the air and substrate regions.

Let zg be the distance between the outer resist surface and the interface between
the substrate and the innermost thin-film layer. Then the fields in the air, z £ 0,
and substrate, z 2 2s, have expansions similar to Eq.(35), but with known forms for
the functions Eun(z) and Hyn(z), where u stands for X, Yy or z. For the y-components,
these are:

For z £ 0:

Eyn(z) = App eiPInZ , g, e"3B1nz Hyn(z) = P1, eIPInZ , o ~3Blnz (40)
For z 2 zg:

Eyn(z) = App edP2nZ Hyn(z) = Py, eiP2nZ (41)
where

l 2.2 ’ 22 ‘
Bln = k Vl-sy-syp, B2n = k Yera-sy-sxp (42)

€r2 being the dielectric constant of the substrate. The X-components are then given
by:

For z £ 0:
1 . 3 2
Exn(z) = [wuoﬁln(PlneJBlnz = Qilne JBan) -k Sysanyn(z)] (43a)
kz(l—sg)
- 3 - 2
Hxn(z) = ! [weosln(AlneJBlnz - Blpe JBan) + k 5ysanyn(z)] (43b)
kz(l—sg)
For z 2 zg:
2 3
Exn(z) = (@HOB2nP2n - kK sysxndan) eJP2n? (44a)
2 2
k" (era-sy)
Hxn(z) = - (wer2e0B2nA2n + kZSnyann) elP2n2 _ (44b)
2 2
k (trZ‘Sy)

Eq.(41) incorporates the boundary condition that there be no incoming wave in the
substrate region. The other boundary condition states that there is only one incoming
wave, namely, that corresponding to n = 0, in the air region. Hence, the coefficients
Aln and Py, in Eq.(40) all vanish except for n = 0, in which case they are equal to

the y-components of ﬁ(sx,sy) and J(EO/PO) gzﬁ(sx,sy), respectively.

Because the diffracted wave amplitudes B)p and Q) are unknown to begin with, it
is not possible to set up the correct initial values for Exn(O),lEyn(O), Hxn(0) and
Hyn(0) at z = 0 to start the numerical integration of Eq.(38). Instead, in one method
of solution, the shooting method, one starts with arbitrary values of the
coefficients Azp and Py, and constructs the initial values Exn(zg), Eyn(zg), Hxp(zs)
and Hyn(zg) at z = Zg using Eqs.(41) and (44). Eq.(38) is then integrated backwirds
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numerically up to z = 0.7 By means of Egs.(40) and (43), a set of coefficients Aln
and Pl is obtained from the resulting values of Exn(0), Eyn(0), Hxn(0) and Hyn(0).

Let $1 be the column vector, with 2N elements, obtained by juxtaposing the
coefficients Ajp and Pin, and {2 be similiarly defined for A2n and Pq. In general,
the vector Y] obtained in the above way, for an arbitrary choice of éz, is different
from the one corresponding to the given incident wave. However, by the linearity of
the equations involved, {) must be linearly related to ¢2=

b1 = W ¥ (45)

where W is a 2Nx2N matrix. By starting with 2N linearly independent initial vectors

2 and obtaining the 2N corresponding vectors Y] in the above way, the matrix W is
completely determined. Then, Eq.(45) is inverted, using the vector 1 corresponding
to the given incident wave, to obtain the correct initial vector ¢2 = Y‘l 1. The
corresponding initial values Eyxp(zg), Eyn(zs), Hxn(zs) and Hyn(zs) are obtained from
Egs.(41) and (44). Eq.(38) is then integrated backwards once more to determine the
values of Exp(z), Eyn(z), Hxn(z) and Hyn(z) at chosen values of z within the resist.
The corresponding values of Ezn(z) are obtained from Eq.(39a). Then, by means of
Eq.(35) and similar expressions for Ey(x,y,z) and Ez(x,y,z), the electric field
E(x,y,z) within the resist is found.

The total field within the resist is obtained by superposing the fields ﬁ(x,y,z)
found in the above manner, for the various plane waves B(sx,sy) exp[jk(sxx+st)]
contained the incident field ﬁi(x,y). The squared modulus, I(x,z), of the total field
is a function only of x and z, for the one-dimensional objects considered here.

For an unpolarized source, the above calculations must be repeated for the two
orthogonal cases of incidence polarization given by Eq.(29) and the average I(x,z)
taken. Furthermore, for an extended, incoherent source, the calculations must be
repeated for each point T' into which the source is subdivided. The final, average
I(x,2z) obtained in this way is then used below to describe the exposure of the
resist.

S5, PHOTORESIST PROCESS MODEL

In this section the Dill model of positive photoresist!® is used to describe the
éxposure process. Here, the absorption coefficient of the resist is governed by the
molar concentration of a single species of photoactive compound, known as the
inhibitor. Let M(x,z,t) represent the concentration of inhibitor within the resist,
at time t, normalized to the unexposed, uniform concentration at t = 0. Then the
complex refractive index of the resist, n(x,z,t), is given by:

n(x,z,t) = ng + iﬁ [A M(x,z,t) + B] (46)
4n

where ng, A and B are positive constants characterizing the resist. From this
expression, it can be seen that (A+B) and B are the absorption coefficients of the
unexposed (M = 1) and fully exposed (M = 0) resist, respectively.

The photochemical reaction occuring during exposure converts the inhibitor into
reaction products, resulting in a decrease in the absorption coefficient of the
resist. Let P(x,z,t) be the average local rate of energy dissipation per unit volume
in the resist. Then, according to the Dill modell?:

160 / SPIE Vol. 922 Optical/Laser Microlithography (1 988)




-

OM(x,z,t) _  -B(x,z,t)
2t A M(x,z,t) + B

M(x,z,t) C (47)

where C is a constant characterizing the optical sensitivity of the resist. By
Poynting's theorem, P(x,z,t) is related to the local electric field ﬁr(x,z,t)'by:

P(x,z,t) = ng i_ [A M(x,z,t) + B] QW lﬁr(x,z,t)|2 (48)
4
Thus, Eq.(47) becomes
M = - )”_ npeQw lﬁr(x,z,t)lz M(x,z,t) C (49)
ot 4

Since the electric field ﬁr(x,z,t) is dependent on the refractive index of the
resist, and thus on M(x,z,t) through Eq.(46), Eq.(49) is a non-linear differential
equation for M(x,z,t). For numerical integration, the equation is discretized in t,
using a sufficiently small time increment At to achieve convergence of the results.
At the beginning of the nth time step, th, n=1,2,..., the refractive index
n(x,z,tn) is calculated using the inhibitor distribution M(x,z,tpn—]) obtained at the
end of the previous time step, with M(x,z,tg) = 1. The dielectric constant e(x,z) is
set equal to nz(x,z,tn) and the average squared modulus, I(x,z), of the electric
field within the resist then calculated using the method discussed in the last
section. The inhibitor distribution is then changed according to:

- E_ noegw I(x,z) C At

M(x,z,tn) = M(x,z,tp-1) e 4m (50)

The above calculations are repeated for successive time steps tp+l, ..., until
the desired total exposure dose is delivered through the optical system. The final
inhibitor concentration so obtained, M(x,z,t), where t is the exposure time, can then
be used in a development model to simulate the physical profile of the developed
image.

The development model used here is the one contained in the general lithography
simulator SAMPLE.2° Here, the dissolution of the resist in the developer is assumed
to be a surface-rate limited process. The dissolution rate R(x,z) is determined by
the local value of M(x,z,t) according to the following empirical relation?!:

R(x,z) = ! - (51)

[ 1 {l - M(X z,t) e-RB[l-M(X,Z,C)]} + -l—_ M(X,Z,‘C) e-RS[l-M(X)Z)t)]

Ry R2
where Rj, Ry and R3 are parameters characterizing the resist-developer combination.

SAMPLE also provides for simulating the effects of post-exposure baking, a pre-
development step sometimes used in processing to smooth out the standing-wave pattern
in the developed resist profile. This is accomplished by convoluting the inhibitor
distribution M(x,z,t) with a Gaussian function, with a suitable choice of the
diffusion length, o, before using it in Eq.(51). The simulator then generates the
two-dimensional physical profile of the image for a given develop time.

6. APPLICATIONS

An important issue in high numerical aperture optical lithography is the ability
to control the critical dimension (CD) of a developed feature under a given set of
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processing conditions.2? Such information can conveniently be obtained from a plot of
the CD against the defocus distance, for different values of the exposure dose.

Fig. 2 gives examples of CD versus focus plots calculated by the vector method
described above, for two different thicknesses of the photoresist. The modeling
parameters are given in Table 1. This figure can be compared with corresponding
experimental data given in Fig. 3. In both figures, the variation of CD is seen to be
asymmetrical with respect to focus. Furthermore, .in both figures, the asymmetry is
seen to be more pronounced for the thicker photoresist. On the other hand,
calculations based on the customary, scalar model of normal ray propagation in the
photoresist, in the case of no aberrations in the optical system, would predict a
symmetrical variation of CD with focus, for any given thickness of the photoresist.
This is shown in Fig. 4, which gives the corresponding plots obtained from the scalar
model.

Asymmetry of the developed image with respect to focus can alsoc be caused by
aberrations in the optical system. For the axial, grating object under consideration,
the only primary aberration that can impart asymmetry to the aerial image with
respect to focus is spherical aberration. However, the scalar model, which assumes
normal ray propagation in the photoresist, would predict that the asymmetry in the
resulting CD versus focus plot should, to first approximation, be independent of
photoresist thickness. This is illustrated in Fig. 5, which gives the results of
calculations based on the scalar model, for a system possessing an assumed amount of
third-order spherical aberration equivalent to a maximum value of Q(sx,sy) of about
ocne-fifth of a wavelength. Here, the plots for the two different photoresist
thicknesses, although they are both asymmetrical due to the aberration, are very
similar in appearance. This is inconsistent with the experimental data given in
Fig. 3, which show a significantly greater asymmetry in the case of the thicker
photoresist. On the other hand, the results given by the vector method, as shown in
Fig. 2, indicate a change in the asymmetry in going to the thicker photoresist of
about the same amount as the data, without introducing artificial aberrations.

The physical profile of the developed image, besides the CD, is also of interest
in lithography. Fig. 6 gives a through focus sequence of SEM pictures of developed
photoresist images, together with the simulation results obtained by the vector
method. The SEM pictures show that the photoresist profile behaves qualitatively
differently on either side of the best focus. When the Gaussian image plane is moved
in the direction toward the Projection lens, the photoresist sidewalls tend to remain
straight, although they are gradually tilted away from the vertical. In the opposite
direction of defocus, however, the profile tends to become dome-shaped. This behavior
is in qualitative agreement with the simulation results given in the same figure. .

7. CONCLUSIONS

We have described a method, based upon electromagnetic diffraction theory, for
calculating the electric field within a planar photoresist layer in an optical
lithography system. The method is applicable to high numerical aperture and thick-
photoresist systems, and takes into account diffraction of light due to bleaching of
the photoresist. By combining it with the development simulator in SAMPLE, we have
obtained numerical results showing asymmetrical variation of the developed image with
focus. The predicted dependence of this asymmetry on photoresist thickness has been
observed experimentally. Finally, we have shown that this dependence is incompatible
with the scalar model of normal ray propagation in the photoresist, even when
aberrations in the optical system are taken -into account. '
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Figure 1.

Figure 2.
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Calculated CD versus focus plots based on the vector method, for a one-
dimensional, grating object consisting of equal lines and spaces of width 0.80
um. The optical system was a 5:1 reduction System with NA = 0.42, A = 0.4358 pm
and condenser NA to lens NA ratio = 0.5. The photoresist thicknesses (AZ1312 and

. AZ1318) for the left (thin) and right (thick) plots were 1.24 and 2.10 um, resp.

The substrate was the same in both cases, and consisted of silicide, polysilicon
and oxide films over silicon. The curves, labelled (p) to (v) and (a) to (g) in
the left and right plots, resp., correspond to different values of the exposure
dose. In terms of the threshold dose, that is, the minimum dose required to
develop out a large, clear region, these are:
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Figure 3. Experimental CD versus focus plots, obtained by electrical measurement of

anisotropically etched silicide-polysilicon lines. The experimental conditions
were the same as the modeling parameters given in the caption of Fig. 2.
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Figure 4. ‘Calculated CD versus focus plots based on the scalar model of normal ray

propagation in the photoresist, assuming no aberrations in the optical system.
The modeling parameters are the same as those of Fig. 2.

Table 1. Photoresist Modeling Parameters

Exposure value Development value
parameter parameter
A 0.54 um-1 R1 0.18 um s-1
B 0.20 um-1 R2 0.00005 um s-1
c 0.010 cm2 mJ-1 R3 6.4
o 0.04 um Develop time 60 s
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Figure 5.
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Calculated CD versus focus plots based on the scalar model of normal ray
propagation in the photoresist, assuming the presence of third-order spherical
aberration in the optical system, described by an amount of longitudinal
spherical aberration equal to 2.0 ym. This means that the marginal rays come to
a focus 2.0 um closer to the lens than the paraxial rays. For NA = 0.42 and A =
0.4358 um, this is equivalent to a maximum value of the aberration function

2(sx,sy) of about A/5. The other modeling parameters are the same as those of
Fig. 2.
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Figure 6. Experimental and simulated developed photoresist profiles for different values

of focus but the same exposure dose. The object consisted of equal lines and
spaces of width 0.70 um. The optical system was a 5:1 reduction system with NA =
0.45, A = 0.4358 um and condenser NA to lens NA ratio = 0.5. The exposure dose

) (continued next page)
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Figure 6. (continued:) was 2.0 times the threshold dose in all cases (see the caption of
Fig. 2 for the meaning of threshold dose). The photoresist (TSMR8800) thickness
was 1.20 um and the substrate was silicon. The modeling parameters given in
Table 1 for the AZ resists were used for the TSMR resist also.
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