BOSTON UNIVERSITY

Intra-Rater and Inter-Rater Reliability of Manually Quantifying Neurological **Outcome of Stroke Patients to be Used for Machine Learning Models**

Catherine Chong¹; Jack Pohlmann, MS²; Samad Amini, MSc³; Ivy So Yeon Kim, MPH²; Charlene Ong, MD, MPHS^{2,4}

Richard Montgomery High School, 250 Richard Montgomery Drive, Rockville, MD 20852¹; Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, MA 02118²; Center for Computing & Data Sciences, 665 Commonwealth Ave, Boston, MA 02215³; Boston University School of Medicine, 72 E. Concord St, Boston, MA 02218⁴

INTRODUCTION

The **modified Rankin Scale (mRS)** is a six point global outcome rating scale used to evaluate **stroke patient outcomes** by assessing **levels of functional** independence.

The purpose of this report is to:

• manually quantify functional outcomes from patient discharge summaries

Of the reviewed discharge summaries, 278 (91.2%) were easily assessable on first pass by Investigator A.

Table 2: Intra- and Inter-Rater Agreement and Kappa Statistic

Full mRS Dichotomous mRS*

- analyze **intra- and inter-rater reliability** of manual mRS assessments
- establish a gold standard label for natural language processing models

The modified Rankin Scale (mRS)				
Score	Symptoms			
0	None			
1	No significant disability despite symptoms: able to carry out all usual duties and activities			
2	Slight disability: unable to carry out all previous activities, but able to look after own affairs without assistance			
3	Moderate disability: requiring some help, but able to walk without assistance			
4	Moderately severe disability: unable to walk without assistance, unable to attend to needs without assistance			
5	Severe disability: bed-ridden, incontinent, and requiring constant nursing care and attention			
6	Dead			

Raters	Ν	Agreement		Agreement	
		%	k	%	k
Intra-Rater (Investigator A)		76.7	0.89	93.3	0.86
Investigators A v. B		55.6	0.77	85.2	0.71
Investigators A v. DS 2		83.3	0.92	100	1.00
Group Agreement 27		44.4	0.61	85.2	0.80

*Dichotomous mRS split into functional outcomes of favorable (mRS ≤ 2) or unfavorable (mRS > 2)

mRS: modified Rankin Scale; N: number of reports reviewed; %: percentage agreement; k: kappa statistic

Table 1: modified Rankin Scale scoring guidelines adapted from Zihni, et al¹

Figure 2: Intra-Rater mRS Assessment Agreement

Figure 3: Inter-Rater mRS Assessment Agreement between Investigator A (1st Assessment) and Investigator B

METHODS

- 305 BMC stroke patient discharge summaries were graded using the mRS by a trained investigator (Investigator A) to determine if mRS can be reliably extracted from these reports
- 30 of the 305 discharge summaries were randomly selected for a second assessment. Percentage agreement and kappa values were calculated
- Intra-rater reliability
 - Investigator A's two mRS **assessments** blindly compared; reliability determined using Cohen's kappa
- Inter-rater reliability
 - **Investigator A's** first assessment compared to a second investigator's assessment

Figure 4: Inter-Rater mRS Assessment Agreement between Investigator A (1st Assessment) and Discharge Summary

**Darker boxes indicate greater instances of agreement between raters

Most reviewed reports follow the trend line of perfect agreement, indicating good intraand inter-rater agreement

DISCUSSION/CONCLUSION

This study demonstrated that information extracted from **stroke patient discharge** summaries are sufficient to reliably extract an mRS. A relatively low percentage agreement between Investigators A and B may be due to the fact that Investigator A reviewed the patients' full discharge summaries while Investigator B only reviewed their discharge exams. This discrepancy is important to note when considering what information to train the machine learning model on to generate a mRS. However, the kappa value (0.71) demonstrates that inter-rater reliability is still substantial. Additionally, allowing a tolerance of 1 point shows great percentage agreement between the two investigators (85.2%). Overall, the results, most notably kappa values signifying **moderate to near perfect agreement**, indicate high intra-rater and inter-rater reliability, giving confidence that these mRS ratings can be employed as a gold standard label to train a natural language machine model. Ultimately, this would expedite evaluating functional outcomes at discharge, helping to better assess poststroke condition and to determine the course of treatment intervention.

(**Investigator B**); reliability determined using Cohen's kappa • **Investigator A's** first assessment compared to mRS originally included in **discharge summary**; Investigator A (1st assessment) reliability determined using Fleiss' kappa • Comparing **Investigator A's** first assessment, **Investigator B**, and mRS originally included in Investigator A

(1st assessment)

Summary Discharge **Investigator B** VS. VS. Summary

Figure 1: Comparisons for Intra- and Inter- Reliability

VS.

Discharge

• Reliability when considering favorable (mRS 0-2) vs. **unfavorable** (mRS 3-6) outcomes

discharge summary; reliability

determined using Fleiss' kappa

References

¹ Linwood, Simon L, et al. "Chapter 6 Moving Toward Explainable Decisions of Artificial Intelligence Models for the Prediction of Functional Outcomes of Ischemic Stroke Patients." Digital Health, Exon Publications, Australia, 2022, https://www.ncbi.nlm.nih.gov/books/NBK580624/. Accessed 7 Aug. 2023.

2 Chang, Winston. "Inter-Rater Reliability." R Graphics Cookbook, O'Reilly, Beijing Etc., 2013, http://www.cookbook-r.com/Statistical_analysis/Inter-rater_reliability/ Accessed 7 Aug. 2023.

Acknowledgments

Special thanks to Jack Pohlmann and Dr. Charlene Ong for all their guidance and mentorship throughout the research process. I would also like to thank the rest of the Ong lab for their continued help and support. Finally, I would like to thank the RISE program for this amazing opportunity.