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Background: Modeling Neural Processes
« The primate brain uses many different mechanisms to perceive « MATLAB was used to take in an input curve and convolve it with
the world around it — one of them being curvature detection (1, the excitatory and inhibitory subfield of the LGN
2, 3) « The Euler method was used to create a real-time neural response
« The neural processes behind curvature detection are widely for the LGN — creating a 4D plot
unknown and complex (1, 3)
Goals: Exploring Dynamic Activation (Excitation vs. Inhibition)
 Creating a model that visualizes the primary curvature detection  The curvature inputs are used to investigate excitatory and
processes in the LGN and real time neural responses inhibitory signals through the Dynamic Activation equation at
« Examining patterns between inhibitory and excitatory signals in equilibrium
dynamic neural activation and selectivity . Variables A (decay rate of activation), B (upper limit of
activation), and C (lower limit of activation) were manipulated to
“ explore the amount of shift produced based on increasing values
LGN Modeling of each variable
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‘éj: ............ = & 5122 - Figure 1: Example of input curve fed into LGN processing  Figure 2: Dynamic Activation Equation at Equilibrium
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Figure 3. Visualization of excitatory kernel for LGN Figure 4. Visualization of inhibitory kernel for LGN . The model successfully creates kernels for LGN processing that
Dynamic Activation exists as a part of visual pathways
.. Log(exc)vs. Neural Response oruzg . value vs. Amount of Shift « Note that the inhibitory kernel is larger than the excitatory kernel
NG ~amessesrt || | due to the ON-center/OFF surround nature of the subset of LGN
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:"_gﬁtnaleof Bet Fit :’jgﬁ:eof Bect Fi Figure 10: Visual pathway including LGN processing Figure 11: LGN response to input curve
Dynamic Activation Discussion
E ' E « Each curvature neuron is excited most by its corresponding
E E : curvature, while being inhibited every other curve.
e S - As inhibition increases within curvature processing, it becomes
) A clear that excitation must increase as well in order to elicit a
i o response.
5 e s 1"109(3){7 T S TR yer vy ; 2w 1 5 | ¢ Asvalues for A and C increased, the amount of shift decreased
Figure 7: Visualization of increasing B values vs. Amount of Shift Figure 8: Visualization of increasing C values vs. Amount of Shift linea r|y’- hOWGVEf, as values of B increased’ the amount of shift
Real-Time Neural Response increased quadratically.
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Figure 9: Simulating a curvature-responding neuron’s real time response
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