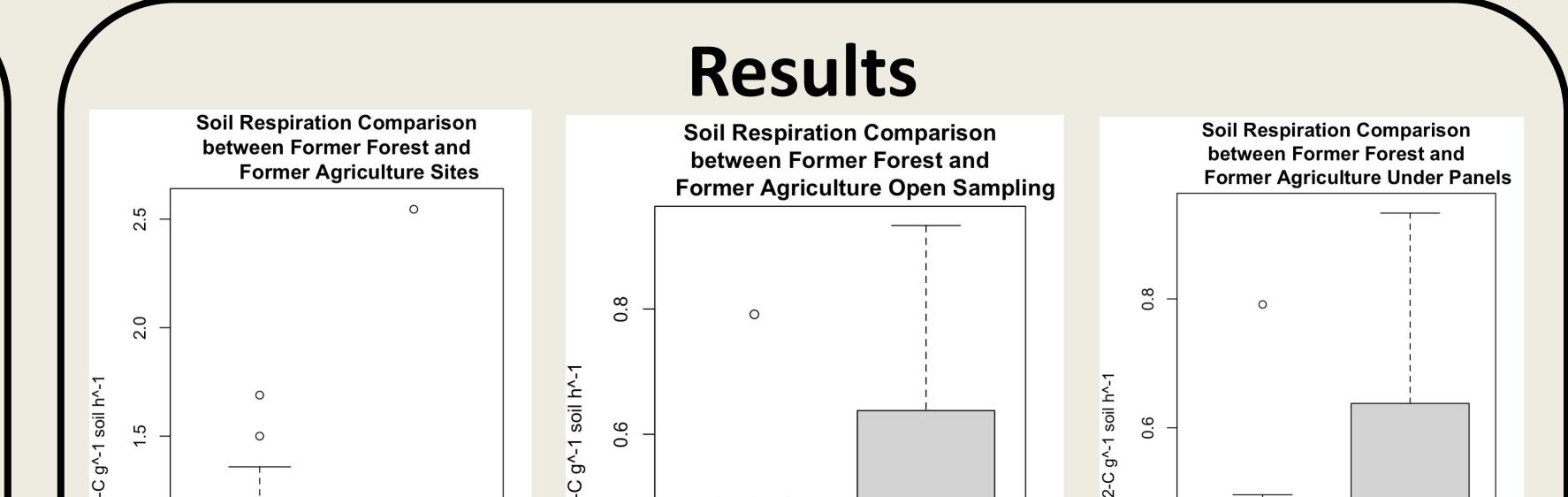
The effects of solar construction on soil respiration dynamics in


BOSTON JNIVERSITY

former forest and agricultural land

Manav Gupta, Hristiana Stoynova, Lucy Hutyra Manhasset High School, 200 Memorial Pl, Manhasset, NY; Boston University Department of Earth and Environment, 685 Commonwealth Ave, Boston, MA

Introduction

- According to the Solar Energy Industries Association (SEIA), Massachusetts currently has 3,607.36 MW installed (408.52 MW total in 2020)
- Continuing this rising trend of solar development for 2050 could lead to a loss of 150,000 acres of land (Ricci, E. et al)
- As we make the move toward "clean" energy, it is important to consider effects of solar construction on soil microclimates

- This study examines soil respiration rates, carbon dioxide (CO₂) released from the decomposition of organic material, and root metabolism, across different land types within a solar site
- This can provide a consideration for future solar implementation, in terms of location

Figure 1: Aerial view of site before solar construction

Figure 2: Solar site after construction of array in 2017 (former forest and agricultural land)

Figure 3: Solar site picture

mg CO2mg CO2mg CO 1.0 0.4 0.5 0.2 0.2 ____ FFSW FFSW FASE FASE FFSW FASE

Figure 6: Higher soil respiration rate in sampling from former forest than former agricultural

land

Figure 7: Higher soil respiration rate in FF Open than FA Open

Figure 8: Higher soil respiration rate in FF Under than FA Under

groups	diff	p adj	sig
FASE_under-FASE_open	-0.4497719	0.1598909	
FFSW_open-FASE_open	0.3165827	0.5109046	
FFSW_under-FASE_open	-0.343949	0.4402336	
FFSW_open-FASE_under	0.7663546	0.0161844	*
FFSW_under-FASE_under	0.1058229	0.9695613	
FFSW_under-FFSW_open	-0.6605317	0.066233	*

According to a Tukey's HSD test, there is a significant relationship between: 1. FF Open and FA Under

2. FF Under and FF Open

Also, respiration under the solar panels is almost identical in both sites

Methods

Jar Incubation Method

- Bulk density was calculated by sieving and separating the soil by three properties • Soil
 - Roots
 - Rocks
- All samples are weighed and a recorded/known value of soil is placed in a tin
- Tin is placed in sterile jars to incubate in intervals of 15 minutes (0, 15, 30, 45, 60) to measure respiration rate
- Each jar is labeled depending on soil classification
 - Former land use (agriculture or forest)
 - Coordinates indicate location
 - Taken in the open or under solar panel
 - OA or A Horizon

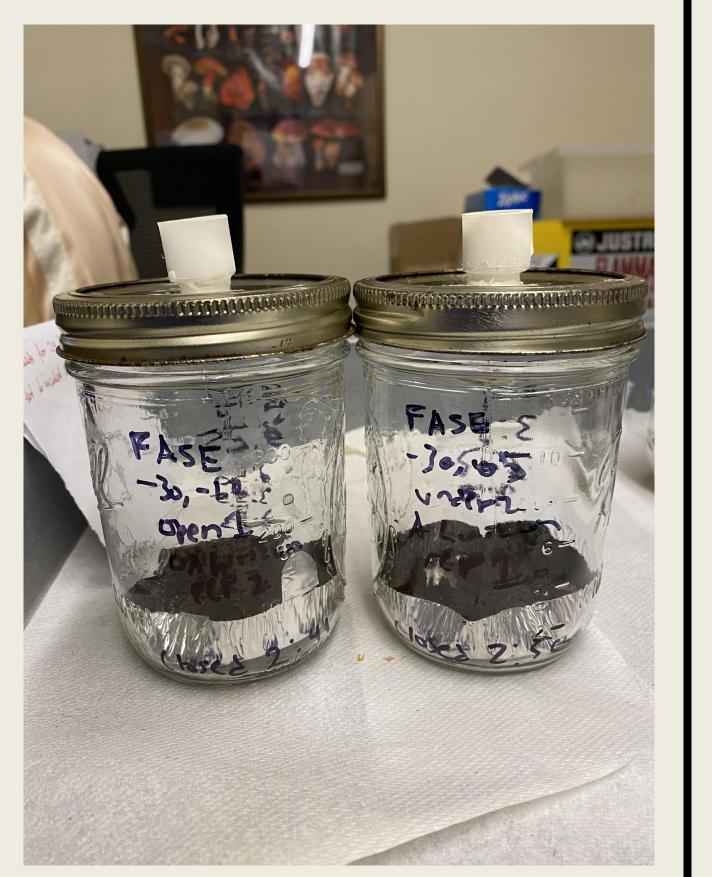


Figure 4: Setup of Jar Incubation Method

Discussion/Conclusions

- Results show that soil respiration rate in samples taken from former forest land is higher than those taken from former agricultural land (Figure 6)
- Soil respiration was higher in FF Open and FF Under than FA Open and FF Under (Figures 7 and 8)
- Before future implementation of solar panels, it is important to consider potential effects on the environment
 - Solar panels constructed in former forest lands requires trees to be removed
 - Vegetation removal releases above ground stored carbon into the atmosphere and prevents future carbon sequestration
- When considering locations for solar deployment, former land use will have long-lasting effects on the soil carbon dynamics
 - CO₂ emissions can be minimized by selecting non-forested sites
- Higher soil respiration rate = more CO₂ emitted into the atmosphere • In undisturbed forests ecosystems, vegetation photosynthesis
 - absorbs a large portion of soil respiration

Method of Measuring Microbial CO, Respiration

- When the ambient CO₂ level stabilizes, measure initial CO₂ in jar (using a 10 mL syringe)
- In intervals of 15 minutes, measure CO_2 in jar - data was recorded on computer via GAS software

Figure 5: Setup for Collecting Soil Respiration Data (CO₂ ppm) Using an IRGA (Infrared Gas Analyzer)

• In disturbed ecosystems, such as the solar site in this study, once the trees were removed, the carbon equilibrium was disturbed

References

- Cole, W. (2022). Breaking Down 2022 Massachusetts Solar Statistics. Bluesel Home Solar.
- https://www.bluesel.com/blog/breaking-down-2022-massachusetts-solar-statis tics/
- Giasson, M.-A. ., Ellison, A. M., Bowden, R. D., Crill, P. M., Davidson, E. A., Drake, 2. J. E., Frey, S. D., Hadley, J. L., Lavine, M., Melillo, J. M., Munger, J. W., Nadelhoffer, K. J., Nicoll, L., Ollinger, S. V., Savage, K. E., Steudler, P. A., Tang, J., Varner, R. K., Wofsy, S. C., & Foster, D. R. (2013). Soil respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere, 4(11), art140. https://doi.org/10.1890/es13.00183.1
- Ricci, E. H., Collins, J., Clarke, J., Dolci, P. de la Parra, L (2020). Losing ground: Nature's value in a changing climate. 33

Acknowledgements

I would like to thank Boston University and the RISE Program for allowing me to conduct research in the Department of Earth and Environment in the Hutyra Lab. I would also like to thank Hristiana and Dr. Lucy Hutyra for allowing me to join their project and helping me understand the impact of solar construction on the environment.